用户名: 密码: 验证码:
新型光纤传感器及其在纤维复合材料的声发射源定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纤维增强复合材料在航空航天、交通运输、能源、航海与军事等领域的广泛应用,复合材料的结构健康监测也引起科研人员的广泛重视。传统的无损检测技术已无法实时监测复合材料结构服役期间因受静、动载荷,疲劳而产生的损伤和破坏,亟待开发新技术实现先进复合材料结构的在线健康监测。声发射技术作为一种现代新兴的无损检测技术,与传感器技术、测量技术、信号采集与分析处理等多种技术相融合,在无损检测领域中具有广阔的应用前景。传统的声发射传感器通常为压电陶瓷材料,不仅易受电磁干扰,而且因为体积大而不适合埋藏于纤维复合材料结构中。本文研制了一种可埋藏在纤维复合材料结构内的新型光纤声发射传感器,将其应用于各向异性复合材料平板结构的声发射源定位研究,主要内容如下:
     首先,基于熔锥型光纤耦合器提出并研制了一种新型光纤声发射传感器。该传感器采用细小的毛细玻璃管封装,易埋藏于纤维复合材料结构中。从振动力学角度分析了传感器的振动特性,指出封装管对传感器内耦合光纤的预拉伸力是影响传感器对应力波响应的主要因素。利用光波导理论分析了光纤声发射传感器的传感原理,得出传感器耦合区的光纤纤芯间距与传感器对应力波的敏感特性之间的关系。根据电子显微镜测量传感器内部光纤的细观结构尺寸,使用有限差分光束传输法模拟光纤传感器中光波导的传输特性,仿真结果为提高传感器的灵敏度提供参考。针对新型光纤声发射传感器,开发了声发射源定位监测系统。在监测系统程序中嵌入声发射源定位算法,能够及时准确判断声发射源位置,提高测试效率。
     其次,将光纤声发射传感器埋藏在纤维复合材料层合板中,形成具有感知应力波、识别声发射源位置功能的智能纤维层合板,突破了传统压电声发射传感器体积大、不易埋藏在复合材料结构中的限制。结合商用压电声发射传感器,对比测试了光纤声发射传感器对应力波的幅频响应特性,证明新研制的光纤声发射传感器适用于低频声发射源监测。该传感器可以识别出具有波形特征的扩展波(S0波)与弯曲波(A0波),通过实验测量出它们在不同材料平板中不同方向的传播速度,为识别声发射源位置提供信息。
     再次,研究了各向同性与各向异性材料平板的声发射源定位方法,使用光纤声发射传感器及其源定位监测系统进行了测试与验证,包括声发射源的线性定位和平面定位两种方式。在研究声发射源的线性定位方法中,将三个光纤声发射传感器以等间距线性阵列布局在纤维复合材料平板内任意方向上,在无需应力波传播速度的前提下识别出声发射源位置。将该方法应用于长为1.2m的玻璃纤维风机叶片模型,通过等间距的逐点测试,相对误差不超过1.3%,验证了该线性定位方法较高的准确性。在研究声发射源的平面定位方法中,使用代数算法对传感器正方形布局测量的声发射源坐标进行计算。实验结果显示三个参量的代数算法在迭代运算中易产生非线性误差和非实数解。为解决以上缺点,建立了时间差为输入的BP神经网络算法。该算法适用于传感器任意布局的源定位方法,具有较强的通用性。为削弱应力波在各向异性的纤维复合材料中不同方向的传播速度不一致对代数算法的影响,提出了传感器菱形布局的源定位算法。该方法利用菱形两个对角线方向的速度计算声发射源位置,实现了声发射源在各向异性材料平板内的高精度快速定位功能。
     最后,使用落锤低速冲击方法模拟冰雹和沙石等自然灾害和恶劣环境对碳纤维复合材料进行冲击测试,应用本文建立的光纤声发射源定位系统对碳纤维复合材料的落锤冲击源进行定位研究。通过光纤声发射传感器的表面粘贴和埋藏两种方式,准确地识别出碳纤维复合材料层合板的冲击源位置。分析预埋缺陷与冲击损伤对声发射源定位的影响程度,证明光纤声发射传感器阵列的测量结果与嵌入在源定位系统内的代数算方法均具有较高的精度。在一定的冲击能量范围内,传感器对应力波的幅值响应线性地反映出落锤冲击能量,具有操作方便、数据处理简单、可靠性强等优点。
     综上,本文研制的新型光纤声发射传感器开拓了无损检测技术的研究方向。传感器阵列埋藏在纤维复合材料结构中的研究成果,为自感知智能复合材料结构的发展提供重要的参考价值。声发射源定位监测系统的开发与应用在先进复合材料结构健康监测的研究中具有重要意义。
With the fiber reinforced plastic (FRP) composite laminates are widely used in the field of aerospace, transportation, energy, navigation and military, more and more researchers have drawn attention to the structural health monitoring (SHM) of composites. In order to effectively detect damages and failures of composites due to the static or dynamic load and fatigue, a novel technology instead of traditional nondestructive testing technology is necessary to be developed for achieving the on-line health monitoring of advanced composites materials and structures. Acoustic emission (AE) technique as a kind of modern new non-destructive testing technology, integrating multiple techniques such as sensor technique, measurement technique, signal acquisition and analysis technique, has a broad potential application in the field of nondestructive testing. Traditional AE sensors are usually made of piezoelectric (PZT) ceramic materials, not only susceptible to electromagnetic interference, but also unsuitable for being embedded into FRP composites structure as its bulky structure. In this thesis, a new type of fiber optic acoustic emission sensor (FOAES) is developed, which is able to be embedded in FRP composite laminates. The sensors are applied for the research of AE source localization in anisotropic plate-like composites structures. The main contents in this thesis include:
