用户名: 密码: 验证码:
粗糙目标激光散斑统计特性及微运动特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光散斑测量技术具有结构简单、全场非接触测量、无损性、实时性等优点,在各光学测量中已逐渐成为理论和应用研究的热点。激光散斑携带的散射体的信息是进行目标探测、识别、特征分析、以及微运动检测的重要依据。本文从粗糙物体的激光波束散射理论出发,数值分析了粗糙物体的激光散射二阶统计特性及四阶统计特性,结合优化理论,提出了用粗糙物体的激光散斑时间-空间统计特性,分析旋转目标的微运动特征。论文的主要成果如下:
     1.从粗糙面散射的标量近似理论出发,推导出了具有高斯分布随机粗糙面的任意形状凸目标的远区散射场的双频互相干函数的表达式,数值计算了粗糙球和柱的双频互相干函数,分析了目标的形状、尺寸及表面粗糙度参数对双频互相干函数及其相干带宽的影响。有助于进一步研究更为复杂粗糙目标的激光散射统计特性,为雷达系统设计、目标探测和识别、定位及特征提取提供理论依据。
     2.基于Beckmann理论和高斯矩定理,研究了二维弱起伏粗糙面散射四阶统计特性,严格推导了二维弱起伏粗糙导体和介质面的散射强度起伏互相关函数的解析表达式,并重点分析了入射、观察条件及粗糙面特征参数对散射场强度起伏的双频互相关函数和角度互相关函数的影响。加深了对粗糙面散射特性的理解,为粗糙目标的散斑问题的研究提供理论基础。
     3.基于标量Helmholtz积分关系,推导了出三维粗糙曲面的散射光经自由空间传输,在垂直于散射方向的远区观察面上所得到的散斑场的空间分布和散斑场强度起伏的空间互相关函数,得到了不同孔径粗糙面、球、柱及锥的散斑的横向尺寸与其形状和大小以及入射波长和传播距离之间关系的表达式。
     4.研究了粗糙物体平动和转动所产生动态散斑的统计特性,推导出散斑强度起伏空间-时间互相关函数,得到了散斑时间相干长度和因目标平动或旋转而产生的多普勒展宽的表达式,讨论了散斑时间相干长度和多普勒展宽与目标的形状、运动状态及运动速度的关系。
     5.推导了二维平动微粗糙和大粗糙平面平动所产生的多普勒频移公式,在此基础上,导出了轴对称粗糙体转动产生的多普勒频移的表达式。表明轴对称目标旋转产生的多普勒频移与转速和被照射面元的位置以及视线角正弦成正比,与波长成反比,与粗糙度无关。
     6.搭建了动态激光散斑实验平台,获得了不同视线角和不同转速下旋转柱和锥动态散斑时序图像,对其进行了统计分析,并将之与理论模拟结果进行了比较,二者吻合得很好。利用实验所得到的散斑时间相干长度,采用粒子群算法,结合动态散斑的理论推导,反演了旋转柱体和锥体的视线角和转动角速度,实现了对倾斜旋转柱体和锥体微运动特征的检测。
Because of the advantage, such as simple-structure and noncontact and lossless andreal-time and so on, laser speckle measurement has been the research and applicationinterest. The message of the scatter in the speckle is important to detect and recognizeand analysis the micro-motion of the object. In the paper, with the theory of the laserscattering from rough objects, the second and the fourth order statistical properties ofthe scattered light have been studied, then the temporal and spatial statistical propertiesof the laser speckle which is applied to analyze the micro-motion of the object. Themain achievements are as followings:
     1. From the scattering theory of rough surface, the expression of the two-frequencymutual coherence function from three-dimensional convex objects with rough surfaceobeying Gaussian distribution has been derived, and the influences of the shape and thesize as well as the surface roughness of the objects on the function and the coherencebandwidth have been discussed which will be for the recognization of the objects withmore complex shape.
     2. Based on the Beckmann theory and Gaussian moment theorem, the expression ofthe fourth-order moment of the scattering from rough surfaces has been given which canbe expressed by two kinds of the second-order moment and the first-order moment ofthe scattered field. The influences of the incident and observation conditions and thecharacteristic parameters on the two-frequency correlation function and the angularcorrelation function of the fourth-order moment have been mainly discussed.
     3. With scalar Helmholtz integral relation, the distribution on the observe plane inthe far field perpendicular to the scattering direction of the speckle filed formed in freespace from rough objects with three dimension and its intensity spatial correlationfunction have been derived, the expressions of the lateral sizes of the speckles fromrough surface with different apertures and balls and cylinders and cones have beenobtained, which is closely dependent on the shape and the size of the object and thelaser wavelength as well as the distance.
     4. The temporal statistical properties of the dynamical laser speckle from in-planemoving rough surfaces and rotating rough objects have been investigated by thespatial-time correlation function of the speckle intensity fluctuation, and the expressionsfor the temporal correlation length of the speckle and the Doppler broadening due to therotating of the obeject have been obtained, and the relationships of them with themoving velocity and the shape as well as the size of the studied objects have been discussed respectively.
     5.The expression of the Doppler frequency shift caused by the in-plane movingrough objects has been derived with which the Doppler frequency shift due to therotation of the objects with rotational symetry is obtained to show that the Doppler shiftis proportional to the rotating velocity and the situation of the surface elementilluminated and the sine of the sight-in-line angle, inversely proportional to the incidentwavelength, however, independent to the roughness of the objects.
     6.The experiment plat form has been built to obtain the time-sequential dynamicalspeckle images of rotating rough cylinders and cones with different sight-in-line angleand different rotating velocity, which have been analyzed statistically. The results agreewell to the theoretical simulated results. With the particle group algorithm and thetheoretical derivation on the dynamic speckles, the experimental results for the timecorrelation length of the speckle have been applied to reverse the sight-in-line angle andthe rotating velocity to detect the micro-motion of the object.
引文
[1] L. X. Guo, A. Q. Wang, and J. Ma, Study on EM scattering from2-D target above1-D large scale rough surface with low grazing incidence by parallel MoM basedon PC clusters[J], PIER,2009,89,149-166.