     Firstly, a novel FOAES is proposed and developed on the fused-tapered optical fiber coupler. It is packed with a short and thin capillary tube, and easy to be embedded into composite structures. The vibration characteristic of the sensor is established on the perspective of vibration mechanics, which points out that the main influence factor is the pre-tension from the packed tube to the coupled fibers of the sensor. The sensing principle of the FOAES is analyzed with the optical waveguide theory, obtaining the relationship between the fiber core spacing at the sensor coupling part and the sensor sensitivity to the stress wave. According to the mesoscopic structure size of optical fibers in the sensor measured by the electron microscope, optical waveguide transmission properties in the optical fiber sensor are simulated with the method of finite difference beam propagation, and their optical waveguide simulation results provide reference for improving the sensitivity of the sensor during its fabrication. At the same time, a AE source localization monitoring system is built and developed for the novel FOAES. An algebra algorithm of AE source localization is embedded in the system program, which is able to accurately and quickly estimate the AE source location improving the testing efficiency.
     Secondly, FOAESs are embedded into a FRP plate, constituting of a smart composites plate that has the function of sensing stress waves and identifying the position of the AE source. This technique breaks through the limit of bulky and difficult to be embedded into the composite structures of traditional PZT AE sensor. Through a series of comparison experiments, amplitude frequency response characteristics of the FOAES to stress waves are measured compared with a PZT AE sensor. Their experiment results prove that the new-designed FOAES is completely suitable for the AE source of low-frequency. The sensor can distinguish waveforms feature of the expansion wave (S0wave) and flexural wave (A0wave). Their propagation velocities in different directions are measured in different materials plate by experiments, which support the information for identifying the AE source location.
     Thirdly, the AE source localization method is researched on the plate of isotropic and anisotropic materials. The FOAES and its monitoring system are used for experimental measurement and validation, including linear and planar localization of AE source. In the study of linear localization method for acoustic emission source, three FOAESs with equally spaced linear array are distributed on the fiber composite plate in any direction. The AE source location is identified using the linear array without the information of propagation velocities of stress waves. A composite wind turbine blade with1.2m length is tested in the method of evenly spaced points. The measurement relative error less than1.3%verifies the linear positioning method has a high accuracy. In the study of planar localization method of AE source, the algebra algorithm is used to calculate the AE source location measured by a square sensor array. Experiment results prove that nonlinear errors and unreal solutions are easy to be obtained using the algebra algorithm with three parameters. An algorithm based on artificial neural network with time differences as inputs is established to solve the above shortcomings, which is suitable for any source localization method of distribution of sensors. The algorithm of source localization using sensors as a diamond array is also proposed for weakening the influence of which is introduced stress wave propagation velocities are different in directions of anisotropic composites materials. Two velocities in the diagonal directions of the diamond are selected for calculating the location of acoustic emission source in the algorithm, which achieve the function of acoustic emission source localization in anisotropic materials plate accurately and fastly.
     Finally, CFRP composite materials are tested by using drop-weight impact method, which are simulate to natural disasters and harsh environment, such as hails and sands. The drop-weight impact source localization method for CFRP laminates are also researched by using the optical fiber AE source localization system of this article. The impact source location of CFRP laminates is accurately identified by the surface-mounted and embedded sensors. The incidences of AE source localization from impact damage are analyzed, which prove that the measurement results of the FOAES array and the algebra calculate method embedded in the source localization system both have higher precision. In a range of impact energy, the amplitude response of the sensor to stress wave will linearly increase along with the augment of the drop-weight impact energy, which is easy to operate, simple to process data, reliable and so on.
     Above all, the development of the new FOAES in this thesis expands the research area of nondestructive testing technology. The research results of the FRP composite structures embedded with sensor array provide important reference value for the development of self-sensing smart composite structures. The development of monitoring system for acoustic emission source localization and its application have important research significance for the structural health monitoring (SMH) of advanced composites.
引文
[1]袁振明,马羽宽,何泽云.声发射技术及其应用[M].北京:机械工业出版社,1985:1-5.
    [2]杨明纬.声发射检测[M].北京:机械工业出版社,2005:37-45.
    [3]沈功田.中国声发射检测技术进展[J].无损检测,2003,25(6):302-307.
    [4] Finlayson RD, Friesel M, Carlos M. Health monitoring of aerospace structureswith acoustic emission and acousto-ultrasonics[J]. Insight,2001,43(3):1-4.
    [5] Kao CK, Hockham GA. Dielectric fiber surface waveguides for opticalfrequencies[J]. Proc IEE,1966,113:1151–1158.
    [6] Menadier C, Kissenger C, Adkins H. The fotonic sensor [J]. Instruments andControl Systems,1967,40:114-120.
    [7] Giallorenzi TG, Bucaro JA, Dandridge A, et al. Optical Fiber SensorTechnology[J]. Ieee Journal of Quantum Electronics,1982,18(4):626-665.
    [8] Kersey AD, Dandridge A. Applications of fiber-optic sensors[J]. Proceedingsof Electronic Components Conference,1989:472-478.
    [9] Udd E. An overview of fiber-optic sensors[J]. Review of ScientificInstruments,1995,66(8):4015-4030.
    [10] Morshed AH. Senior projects in optical fiber sensing[J]. Teaching Photonics atEgyptian Engineering Faculties&Institutes,1999:1-8.
    [11] Rice T, Duncan R, Gifford D, et al. Fiber Optic Distributed Strain, AcousticEmission, and Moisture Detection Sensors for Health Maintenance[C]∥IEEESystems Readiness Technology Conference Proceedings, Virginia:Blacksburg,AUTOTESTCON,2003:505-514.
    [12] Culshaw B. Optical Fiber Sensor Technologies: Opportunities and-Perhaps-Pitfalls[J]. Journal of Lightwave Technology,2004,22(1):39-50.
    [13] Zhou G, Sim LM. Damage detection and assessment in fibre-reinforcedcomposite structures with embedded fibre optic sensors-review[J]. SmartMaterials and Structures,2002,11(6):925-939.
    [14] Wild G, Hinckley S. Acousto-ultrasonic optical fiber sensors: Overview andstate-of-the-art[J]. IEEE Sensors Journal,2008,8(7-8):1184-1193.
    [15] Sheem SK, Cole JH. Acoustic sensitivity of single-mode optical powerdividers[J]. Optics Letters,1979,4(10):322-324.
    [16] Carome EF, Koo KP. Multimode coupled waveguide acoustic sensor[J]. OpticsLetters,1980,5(8):359-361.
    [17] Chen R, Fernando GF, Butler T, et al. A novel ultrasound fibre optic sensorbased on a fused-tapered optical fibre coupler[J]. Measurement Science&Technology,2004,15:1490–1495.
    [18] Chen R, Bradshaw T, Burns J, et al. Linear location of acoustic emission usinga pair of novel fibre optic sensors[J]. Measurement Science&Technology,2006,17:2313–2318.
    [19] Fu T, Liu Y, Leng J. Fiber optic acoustic emission sensor and its applicationsin the structural health monitoring of CFRP materials[J]. Optics and Lasers inEngineering,2009,47(10):1056-1062.