    [2] L. Tsang, J. A. Kong, K.-H. Ding, et al., Scattering of Electromagnetic Waves,Numerical Simulations[M]. New York:John Wiley&Sons, Inc.,2001.
    [3] H. Ye and Y.-Q. Jin, Parameterization of the Tapered Incident Wave for NumericalSimulation of Electromagnetic Scattering From Rough Surface[J], IEEE Trans.Antennas Propagat.,2005,53,1234-1237.
    [4] K. F. Warnick and W. C. Chew, Numerical simulation methods for rough surfacescattering[J], Waves in Random Media,2001,11, R1-R30.
    [5] T. Chiu and K. Sarabandi, Electromagnetic Scattering Interaction Between aDielectric Cylinder and a Slightly Rough Surface[J], IEEE Trans. AntennasPropagat.,1999,47,902-913.
    [6]李娟,粗糙面及其与目标复合电磁散射的FDTD方法研究[D],西安电子科技大学,2010。
    [7]柴草,矩量法及其加速算法研究一维粗糙面与目标复合电磁散射[D],西安电子科技大学。
    [8] S. O. Rice, Reflection of Electromagnetic Waves from Slightly RoughSurfaces[M], in Theory of Electromagnetic Waves ed. New York:Wiley,1951.
    [9] P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves fromRough Surfaces[M]. Pergamon, Oxford,1963.
    [10] F. Bass and I. Fuks, Wave scattering from statistically rough surfaces [M].London: Pergamon,1979.
    [11] M. A. Demir and J. T. Johnson, Fourth-and higher-order small-perturbationsolution for scattering from dielectric rough surfaces[J], J. Opt. Soc. Am. A,2003,20,2330-237.
    [12] S. Huang, G. Zhang, M. Xia, et al., Numerical Analysis of Scattering by DielectricRandom Rough Surfaces Using Modified SMCG Scheme and Curvilinear RWGBasis Functions[J], IEEE Trans. Antennas Propagat.,2009,57,3392-3397.
    [13] N. Pinel, J. T. Johnson, and C. Bourlier, A Geometrical Optics Model of ThreeDimensional Scattering From a Rough Layer With Two Rough Surfaces[J], IEEETrans. Antennas Propagat.,2010,58,809-816.
    [14] W. J. Ji and C. M. Tong, Bistatic scattering from two-dimensional dielectric oceanrough surface with a PEC object partially embedded by using the G-SMCGmethod[J], PIER,2010,105,119-139.
    [15] A. Fung and M. Chen, Numerical simulation of scattering from simple andcomposite random surfaces[J], J. Opt. Soc. Am. A,1985,2,2274-2284.
    [16] Adrian K. Fung, Zongqin Li, and K. S. Chen, Backscattering from a randomlyrough dielectric surface[J], IEEE Trans. Geosci. Rem. Sens.,1992,30,356-369.
    [17] Akira. Ishimaru and J. S. Chen, Scattering from very rough surfaces based on themodified second order Kirchhoff approximation with angular and propagationshadowing[J], J. Acoust. Soc. Am,1990,88,1877-1883.
    [18] J. Ogilvy and H. Merklinger, Theory of wave scattering from random roughsurfaces, J. Acoust. Soc. Am,1991.
    [19] V. U. Zavorotny and A. G. Voronovich, Two-Scale Model and Ocean RadarDoppler Spectra at Moderate-and Low-Grazing Angles[J], IEEE Trans. AntennasPropagat.,1998,46,84-92.
    [20] E. Mendez and K. O'donnell, Observation of depolarization and backscatteringenhancement in light scattering from Gaussian random surfaces[J], Opt.Commun.,1987,61,91-95.
    [21] C. H. C. Leung Tsang, and Kyung Pak, Backscattering enhancement of atwo-dimensional random rough surface (three-dimensional scattering) based onMonte Carlo simulations[J], J. Opt. Soc. Am. A,1994,11,711-715.
    [22] Q. Z. Z. Zhu and Z. M. M. Zhang, Correlation of angle-resolved light scatteringwith the microfacet orientation of rough silicon surfaces[J], Opt. Eng.,2005,44(7),073601:1-12.
    [23] Q. Z. Zhu and Z. M. Zhang, Anisotropic slope distribution and bidirectionalreflectance of a rough silicon surface[J], J. Heat Trans.,2004,126,985-93.
    [24] Y. J. Shen, Z. M. Zhang, B. K. Tsai, et al., Bidirectional reflectance distributionfunction of rough silicon wafers[J], Int. J. Thermophys.,2001,22,1311-1326.
    [25] E. Bahar and S. Chakrabarti, Scattering and depolarization by large conductingspheres with rough surfaces[J], Appl. Opt.,1985,24,1820-1825.
    [26] E. Bahar and M. A. Fitzwater, Scattering and depolarization by conductingcylinders with rough surfaces[J], Appl. Opt.,1986,25,1826-1832.
    [27] R. Schiffer, The coherent scattering cross-section of a slightly rough sphere[J], J.Mod. Opt.,1986,33,959-980.
    [28] M. K. Abdelazeez, Wave Scattering from a Large Sphere with Rough Surface[J],IEEE,1983, AP-31,375-377.
    [29] ZS. Wu, IR Laser Backscattering by arbitrarily shaped dielectric object withrough surface[C], SPIE's International Symposium on Optical Science andEngineering, San Diego, California,1991.
    [30] W. Zhensen and C. Suomin, Bistical scattering by arbitrarily shaped objects withrough surface at optical and infrared frequencies[J], Int. J. Infrared. Millim.Waves,1992,13(4),537-549.
    [31] R. Berlasso, F. Perez Quintian, M. A. Reboll, et al., Speckle Size of LightScattered from Slightly Rough Cylindrical Surfaces[J], Appl. Opt.,2002,41,2020-2027.