    [20] Fu T, Zhang Z, Lin Z, Leng J, et al.Linear damage location using fiber opticacoustic emission sensors for structure health monitoring[C]∥Smart SensorPhenomena, Technology and Systems. San Diego, SPIE,2011:79820-79828
    [21] Betz DC, Thursby G, Culshaw B, et al. Identification of structural damageusing multifunctional Bragg grating sensors: I.Theory and implementation[J].Smart Materials and Structures,2006,15:1305-1312.
    [22] Daniel CB, Graham T, Brian C, et al. Acousto-ultrasonic sensing using fiberBragg gratings[J]. Smart Materials and Structures,2003,12(1):122-128.
    [23] Kirkby E, Oliveira Rd, V. Michaud JAM. Impact localisation with FBG for aself-healing carbon fibre composite structure[J]. Composite Structures,2011,94:8-14.
    [24] Betz DC, Thursby G, Culshaw B, et al. Structural Damage Location with FiberBragg Grating Rosettes and Lamb Waves[J].Structural Health Monitoring,2007,6(4):299-308.
    [25] Culshaw B, Thursby G, Betz D, et al. The Detection of Ultrasound UsingFiber-Optic Sensors [J]. IEEE Sensors Journal,2008,8(7):1360-1367.
    [26] Bucaro JA, Dardy HD, Carome EF. Optical fiber acoustic sensor[J]. Appliedoptics,1977,16(7):1761-1762.
    [27] Bucaro JA, Dardy HD, Carome EF. Fiber-optic hydrophone[J]. The Journal ofthe Acoustical Society of America,1977,62(5):1302-1304.
    [28] Cole JH, Johnson RL, Bhuta PG. Fiber-optic detection of sound[J]. The Journalof the Acoustical Society of America,1977,62(5):1136-1138.
    [29] Cole JH, Johnson RL, Bhuta PG. Erratum: Fiber-optic detection of sound[J].The Journal of the Acoustical Society of America,1978,63(4):1232-1232.
    [30] Jackson DA, Dandridge A, Sheem SK. Measurement of small phase shiftsusing a single-mode optical-fiber interferometer[J]. Optics Letters,1980,5(4):139-141.
    [31] Culshaw B, Davies DEN, Kingsley SA. Acoustic sensitivity of optical-fibrewaveguides[J]. Electron Letters,1977,13(25):760-761.
    [32] Hall TJ. High-linearity multimode optical fibre sensor. Electron Letters[J].1979,15(13):405-406.
    [33] Imai M, Ohashi T, Ohtsuka Y. Fiber-optic Michelson interferometer using anoptical power divider[J]. Optics letters,1980,5(10):418-420.
    [34] Imai M, Ohashi T, Ohtsuka Y. High-sensitive all-fiber michelsoninterferometer by use of differential output configuration[J]. OpticsCommunications,1981,39:7-10.
    [35] Imai M, Ohashi T,Ohtsuka Y. Multimode-optical-fiber Michelsoninterferometer [J]Journal of Lightwave Technology,1983,1:75-81.
    [36] Claus RO, Cantrell JH. Detection of ultrasonic waves in solids by an opticalfiber interferometer[C]∥Ultrasonics Symposium. Boston, Proc IEEE,1980,719-721.
    [37] Wade JC, Zerwekh PS, Claus RO. Detection of acoustic emission incomposites by optical fiber interferometry[C]∥Ultrasonics Symposium.Chicago, Proc IEEE,1981,849-852.
    [38] Liang S, Zhang C, Lin W,et al. Fiber-optic intrinsic distributed acousticemission sensor for large structure health monitoring[J]. Optics letters,2009,34(12):1858-1860.
    [39] Ohbuchi T, Mizutani K, Wakatsuki N, et al. Indirect Measurement of VibratingSurface of Ultrasonic Transducer Using Optical Computerized Tomographyand Acoustical Holography[J]. Japanese Journal of Applied Physics,2007,46(7B):4629-4632.
    [40] Speirs RW, Bishop AI. Photoacoustic tomography using a Michelsoninterferometer with quadrature phase detection[J]. Applied Physics Letters,2013,103(5):053501-053501.
    [41] Alcoz JJ, Lee CE, Taylor HF. Embedded fiber-optic Fabry-Perot ultrasoundsensor[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,1990,17(4):302-306.
    [42] Beard PC, Mills TN. Extrinsic optical-fiber ultrasound sensor using a thinpolymer film as a low-finesse Fabry-Perot interferometer[J]. Applied optics,1996,35(4):663-675.
    [43] Fernando GF. Fibre optic sensor systems for monitoring compositestructures[J]. Reinforced Plastics,2005,49(11):41-49.
    [44] Rao Y. Recent progress in fiber-optic extrinsic Fabry-Perot interferometricsensors[J]. Optical Fiber Technology,2006,12:227-237.
    [45] Kim D-H, Kim Y-H, Kim C-G. Sensitivity of an Extrinsic Fabry-PerotInterferometric Sensor with respect to the Alignment Direction of the Sensorfor Detecting Lamb Waves[C]∥Smart Structures and Materials. Proc SPIE,2006:6167-61670.
    [46] Udd E. Fiber-optic acoustic sensor based on the Sagnac interferometer[C]∥Single Mode Optical Fibers. San Diego,Proc SPIE,1983,425:90-90.
    [47] Yuan L, Zhou L-m, Jin W. Detection of acoustic emission in structure usingSagnac-like fiber-loop interferometer[J]. Sensors and Actuators A: Physical,2005,118(1):6-13.
    [48] Qin Y, Liang Y, Zhang Y, et al. Experimental study on an optical fiber acousticemission sensor array[J]. Laser Physics and Laser Technologies and AcademicSymposium on Optoelectronics Technology,2010:299-302.
    [49]梁艺军,刘志海,杨军,等.测量微振动的光纤Sagnac干涉传感器[J].哈尔滨工程大学学报,2007(01):118-122.
    [50] Liang Y, Zhang Y, Zuo H, et al. Fiber for identification of characteristicfrequency of AE signal[J]. Laser Physics and Laser Technologies and2010Academic Symposium on Optoelectronics Technology,2010:292-294.
    [51] Xu G, Xu S, Liang Y, Jiang Y. The study on fiber-optic acoustic emissionsensor for frequency characteristics of the materials[C]∥Optoelectronics andMicroelectronics Technology Academic International Symposium, Harbin,2011:228-231.
    [52] Giurgiutiu V, Bao J. Embedded-ultrasonics Structural Radar for In SituStructural Health Monitoring of Thin-wall Structures[J]. Structural HealthMonitoring,2004,3(2):121-140.
    [53] Su Z, Ye L. Fundamental Lamb Mode-based Delamination Detection forCF/EP Composite Laminates Using Distributed Piezoelectrics[J]. StructuralHealth Monitoring,2004,3(1):43-68.
    [54] Kundu T, Das S, Jata KV. Point of impact prediction in isotropic andanisotropic plates from the acoustic emission data[J]. The Journal of theAcoustical Society of America,2007,122(4):2057-2066.
    [55] Kundu T, Das S, Martin SA, et al. Locating point of impact in anisotropic fiberreinforced composite plates[J]. Ultrasonics,2008,48(3):193-201.
    [56] Sung DU, Oh JH, Kim CG, et al. Impact monitoring of smart compositelaminates using neural network and wavelet analysis[J]. Journal of IntelligentMaterial Systems and Structures,2000,11(3):180-190.
    [57] Saghiri MA, Asgar K, Boukani KK, et al. A new approach for locating theminor apical foramen using an artificial neural network[J]. InternationalEndodontic Journal,2012,45(3):257-265.
    [58] Tobias A. Acoustic-emission source location in two dimensions by an array ofthree sensors[J]. Non-Destructive Testing,1976,9(1):9-12.
    [59] Coverley PT, Staszewski WJ. Impact damage location in composite structuresusing optimized sensor triangulation procedure[J]. Smart Materials andStructures,2003,12(5):795-803.
    [60] Niri ED, Salamone S. A probabilistic framework for acoustic emission sourcelocalization in plate-like structures[J]. Smart Materials and Structures,2012,21(3).
    [61] Ying SP, Hamlin DR, Tanneberger D. A multi-channel acoustic emissionmonitoring system with simultaneous multiple event data analyses[J]. TheJournal of the Acoustical Society of America,1974,55(2):350-356.
    [62] Koabaz M, Hajzargarbashi T, Kundu T, et al. Locating the acoustic source inan anisotropic plate[J]. Structural Health Monitoring,2012,11(3):315-323.