    [32] F. P. Q. R. Berlasso, M. A. Reboll, N. G. Gaggioli, Study of Speckle Size of LightScattered from Cylindrical Rough Surfaces[J], Appl. Opt.,2000,39,5811-5819.
    [33] Y H. Li and ZS. Wu, Target recognition using subnanosecond pulse laser rangeprofile[J], Opt. Express,2010,18,16788-16796.
    [34] YH. Li, ZS. Wu, YJ. Gong, et al., Laser one-dimensional range profile[J], ActaPhys. Sin.,2010,59,6985-6990.
    [35] A. Ishimaru, Wave propagation and scattering in random media [M]. New York:Academic Press,1978.
    [36] Akira. Ishimaru, Lynn Ailes-Sengers, Phillip Phu, et al., Pulse broadening andtwo-frequency mutual coherence function of the scattered wave from roughsurfaces[J], Waves in Random Media,1994,4,139-148.
    [37] C. Hui, W. Zhensen, and B. Lu, Infrared laser pulse scattering from randomlyrough surfaces[J], Int. J. Infrared Millim. Waves,2004,25,1211-1219.
    [38] LX. Guo and C. Kim, Study on the two-frequency scattering cross section andpulse broadening of the one-dimensional fractal sea surface at millimeter wavefrequency[J], PIER,2002,37,221-234.
    [39] D. J. Schertler and N. Geroge, Backscattering cross section of a titled, rougheneddisk[J], J. Opt. Soc. Am. A,1992,9,2056-2066.
    [40] D. J. Schertler and N. George, Backscattering cross section of a roughenedsphere[J], J. Opt. Soc. Am. A,1994,11,2286-2297.
    [41] G. Zhang and Z. Wu, Two-frequency mutual coherence function of scatteringfrom arbitrarily shaped rough objects[J], Opt. Express,2011,19,7007-7019.
    [42] T. R.Michel and K. A.O'Donnell, Angular correlation functions of amplitudesscattered from a one-dimensional, perfectly conducting rough surface[J], J. Opt.Soc. Am. A,1992,9,1374-1384.
    [43] G. Zhang, L. Tsang, and Y. Kuga, Studies of the Angular Correlation Function ofScattering by Random Rough Surfaces with and without a Buried Object[J], IEEETrans. Geosci. Rem. Sens.,1997,35,444-453.
    [44] G. Zhang, L. Tsang, and K. Pak, Angular correlation function and scatteringcoefficient of electromagnetic waves scattered by a buried object under atwo-dimensional rough surface[J], J. Opt. Soc. Am. A,1998,15,2995-3002.
    [45] Charlie T. C. Le, Yasuo Kuga, and A. Ishimaru, Angular correlation functionbased on the second-order Kirchhoff approximation and comparison withexperiments[J], J. Opt. Soc. Am. A,1996,13,1057-1067.
    [46] Y. Kuga, C. T. C. Le, A. Ishimaru, et al., Analytical, experimental, and numericalstudies of angular memory signatures of waves scattered from one-dimensionalrough surfaces[J], IEEE Trans. Geosci. Rem. Sens.,1996,34,1300-1307.
    [47] C. T. C. Le, A. Ishimaru, Y. Kuga, et al., Angular memory and frequencyinterferometry for mean height profiling of a rough surface[J], IEEE Trans.Geosci. Rem. Sens.,1998,36,61-71.
    [48] Geng Zhang and Zhensen Wu, Fluctuation correlation of the scattered intensityfrom two-dimensional rough surfaces[J], Opt. Express,2012,20,1491-1502.
    [49]金亚秋,随机粗糙面上后向散射的增强[J],物理学报,1989,38,1611-1620。
    [50]金亚秋,李中新,下视雷达对海杂波中船目标监测的散射回波数值模拟[J],科学通报,2002,47,1211-1216。
    [51]吴振森,韩香娥,张向东等,不同表面激光双向分布函数的实验测量[J],光学学报,1996,16,262~268。
    [52]薛谦忠,吴振森,粗糙介质面对高斯波束的散射[J],电子科学学刊,2000,22,875-880。
    [53]吴振森,谢东辉,谢品华,魏庆农,粗糙表面激光散射统计建模的遗传算法[J],光学学报,2002,22,897-901。
    [54]郭立新,吴振森,二维导体粗糙面电磁散射的分形特征研究[J],物理学报,2000,49,1064-1069。
    [55]郭立新,吴振森,二维分数布朗运动(FBM)随机粗糙面电磁散射的基尔霍夫近似[J],物理学报,2001,50,42-47。
    [56]郭立新,吴振森,fBm随机粗糙面电磁散射的微扰法近似[J],微波学报,2001,17,60-66。
    [57]郭立新,金彩英,脉冲波入射时分形粗糙海面的双频散射截面和脉冲展宽[J],红外与毫米波学报,2003,22,132-136。
    [58] A. Q. Wang, L. X. Guo, and C. Chai, Application of a multiregion model to theEM scattering from a rough surface with or without a target above it[J], ChinesePhys. B,2011,20,050201:1-11
    [59]刘培森,散斑统计光学基础[M],科学出版社,1987。
    [60] J. Y. Liu, C. F. Huang, and P. C. Hsueh, Acoustic plane-wave scattering from arough surface over a random fluid medium[J], Ocean eng.,2002,29,915-930.
    [61] N. K. Kouveliotis, P. T. Trakadas, A. I. Stefanogiannis, et al., Field PredictionDescribing Scattering by a One-Dimensional Smooth Random Rough Surface[J],Electromagnetics,2002,22,27-35.
    [62] A. Khenchaf, Bistatic reflection of electromagnetic waves from random roughsurfaces: Application to the sea surface and snowy-covered[J], EPJ Appl. Phys.,2001,14,45-62.
    [63] J. R. Arias-Gonzalez, M. Nieto-Vesperinas, and A. Madrazo,Morphology-dependent resonances in the scattering of electromagnetic wavesfrom an object buried beneath a plane or a random rough surface[J], J. Opt. Soc.Am. A,1999,16,2928-2934.
    [64] Mady Elias and M. Menu, Experimental characterization of a random metallicrough surfaces by spectrophotometric measurements in the visible range[J], Opt.Commun.,2000,180,191-198.
    [65] T. M. Sporton, The scattering of coherent light from a rough surface[J], J. Phys. D,1969,2,1027-1034.
    [66] H. Kadono, T. Asakura, and N. Takai, Roughness and correlation-lengthmeasurements of rough surface objects using the speckle contrast in thediffraction field[J], Appl. Phys,1988, B44,167-173.
    [67] B. Ruffing and J. Fleischer, Spectral correlation of partially or fully developedspeckle patterns generated by rough surfaces[J], J. Opt. Soc. Am. A,1985,2,1637-1643.
    [68] B.Ruffing, Application of speckle-correlation methods to surface-roughnessmeasurement: a theoretical study[J], J. Opt. Soc. Am. A,1986,3,1297-1304.
    [69] L. Leushacke and M. Kirchner, Three-dimensional correlation coefficient ofspeckle intensity for rectangular and circular apertures[J], J. Opt. Soc. Am. A,1990,7,827-832.
    [70] T. W. Lawrence, D. M. Goodman, E. M. Johansson, et al., Speckle imaging ofsatellites at the U.S. Air Force Maui Optical Station[J], Appl. Opt.,1992,31,6307-6321.
    [71] S. Jin, S. Wear, and M. R. Raghuveer, Reconstruction of speckled images usingbispectra[J], J. Opt. Soc. Am. A,1992,9,371-376.
    [72] H. T. Yura, B. Rose, and S. G. Hanson, Dynamic laser speckle in complex ABCDoptical systems[J], J. Opt. Soc. Am. A,1998,15,1160-1166.
    [73] H. T. Yura, S. G. Hanson, R. S. Hansen, et al., Three-dimensional speckledynamics in paraxial optical systems[J], J. Opt. Soc. Am. A,1999,16,1402-1412.
    [74] L. G. Shirley and N. George, Speckle from a Cascade of Two Thin Diffusers[J], J.Opt. Soc. Am. A,1989,6,765-781.
    [75] L. G. Shirley and P. A. Lo, Bispectral analysis of the wavelength dependence ofspeckle: remote sensing of object shape[J], J. Opt. Soc. Am. A,1994,11,1025-1046.
    [76] Lyle G. Shirley and G. R. Hallerman, Nonconventional3D Imaging usingwavelength-dependent speckle[J], The Lincoln Laboratory,1996,9,153-186.
    [77] L. G. Shirley, Reconstruction of3D Target Images from Wavelength-DependentSpeckle Intensity[R],2002.
    [78] C. L. Matson, M. Fox, E. K. Hege, et al., Deep-space satellite-imagereconstructions from field data by use of speckle imaging techniques: images andfunctional assessment[J], Appl. Opt.,1997,1997,36,3120-3126.
    [79] Kaiqin Chu and N. George, Correlation function for speckle size in theright-half-space[J], Opt. Commun.,2007,276,1-7.
    [80] T. Okamoto and S. Fujita, Statistical properties of three-dimensional speckledistributions produced by crossed scattered waves[J], J. Opt. Soc. Am. A,2008,25,3030-3042.
    [81] J. E. Ward, D. P. Kelly, and J. T. Sheridan, Three-dimensional speckle size ingeneralized optical systems with limiting apertures[J], J. Opt. Soc. Am. A,2009,26,1855-1864.
    [82] A. P. Ongstad, G. C. Dente, and M. L. Tilton, Comparing Speckle ImagingMethods[R], Air Force Research Lab Kirtland AFB NM Directed EnergyDirectorate,2009.
    [83]冯一丁,偏振激光散斑的相关性研究,青岛海洋大学学报[J],1994,24,420-428。
    [84]程传福,亓东平,刘德丽等,高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析[J],物理学报,1999,48,1635-1643。
    [85]孙虹,刘迎,马世宁,纵向运动双散射散斑场的动态特性研究[J],光学学报,1999,19,181-185。
    [86]周莉莉,赵学增,郑俊丽,基于散斑强度相关函数的表面粗糙度测量方法[J],光电工程,2004,31,50-53。
    [87]周莉莉,赵学增,王伟杰等,旋转柱面产生动态散斑的统计特性分析[J],光电工程,2005,32,60-63。
    [88]陈小艺,滕树云,宋洪胜等,菲涅耳深区的散斑光强概率密度[J],山东师范大学学报(自然科学版),2006,21,48-50。
    [89]闫海涛,王鸣,赖方明等,数字散斑相关法测量连续位移的原理与实验[J],南京师大学报(自然科学版),2006,29,44-47。
    [90]赵延鹏,杨军,赵磊等,用激光散斑法测量位相物体厚度[J],红外与激光工程,2006,35,449-453。
    [91]冯巍巍,刘美娟,王学勤等,特种材料表面激光散斑特征提取和识别研究[J],红外与激光工程,2007,36,186-188。
    [92] Zhao Gao and X. Zhao, Diffraction equations for weak scattering reflectivesurface[J], Opt. Laser Technol.,2008,41(3),303-309.
    [93] S. M. Hannon, J. A. Thomson, S. W. Henderson, et al., Agile multiple pulsecoherent lidar for range and micro-Doppler measurement[C], Aerospace/DefenseSensing and Controls, International Society for Optics and Photonics,1998,259-269.
    [94] A. W. Rihaczek and S. J. Hershkowitz, Radar resolution and complex-imageanalysis[M]. Artech House,1996.
    [95] F. Hanson and G. Beaghler, Discriminating interceptor technology program (DITP)laser radar[C]. AeroSense'99International Society for Optics and Photonics,1999:372-380.
    [96] Y. Swirski, K. Wolowelsky, R. Adar, et al., Detection and delineation of buildingsfrom airborne ladar measurements[C]. Optical Science and Technology, the SPIE49th Annual Meeting. International Society for Optics and Photonics,2004,149-156.