    [63] Marchi LD, Marzani A, Speciale N, et al. A passive monitoring techniquebased on dispersion compensation to locate impacts in plate-like structures[J].Smart Materials and Structures,2011,20(3):035021.
    [64] Walworth M, Mahajan A.3d Position Sensing Using the Difference in theTime-of-Flights from a Wave Source to Various Recievers [J].Robotics andAutomation,IEEE,2001,17(1):91-94.
    [65] Williams SM, Frampton KD, Amundson I, et al. Acoustic Source Localizationin a Distributed Sensor Network[J]. Applied Acoustics,2006,67(10):996-1008.
    [66] Chan YT, Ho KC. A simple and efficient estimator for hyperbolic location[J]IEEE Transactions on Signal Processing,1994,42(8):1905-1915.
    [67] Perelli A, De Marchi L, Marzani A, et al. Acoustic emission localization inplates with dispersion and reverberations using sparse PZT sensors in passivemode[J]. Smart Materials&Structures,2012,21(2).
    [68] Lympertos EM, Dermatas ES. Acoustic emission source location in dispersivemedia[J]. Signal Processing,2007,87(12):3218-3225.
    [69] Aljets D, Chong A, Wilcox S, et al.Acoustic emission source location on largeplate-like structures using a local triangular sensor array[J]. MechanicalSystems and Signal Processing,2012,30:91-102.
    [70] Aljets D, Chong A, Wilcox S, et al. Acoustic emission source location inplate-like structures using a closely arranged triangular sensor array[J].Journal of Acoustic Emission,2010,28:85-98.
    [71] Kundu T, Nakatani H, Takeda N. Acoustic source localization in anisotropicplates[J]. Ultrasonics,2012,52:740-746.
    [72] Matt HM, Scalea FL. Macro-fiber composite piezoelectric rosettes for acousticsource location in complex structures[J]. Smart Materials and Structures,2007,16:1489-1499.
    [73] Salamone S, Bartoli I, Di Leo P, et al. High-velocity Impact Location onAircraft Panels Using Macro-fiber Composite Piezoelectric Rosettes[J].Journal of Intelligent Material Systems and Structures,2010,21(9):887-896.
    [74] Ciampa F, Meo M. A new algorithm for acoustic emission localization andflexural group velocity determination in anisotropic structures[J]. CompositesPart a-Applied Science and Manufacturing,2010,41(12):1777-1786.
    [75] Ciampa F, Meo M, Barbieri E. Impact localization in composite structures ofarbitrary cross section[J]. Structural Health Monitoring-an InternationalJournal,2012,11(6):643-655.
    [76] Holford KM, Carter DC. Acoustic Emission source location[J]. KeyEngineering Materials,1999,167-168:162-171.
    [77] Surgeon M, Wevers M. One sensor linear location of acoustic emission eventsusing plate wave theories[J]. Materials Science and Engineering: A,1999,265(1-2):254-261.
    [78]耿荣生,沈功田,刘时风.模态声发射——声发射信号处理的得力工具[J].无损检测,2002(08):341-345.
    [79] White PH. Cross Correlation in Structural Systems: Dispersion andNondispersion Waves[J]. The Journal of the Acoustical Society of America,1969,45(5):1118-1128.
    [80] Okafor AC, Chandrashekhara K, Jiang YP.Location of impact in compositeplates using waveform-based acoustic emission and Gaussian cross-correlationtechniques[C]∥Smart Structures and Materials. San Diego, Proceedings ofSPIE,1996,2718:291-302.
    [81] Ing R-K, Quieffin N, Catheline S, et al. In solid localization of finger impactsusing acoustic time-reversal process[J]. Applied Physics Letters,2005,87(20):204104-204106.
    [82] Ciampa F, Meo M. Impact detection in anisotropic materials using a timereversal approach[J]. Structural Health Monitoring-an International Journal,2012,11(1):43-49.
    [83] Scholey JJ, Wilcox PD, Wisnom MR, et al. A Generic Technique for AcousticEmission Source Location[J]. Journal of Acoustic Emission,2009,27:291-298.
    [84] Baxter MG, Pullin R, Holford KM, et al. Delta T source location for acousticemission[J]. Mechanical Systems and Signal Processing,2007,21(3):1512-1520.
    [85] Eaton MJ, Pullin R, Holford KM. Acoustic emission source location incomposite materials using Delta T Mapping[J]. Composites: Part A,2012,43(6):856-863.
    [86] Lu Y, Michaels J. A methodology for structural health monitoring with diffuseultrasonic waves in the presence of temperature variations[J]. Ultrasonics,2005,43(9):717-731.
    [87] Kijanka P, Radecki R, Packo P, et al. GPU-based local interaction simulationapproach for simplified temperature effect modelling in Lamb wavepropagation used for damage detection[J]. Smart Materials and Structures,2013,22(3):035014.
    [88] Scalea FLd, Salamone S. Temperature effects in ultrasonic Lamb wavestructural health monitoring systems[J]. The Journal of the Acoustical Societyof America,2008,124(1):161-174.
    [89] Marioli D, Narduzzi C, Offelli C, et al. Digital time of flight measurement forultrasonic sensors[C]. Instrumentation and Measurement TechnologyConference,1992,41(1):93-97.
    [90] Andria G, Attivissimo F, Giaquinto N. Digital signal processing techniques foraccurate ultrasonic sensor measurement[J]. Measurement,2001,30(2):105-114.
    [91] Dehghan Niri E, Farhidzadeh A, Salamone S. Adaptive multisensor data fusionfor acoustic emission source localization in noisy environment[J]. StructuralHealth Monitoring,2013,12(1):59-77.
    [92] Kundu P, Kishore NK, Sinha AK. A non-iterative partial discharge sourcelocation method for transformers employing acoustic emission techniques[J].Applied Acoustics,2009,70:1378-1383.
    [93] Goupillaud P, Grossmann A, Morlet J. Cycle-octave and related transforms inseismic signal analysis[J]. Geoexploration,1984,23(1):85-102.
    [94]谢建宏,张为公,梁大开.基于小波神经网络的智能复合材料损伤定位的仿真研究[J],测控技术,2004(09):8-10.
    [95]沈功田,耿荣生,刘时风.声发射信号的参数分析方法[J].无损检测,2002(02):72-77.
    [96]耿荣生,沈功田,刘时风.基于波形分析的声发射信号处理技术[J].无损检测,2002(06):257-261.
    [97] Jeong H. Analysis of plate wave propagation in anisotropic laminates using awavelet transform[J]. NDT&E International,2001,34(3):185-190.
    [98]吴耀军,陶宝祺.小波变换特征提取的复合材料损伤检测[J].实验力学,1997(01):50-55.
    [99]袁慎芳,陶宝祺,朱晓荣,等.应用小波分析及主动监测技术的复合材料损伤监测[J].材料工程,2001,2:43-46.
    [100]Su Z, Ye L. A fast damage locating approach using digital damage fingerprintsextracted from Lamb wave signals[J]. Smart Materials and Structures,2005,14(5):1047-1054.
    [101]Thatoi DN, Das HC, Parhi DR. Review of Techniques for Fault Diagnosis inDamaged Structure and Engineering System[J]. Advances in MechanicalEngineering,2012:1-11.
    [102]徐漫江.小波分析法在信号处理中的使用[J].雷达与对抗,1997(04):28-32.
    [103]Waltisberg D, Rai utis R.Group velocity estimation of Lamb waves based onthe wavelet transform[J]. Ultrasound,2008,63(4):35-40.
    [104]Wang D, Ye L, Su Z,et al. Probabilistic Damage Identification Based onCorrelation Analysis Using Guided Wave Signals in Aluminum Plates[J].Structural Health Monitoring,2010,9(2):133-144.
    [105]Castagnede B, Sachse W, Kim KY. Location of pointlike acoustic emissionsources in anisotropic plates[J]. The Journal of the Acoustical Society ofAmerica,1989,86(3):1161-1171.
    [106]吴耀军,陶宝祺.基于小波神经网络的复合材料损伤检测[J].航空学报,1997(02):125-129.
    [107]吴耀军,陶宝祺,史习智.二进小波变换在复合材料损伤检测中的应用[J].仪器仪表学报,1997(06):76-79.
    [108]吴耀军,陶宝祺,袁慎芳. B样条小波神经网络[J].模式识别与人工智能,1996(03):228-233.
    [109]谢建宏,张为公.基于小波神经网络的智能复合材料冲击损伤定位的研究[J].工业仪表与自动化装置,2005(01):14-16.