    [97] M. Natecz, R. Rytel-Andrianik, and A. Wojtkiewicz, Micro-Doppler analysis ofsignal received by FMCW radar[C]. International Radar Symposium, Germany.2003.
    [98] S. L. Marple Jr, Sharpening and bandwidth extrapolation techniques for radarmicro-Doppler feature extraction[C]. Radar Conference, Proceedings of theInternational, IEEE,2003,166-170.
    [99] A. B. Gschwendtner and W. E. Keicher, Development of coherent laser radar atLincoln Laboratory[J], Lincoln Laboratory Journal,2000,12,383-396.
    [100] R. J. Wellman and J. L. Silvious, Doppler signature measurements of an Mi-24hind-D helicopter at92GHz[R]. Army research lab adelphimd,1998.
    [101] H. Ling, Exploitation of microdoppler and multiple scattering phenomena forradar target recognition[R]. Texas Univ at Austin Dept of Electrical and ComputerEngineering,2006.
    [102] E. F. Greneker, J. L. Geisheimer, and D. Asbell, Extraction of micro-Doppler datafrom vehicle targets at x-band frequencies[C]. Aerospace/Defense Sensing,Simulation, and Controls. International Society for Optics and Photonics,2001:1-9.
    [103] V. C. Chen, Spatial and temporal independent component analysis ofmicro-Doppler features[C]. Conference, IEEE International. IEEE,2005:348-353.
    [104] V. C. Chen, F. Li, S. S. Ho, et al., Micro-Doppler effect in radar: phenomenon,model, and simulation study[J], IEEE Trans. Aero. Electro. Sys.,2006,42,2-21.
    [105] V. C. Chen, Doppler signatures of radar backscattering from objects withmicro-motions[J], IET Signal Process.,2008,2,291-300.
    [106] V. C. Chen, W. J. Miceli, and B. Himed, Micro-Doppler analysis in ISAR-reviewand perspectives[C], in Radar Conference-Surveillance for a Safer World,2009.RADAR. International,2009,1-6.
    [107] T. Thayaparan, S. Abrol, E. Riseborough, et al., Micro-Doppler radar signaturesfor intelligent target recognition[R]. Defence Research and DevelopmentCanadaottawa (Ontario),2004.
    [108] P. Setlur, M. Amin, and T. Thayaparan, Micro-doppler signal estimation forvibrating and rotating targets[C]. Signal Processing and Its Applications,Proceedings of the Eighth International Symposium on. IEEE,2005,2,639-642.
    [109] L. Jiajin and L. Chao, Target classification based on micro-Doppler signatures[C].Radar Conference, IEEE International, IEEE,2005:179-183.
    [110] L. Jiajin, Pattern recognition based on time-frequency distributions of radarmicro-Doppler dynamics[C]. Software Engineering, Artificial Intelligence,Networking and Parallel/Distributed Computing and First ACIS InternationalWorkshop on Self-Assembling Wireless Networks. SNPD/SAWN SixthInternational Conference on. IEEE,2005:14-18.
    [111] C. Chengjie, L. Weixian, J. S. Fu, et al., Radar Micro-Doppler Signature Analysiswith HHT[J], IEEE Trans. Aero. Electro. Sys.,2010,46,929-938.
    [112] C. Chengjie, L. Weixian, J. S. Fu, et al., Empirical mode decomposition ofmicro-Doppler signature[C], Radar Conference, IEEE International,2005,895-899.
    [113]陈行勇,刘永祥,黎湘等,微多普勒分析和参数估计[J],红外与毫米波学报,2006,25,241-244。
    [114]陈行勇,黎湘,郭桂蓉等,微进动弹道导弹目标雷达特征提取[J],电子与信息学报,2006,28,643-646。
    [115]陈行勇,黎湘,郭桂蓉等,基于旋翼微动雷达特征的空中目标识别[J],系统工程与电子技术,2006,28,372-375。
    [116]陈爱武,微多普勒效应分析与应用研究[D],南京理工大学,2007。
    [117] Qinghua Lu, Yanbin Fan, and X. Zhang, In-Plane Micro-Motion Measurementwith High Accuracy Based on Computer Microvision[C],7th world congress onintelligent control and automation, Chongqing, China,2008,2365-2370.
    [118] H. Sun and Z. Liu, Micro-Doppler feature extraction for ballistic missile warhead
    [C]. Information and Automation, ICIA International Conference on. IEEE,2008:1333-1336.
    [119]马梁,王涛,冯德军等,旋转目标距离像长度特性及微运动特征提取,电子学报[J],2008,36,2273-2279。
    [120]马梁,刘进,王涛等,旋转对称目标滑动型散射中心的微Doppler特性[J],中国科学(信息科学),2011,41,605-616。
    [121]马梁,李永祯,陈志杰等,空间微动目标动态全极化回波仿真技术研究[J],系统仿真学报,2012,24,628-631。
    [122]宁超,王超,殷红成等,复杂弹头目标微运动的建模与仿真[J],航天电子对抗,2008,23,36-37。
    [123]高红卫,文树梁,微多普勒理论建模与仿真研究[J],中国电子科学研究院学报,2008,3,34-39。
    [124]高红卫,谢良贵,文树梁等,基于微多普勒分析的弹道导弹目标进动特性研究[J],系统工程与电子技术,2008,30,50-52。
    [125]高红卫,谢良贵,文树梁等,摆动锥体目标微多普勒分析和提取[J],电子学报,2009,36,2497-2502。
    [126]高红卫,谢良贵,文树梁等,弹道导弹目标微动特性的微多普勒分析与仿真研究[J],系统仿真学报,2009,954-957。
    [127]潘康,基于时频分析的雷达目标识别技术研究[D],南京理工大学,2010。
    [128]李金梁,刘进,马梁等,基于微运动的旋转散射中心空域散射特征提取[J],信号处理,2010,26,197-202。
    [129]向道朴,微多普勒回波模拟与微动特征提取技术研究[D],国防科学技术大学,2010。
    [130] A. Xiaofeng, Z. Xiaohai, Y. Jianhua, et al., Feature extraction of rotating targetbased on bistatic micro-Doppler analysis[C]. Radar (Radar), IEEE CIEInternational Conference on. IEEE,2011,1:609-612.
    [131]陈广锋,张林让,王纯等,复合运动目标微多普勒特征的分析和提取[J],西安电子科技大学学报,2011,38,55-62。
    [132]田巳睿,蒋跃红,郭汝江等,基于时频变换的弹道目标微多普勒特征提取[J],现代雷达,2012,34,40-43。
    [133] F.杜斯特,A.梅林,J. H.怀特洛等,激光多普勒测速技术的原理和实践[M],科学出版社,1992。
    [134]宋云峰,磁头飞行姿态测试系统的研究[J],系统工程与电子技术,1991,13,41-48。
    [135]蒋诚志,陈林才,侯丽健,散射体激光多普勒效应光栅测量系统的研究[J],仪器仪表学报,1991,12,258-265。
    [136] C. Jiang, F. Cheng, M. Wu, et al., Study on remote measurement technique ofdisplacement or velocity by laser Doppler effect[C]. Vibration Measurements byLaser Techniques: First International Conference. International Society for Opticsand Photonics,1994:93-100.
    [137]杨鑫,蒋诚志,光栅多普勒位移遥测技术的研究[J],天津大学学报,1999,32,410-414。
    [138] H. Tan and J. Loh, Real-time laser Doppler and phase Doppler signal processors[J], Opt. Lasers Eng.,1992,17,229-240.
    [139] P. Chylek, V. Ramaswamy, A. Ashkin, et al., Simultaneous determination ofrefractive index and size of spherical dielectric particles from light scattering data[J], Appl. Opt.,1983,22,2302-2307.
    [140]戴永江,激光雷达原理[M],国防工业出版社,2002。
    [141] L. H. Gesell, R. E. Feinleib, and T. M. Turpin, Acousto-optic processor togenerate laser radar range-Doppler images[C], Orlando'90,16-20April,1990,189-200.
    [142] L. T. Masters, M. B. Mark, and B. D. Duncan, Range resolution enhancements forlaser radar by phase modulation[C], Aerospace and Electronics Conference,NAECON, Proceedings of the IEEE National,1995,129-133.
    [143] R. M. Jenkins, R. Foord, A. Blockley, et al., A Hollow waveguide integrated opticsubsystem for a10.6-μm range-Doppler imaging lidar[C], Proc. SPIE,2000,108-113.
    [144] D. G. Youmans and R. Robertson, Modelocked-laser laser radar performance inthe detection of TMD and NMD targets[R]. SCHAFER (WJ) ASSOCIATES INCCHELMSFORD MA,1997.
    [145] M. Minden and T. O'Meara, Range-Doppler, Target-Referencing ImagingSystems (RD-TRIMS)[R]. Hughes research labs malibuca,1990.
    [146] Gschwendtner A B, Keicher W E. Development of coherent laser radar at LincolnLaboratory[J]. Lincoln Laboratory Journal,2000,12(2):383-396.
    [147] A. L. Kachelmyer and D. P. Nordquist, Centroid tracking of range-Dopplerimages[C], SPIE Proceedings, Laser Radar VI,1991,1416,184-198.
    [148] D. G. Youmans, Cylindrical target Doppler and Doppler-spread feature estimationusing coherant mode-locked pulse laser radars with long observation times[C],Aerospace/Defense Sensing, Simulation, and Controls,2001,272-283.
    [149] D. G. Youmans, Spectral estimation of Doppler spread vibrating targets usingcoherent ladar Defense and Security[C], International Society for Optics andPhotonics,2004:229-240.
    [150] G. Plantier, N. Servagent, T. Bosch, et al., Real-time tracking of time-varyingvelocity using a self-mixing laser diode[J], IEEE Trans. Instrum. Meas.,2004,53,109-115.
    [151] I. N. Bankman, Model of laser radar signatures of ballistic missile warheads[C],SPIE.1999,3699,133-137.
    [152] I. Bankman, Analytical model of Doppler spectra of coherent light backscatteredfrom rotating cones and cylinders[J], J. Opt. Soc. Am. A,2000,17,465-476.
    [153] H. Yura, S. G. Hanson, and L. Lading, Laser Doppler velocimetry: analyticalsolution to the optical system including the effects of partial coherence of thetarget[J], J. Opt. Soc. Am. A,1995,12,2040-2047.
    [154] G. H. Wei and P. G. Yang, Laser technology applying in weapon industry[M],weapon industry publishing company, Beijing,1999.
    [155]宫彦军,吴振森,转动圆柱和圆锥的激光距离多普勒像分析模型[J],物理学报,2009,58,6227-6235。
    [156] G. Yan-Jun, W. Zhen-Sen, and W. Jia-Ji, Analytical Model of Doppler Spectra ofLight Backscattered from Rotating Convex Bodies of Revolution in the GlobalCartesian Coordinate System[J], Chinese Phys. Lett.,2009,2626(2),024213:1-4.
    [157] Joachim C. Erdmann and R. I. Gellert, Speckle field of curved, rotating surfacesof Gaussian roughness illuminated by a laser light spot[J], J. Opt. Soc. Am,1976,66,1194-1204.
    [158] N. George, Speckle from Rough, Moving Objects[J], J. Opt. Soc. Am,1976,66,1182-1194.
    [159] J. L. Smith, Far-field speckle and Doppler shifts for rough laser-illuminatedrotating cylinders[J], Appl. Opt.,1979,18,755-756.
    [160] N. Takai, T. Iwai, and T. Asakura, An Effect of Curvature of Rotating DiffuseObjects on the Dynamics of Speckles Produced in the Diffraction Field[J], Appl.Phys. B,1981,26,185-192.
    [161] T. Iwai, N. Takai, and T. Asakura, Dynamic statistical properties of laser speckleproduced by a moving diffuse object under illumination of a Gaussian beam[J], J.Opt. Soc. Am.,1982,72,460-467.