    [110]谢建宏,张为公.基于遗传神经网络的智能复合材料损伤检测传感器位置优化的研究[J].仪器仪表学报,2005(11):88-91.
    [111]庄小燕,陈浩然.基于频率和阻尼分析的含分层损伤复合材料层合板的损伤诊断[J].复合材料学报,2005(06):150-155.
    [112]Deng AD, Zhang XD, Tang JN, et al. Localization of Acoustic EmissionSource Based on Chaotic Neural Networks[J]. Applied Mathematics&Information Sciences,2012,6(3):713-719.
    [113]李冬生,黄新民,欧进萍.改进的神经网络技术在声发射定位中的应用[J].无损检测,2006(06):288-291.
    [114]Sung D-U, Kim C-G, Hong C-S. Monitoring of impact damages in compositelaminates using wavelet transform[J]. Composites Part B: Engineering,2002,33(1):35-43.
    [115]Su Z, Ling H-Y, Zhou L-M, et al. Efficiency of genetic algorithms andartificial neural networks for evaluating delamination in composite structuresusing fibre Bragg grating sensors[J]. Smart Materials and Structures,2005,14(6):1541-1553.
    [116]Valoor MT, Chandrashekhara K. A thick composite-beam model fordelamination prediction by the use of neural networks[J]. Composites Scienceand Technology,2000,60(9):1773-1779.
    [117]Chakraborty D. Artificial neural network based delamination prediction inlaminated composites[J]. Materials&Desing,2005,26(1):1-7.
    [118]Su Z, Ye L. Quantitative Damage Prediction for Composite Laminates Basedon Wave Propagation and Artificial Neural Networks[J]. Structural HealthMonitoring,2005,4(1):57–66.
    [119]Steve EW, Farhad A, Rohit D, et al.Impact-induced damage characterizationof composite plates using neural networks[J]. Smart Materials and Structures,2007,16(2):515.
    [120]Chen R, Theobald P, Gower M, et al. A novel fibre optic acoustic emissionsensor[C]∥Sensors and Smart Structures Technologies for Civil, Mechanical,and Aerospace Systems, San Diego,Proc of SPIE,2008,6932:37-12.
    [121]周纪卿,朱因远.非线性振动[M].西安:西安交通大学出版社,1998.
    [122]Snyder AW. Mode-propagation in optical waveguides. Electronics Letters[J].1970,6(18):561-562.
    [123]Bures J, Lacroix S, Lapierre J. Analyse d'un coupleur bidirectionnel a fibresoptiques monomodes fusionnees[J]. Applied optics,1983,22(12):1918-1922.
    [124]Snyder AW. Coupled-Mode Theory for Optical Fibers[J]. The Journal of theAcoustical Society of America,1972,62(11):1267-1277.
    [125]Xu J, Ma B. Experimental Investigation of Coupling Fiber-optic Sensor forVibration Measurement[J]. International Conference on Electrical and ControlEngineering,2010,936-939.
    [126]Thursby G, Culshaw B. Evaluation of the internal strains and stressesproduced in a plate by propagating Lamb waves through the use of fibre opticsensors[C]∥Smart Sensor Phenomena, Technology, Networks, and Systems.San Diego, Proc of SPIE,2011,7982:1-8.
    [127]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [128]Rose JL. Ultrasonic Waves in Solid Media[M]. London:Cambridge UniversityPress,2004
    [129]Mustapha S, Ye L. Debonding Detection in Composite Sandwich StructuresBased on Guided Waves[J]. AIAA Journal,2012,50(8):1697-1706.
    [130]杨建华.雷达无源定位技术的发展与战术应用[J].中国电子科学研究院学报,2009,6:601-605.
    [131]苏永振,袁慎芳,张炳良.基于声发射和神经网络的复合材料冲击定位[J].传感器与微系统,2009,28(9):56-61.
    [132]Hecht-Nielsen R. Kolmogorov's Mapping Neural Nework ExistenceTheorem[J]. Proceedings of IEEE First Annual International Conference onNeural Networks,1987,3:11-14.
    [133]刘天舒. BP神经网络的改进研究及应用[D].哈尔滨:东北农业大学,2011.
    [134]孙九霄.基于布拉格光栅传感的复合材料固化及冲击损伤监测研究[D].武汉:武汉理工大学,2011.
    [135]Abrate S. Impact on Laminated Composite Materials[J]. Applied MechanicsReviews,1991,44(4):155-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700