    [162] A. Hayashi and Y. Kitagawa, High-resolution rotation-angle measurement of acylinder using speckle displacement detection[J], Appl. Opt.,1983,22,3520-3525.
    [163] Nobukatsu Takai and T. Asakura, Vectorial measurements of speckledisplacement by the2-D electronic correlation method[J], Appl. Opt.,1985,24,660-665.
    [164] T. OKAMOTO and T. ASAKURA, Velocity Measurements of Two MovingDiffusers Using a Temporal Correlation Length[J], J. Mod. Opt.,1990,37,389-408.
    [165] T. Nakamura and T. Asakura, Statistical properties of integrated dynamic specklesproduced by a rotating spheroidal object[J], J. Opt.,1993,24,135-135.
    [166] T. Yoshimura and S. Iwamoto, Dynamic properties of three-dimensional speckles[J], J. Opt. Soc. Am. A,1993,10,324-328.
    [167] M. R. Landau, E. N. Hogert, M. A. Rebollo, et al., Speckle Movement Due to aTransversal Displacement and a Rotation of a Rough Surface[J], J. Mod. Opt.,1994,41,2229-2232.
    [168] P. Naulleau, D. Dilworth, E. Leith, et al., Detection of moving objects embeddedwithin scattering media by use of speckle methods[J], Opt. lett.,1995,20,498-500.
    [169] J. David Briers, Laser Doppler and time-varying speckle: a reconciliation[J], J.Opt. Soc. Am. A,1996,13,345-350.
    [170] M. Takeda and H. Yamamoto, Fourier-transform speckle profilometry:three-dimensional shape measurements of diffuse objects with large height stepsand/or spatially isolated surfaces[J], Appl. Opt.,1994,33,7829-7837.
    [171] A. G. Augier Calderin, A. Rolo Naranjo, and D. Rivero Ramirez, Study of signalsfrom dynamic speckle patterns[C].5th Iberoamerican Meeting on Optics and8thLatin American Meeting on Optics, Lasers, and Their Applications. InternationalSociety for Optics and Photonics,2004:1453-1456.
    [172] P. Smid, P. Horvath, and M. Hrabovsk, Speckle correlation method used tomeasure object's in-plane velocity[J], Appl. Opt.,2007,46,3709-3715.
    [173] R. Kumar, I. Singh, and C. Shakher, Measurement of out-of-plane static anddynamic deformations by processing digital speckle pattern interferometryfringes using wavelet transform[J], Opt. Lasers Eng.,2004,41,81-93.
    [174] D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, Fast distancemeasurements by use of dynamic speckles[J], Opt. Lett.,2005,30,248-250.
    [175] A. A. Kamshilin, D. V. Semenov, E. Nippolainen, et al., Computer acquisition of3D images utilizing dynamic speckles[C], Proc. SPIE,2006,6252,6251E:1-9.
    [176] D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, Accuracy and resolution ofa dynamic-speckle profilometer[J], Appl. Opt.,2006,45,411-418.
    [177] D. V. Semenov, S. V. Miridonov, E. Nippolainen, et al., Statistical properties ofdynamic speckles formed by a deflecting laser beam[J], Opt. Express,2008,16,1238-1247.
    [178] Y. Fu, C. J. Tay, C. Quan, et al., Wavelet analysis of speckle patterns with atemporal carrier[J], Appl. Opt.,2005,44(6),959-965.
    [179] R. F. Patten, B. M. Hennelly, D. P. Kelly, et al., Speckle photography: mixeddomain fractional Fourier motion detection[J], Opt. lett.,2006,31,32-34.
    [180] H.-M. Zhu, Y.-Y. Wu, W.-H.Zheng, et al., In-plane and out-of-plane displacementmeasurement by ultrasonic speckle correlation method (USCM)[J], Arch. Appl.Mech.,2006,75,521-526.
    [181] P. míd, P. Horváth, and M. Hrabovsky, Speckle correlation method used to detectan object's surface slope[J], Appl. Opt.,2006,45,6932-6939.
    [182] L. Brunel, A. Brun, and P. Snabre, Microstructure movements study by dynamicspeckle analysis[C], Proc. SPIE,2006,6341,634127:1-6.
    [183] B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, Simultaneous measurement ofout-of-plane displacement and slope using a multiaperture DSPI system and fastFourier transform[J], Appl. Opt.,2007,46,5680-5686.
    [184] Francisco Gascón and F. Salazar, Numerical computation of in-planedisplacements and their detection in the near field by double-exposure objectivespeckle photography[J], Opt. Commun.,2008,281(24):6097-6106.
    [185] A. Anand, V. K. Chhaniwal, P. Almoro, et al., Shape and deformationmeasurements of3D objects using volume speckle field and phase retrieval[J],Opt. Lett.,2009,34,1522-1524.Fourier transform and digital speckle photography[J], Opt. Express,2010,18,11396-11405.
    [187] C. Tang, L. Wang, S. Yan, et al., Displacement field analysis based on thecombination digital speckle correlation method with radial basis functioninterpolation[J], Appl. Opt.,2010,49,4545-4553.
    [188]李善祥,孙一翎,李景镇,时间序列动态散斑相关跟踪测量原理及其应用[J],光子学报,2005,34,1066-1068。
    [189]周昕,赵刚,王仲平,利用动态散斑的时空统计特性同时测量漫射板移动的速度和方向[J],激光杂志,1998,19,29-32。
    [190] S. Abrahamsson, B. Brusmark, H. Strifors, et al., Extraction of target signaturefeatures in the combined time-frequency domain by means of impulse radar[J],SPIE,1992,1700,102-113.
    [191] H. Strifors and G. Gaunaurd, Scattering of electromagnetic pulses bysimple-shaped targets with radar cross section modified by a dielectric coating[J],IEEE Trans. Antennas Propag.,1998,46,1252-1262.
    [192] L. Mees, G. Gouesbet, and G. Gréhan, Scattering of laser pulses (plane wave andfocused Gaussian beam) by spheres[J], Appl. Opt.,2001,40,2546-2550.
    [193] V. Galdi, L. B. Felsen, and D. A. Castanon, Quasi-ray Gaussian beam algorithmfor short-pulse two-dimensional scattering by moderately rough dielectricinterfaces[J], IEEE Trans. Antennas Propagat.,2003,51,171-183.
    [194] A. Ishimaru, L. Ailessengers, P. Phu, et al., Pulse scattering by rough surfaces[J],Ultra-Wideband, Short-Pulse Electromagnetics,1995,2,431-438.
    [195] J. S. Gradshteyn and J. M. Ryzhik, Table of Integrals, Series and Products[M].New York: Academic,1965.
    [196] S. Zhendong and L. Hongwei, Model-Measurement and reverse evaluation forRCS of stealthy targets[J], J. UEST. China,1995,24,13-17.
    [197] H. Nitta and T. Asakura, Method for measuring mean particle size of the bulkpowder using speckle patterns[J], Appl. Opt.,1991,30,4854-4858.
    [198]郭冠军,邵芸,激光散斑效应对激光雷达探测性能的影响[J],物理学报,2004,53,2089-2093。
    [199] Y. J. Gong, Z. S. Wu, and J. J. Wu, Analytical Model of Doppler Spectra of LightBackscattered from Rotating Convex Bodies of Revolution in the GlobalCartesian Coordinate System[J], Chinese Phys. Lett.,2009,26,024213:1-5.
    [200] J. W. Goodman, Statistical Properties of Laser Speckle Patterns[M]. BerlinHeidelberg,1984.
    [201] H. T. Yura, S. G. Hanson, and L. Lading, Laser Doppler velocimetry: analyticalsolution to the optical system including the effects of partial coherence of thetarget[J], J. Opt. Soc. Am. A,1995,12,2040-2047.
    [202] T. R. M. M. E. Knotts, and K. A. O'Donnell, Angular correlation functions ofpolarized intensities scattered from a one-dimensionally rough surface[J], J. Opt.Soc. Am. A,1992,9,1822-1831.
    [203] M. Nieto-Vesperinas and J. A. Sanchez-Gil, Intensity angular correlations of lightmultiply scattered from random rough surfaces[J], J. Opt. Soc. Am. A,1993,10,150-157.
    [204] V. N. Bronnikov and M. M. Kalugin, Measuring the parameters of vibrations andsurface roughness, using the frequency spectrum of the intensity fluctuations ofscattered radiation[J], J. Opt. Technol.,2009,76,697-701.
    [205]王明军,吴振森,李应乐,粗糙面激光脉冲散射四阶矩统计特性[J],物理学报,2009,58,2390-2396。
    [206] Y. Xin, YJ. He, YR. Chen, et al., Correlation between intensity fluctuations oflight from a quasi-homogeneous random media[J], Opt. Lett,2010,35,4000-4002.
    [207] H. C. Jacks and O. Korotkova, Intensity-intensity fluctuations of stochastic fieldsproduced upon weak scattering[J], J. Opt. Soc. Am. A,2011,28,1139-1144.
    [208] H. M. Pedersen, Object-roughness dependence of partially developed specklepatterns in coherent light[J], Opt. Commun,1976,16,63-67.
    [209] ZS. Wu and G. Zhang, Intensity Correlation Function of Light Scattering from aWeakly One-Dimensional Random Rough surface[J], Chinese Phys. Lett,2009,26,114208:1-4.
    [210] Ulaby F T, Moore R K, and F. A. K., Microwave Remote Sensing.Vol.2[M].Dedham, Addison-Wesley Publishing.,1982.
    [211] C. Bourlier, Azimuthal Harmonic Coefficients of the Microwave Backscatteringfrom a Non-Gaussian Ocean Surface With the First-Order SSA Model[J], IEEETrans. Geosci. Rem. Sens.,2004,42,2600-2611.
    [212] G. N. Watson, A Treatise on the theory of Bessel Functions (2nd. ed)[M].Cambridge University Press,1958.
    [213] Q. B. Li and F. P. Chiang, A new formula for fringe localization in holographicinterferometry[J], Opt. Lasers Eng.,1988,8,1-21.
    [214] D. W. Li, F. P. Chiang, and J. B. Chen, Statistical analysis of one-beam subjectivelaser speckle interferometry[J], J. Opt. Soc. Am. A,1985,2,657-666.
    [215] Q. B. Li and F. P. Chiang, Three-dimensional dimension of laser speckle[J], Appl.Opt.,1992,31,6287-6291.
    [216] M. IBRAHIM, J. UOZUMI, and T. ASAKURA, Longitudinal CorrelationProperties of Speckles Produced by Ring-Slit Illumination[J], Opt. Review,1998,5(3),129-137.
    [217] Guanjun Guo, Shukai Li, and Q. Tan, Statistical Properties of Laser SpecklesGenerated From Far Rough Surfaces[J], Int. J. Infrared Mill. Waves,2001,22,1177-1191.
    [218] Jennifer E. Ward, Damien P. Kelly, and John T. Sheridan, Three-dimensionalspeckle size in generalized optical systems with limiting apertures[J], J. Opt. Soc.Am. A,2009,26,1855-1864.
    [219]彭翔,朱绍明,利用脉冲DSPI技术测量心动位移分布[J],中国激光,1997,24,814-818。
    [220] D. Li, D. P. Kelly, and J. T. Sheridan, Three-dimensional static speckle fields. PartII. Experimental investigation[J], J. Opt. Soc. Am. A,2011,28,1904-1908.
    [221] D. Dunmeyer, Laser speckle modeling for three-dimensional metrology andLADAR, Massachusetts Institute of Technology[D], Massachusetts Institute ofTechnology,2001.
    [222] R. K. Erf, Speckle metrology[M]. Academic Press,1978.
    [223] L.G.Shirley, E. D. Ariel, G. R. Hallerman, et al., Advanced Techniques for TargetDiscirmination Using Laser Speckle[J], Lincoln Laboratory,1992,5(3),367-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700