用户名: 密码: 验证码:
基于施工现场平面布置的安全管理优化模型和算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减少建筑业安全事故,提高施工企业的安全管理水平,一直是我国经济建设需要迫切解决的重要问题。开展这方面的研究,对于保证我国建筑业健康发展,维护社会稳定,具有重要意义。
     目前,国内外学者从安全风险管理、安全氛围和安全行为、系统安全评价等方面对施工企业安全管理进行研究,这些研究需要大量的主观评价数据,例如安全风险管理中的风险分析和系统安全评价中的危险因素的危害程度,不仅需要专家的主观评价,而且需要大量的历史数据作为依据,而安全氛围和安全行为更是受到了人的主观意识的影响。鉴于建筑业安全事故方面的历史数据比较匮乏且专家个人经验、专业水平差异较大,制约着该领域的相关研究,应尽量避免在研究中过多依赖主观和历史数据。
     近年来,国外的研究除了主要集中在风险预测和控制、系统安全评价等方面,更从建筑施工的施工组织计划入手,对安全进行控制,这是国内研究尚未涉及的领域。施工组织计划是施工单位用以组织工程施工的指导性文件,是对施工活动进行科学管理的重要手段。文件明确了各施工阶段的施工单位、施工资源和施工工种间相互关系。在施工组织计划中,施工资源计划是重要内容,施工场地的空间如同劳动力、设备、材料、时间一样,是非常重要的建筑资源。施工现场平面布置问题就是把施工临时设施安放到施工场地的相应位置中,优化利用施工场地空间。优秀的施工平面布置能够缩短材料的运输时间,减少材料的搬运次数,避免材料二次搬运,节约人工费用,节约建筑成本。通过合理安排施工作业区、辅助作业区、材料堆放区和办公生活区,避免人与设施、设施与设施、人与施工环境、设施与施工环境之间的相互冲突,有效提高建筑环境的安全性。本文通过优化施工现场平面布置,合理回避施工冲突,降低施工安全隐患,提高施工现场安全水平。为确保施工现场平面布置顺利实施,需要降低因优化施工现场平面布置所产生的安全成本。在工程实践中,平面布置通常根据工程经验展开,如最终导致安全成本的提高,将被舍弃。这也是现阶段我国施工企业为追求利润最大化,而选择牺牲安全,导致建筑企业安全水平较低的根源所在。所以,在优化施工现场平面布置时,应兼顾提高安全水平和降低安全成本。
     施工现场平面布置问题就是在满足多个相互矛盾或者相互统一的布置目标和场地约束条件的情况下,优化利用施工场地空间,把施工临时设施摆放到施工场地的有效空间中。这种问题在数学上被称作二次分配问题,可以通过数学建模的方法进行解决。在数学模型中,建立的两个相互矛盾的目标即为提高施工现场安全水平和降低施工现场平面布置引起的安全成本。为了找到满足多目标的施工场地平面布置,模型中采用帕累托蚁群遗传算法进行求解。并通过实际工程项目的算例分析,对所提出的模型进行验证。本模型适用于民用、商用建筑,不适用于基础设施建设和工业建筑,因为基础设施和工业建筑的施工工艺与民用、商用建筑区别较大。基础设施建设的施工周期长、施工场地不断变化、施工现场难界定、涉及的临时设施单一,造成施工现场平面布置对安全影响有限。工业建筑大部分构件都是现场外预制,在施工现场进行安装,施工现场中对施工操作影响较大的临时设施数量有限,造成施工现场平面布置对安全影响同样有限。而民用、商用建筑大部分属于现浇的框架结构,施工工艺相近,涉及的临时设施种类和数量较多,在施工时均采用施工围挡圈定施工现场,施工现场容易界定,临时设施的布置对施工操作影响较大。
     本文提出了施工现场平面布置安全模型和相应的研究方法,如系统布置设计方法、信息熵法、帕累托蚁群遗传算法、逼近于理想解的排序方法。施工现场平面布置问题属于设施规划问题,即布局规划问题。这种问题不但存在于建筑业的施工组织设计中,也广泛存在于制造业的生产物流系统设计中。鉴于制造业布局设计的研究更加深入,理论发展更加完善,本文借助制造业布局设计系统布置设计理论中物流分析的方法,求解施工现场临时设施之间的物流量;在考虑定性和定量的物流求解设施之间的总物流量,根据平面布置属性来评价平面布置,通过信息熵求解以排除主观印象对权值带来的影响和偏差;鉴于蚁群算法和遗传算法的良好性能在施工平面布置中得到广泛应用,为了改善遗传算法的优化解,本文利用蚁群算法来提高遗传算法初始解的质量,进而得到更好的优化解。同时,为了求解多目标优化问题,借助多目标优化中帕累托优化理论,结合蚁群遗传算法来优化多目标施工现场平面布置问题,形成了新算法——帕累托蚁群遗传算法;逼近于理想解的排序方法是一种有限种方案的多属性决策问题中常用的方法,该方法根据有限个评价对象与理想化目标的接近程度对这些对象进行相对优劣的评价并排序,与理想化目标最接近的对象是决策问题的解。
     模型由四个部分组成,即输入、优化、评价、输出部分。输入部分需要识别施工现场布置的临时设施、可布置设施的空地、设施之间综合相互关系表,其中设施之间相互关系表的建立借助了系统布置设计方法中物流分析的原理。优化部分是模型的核心,建立两个目标函数即使安全成本最小化、使施工现场的安全水平最大化。这两个目标函数是相互矛盾的,没有一个施工现场平面布置可以在保持成本最小化的同时还能保证施工现场的安全水平最大化。文中提出了一种新型的帕累托蚁群遗传算法就可以找到这样一个平衡点,即帕累托最优解,此解既能维持安全成本,也能保持安全水平,在安全成本和安全水平之间找到平衡,这个解就是优化的施工现场平面布置图。帕累托解并不是唯一的,所以优化部分得到了多个施工现场平面布置图,但在实践中只能采用其中一种施工平面布置,这就要优中选优,这项工作由评价部分完成。优化部分产生的施工平面布置是根据目标函数确定的,目标函数中考虑到了一些定量因素(如材料流程、人员流动等)和定性因素(如环境因素等),不论是定性因素还是定量因素,最后均可以用数值来衡量,但是有些因素是无法量化的,无法在目标函数中表示出来(如外部交通的流畅性、施工操作的方便性),影响着施工现场平面布置的质量,因此需要在评价阶段针对那些无法量化的属性开展施工平面布置评价。评价过程采用逼近于理想解的排序方法对优化阶段确定的多个施工现场平面布置进行评价,找到最优的施工现场平面布置。输出部分是模型的最后一个阶段,将输出最优化的施工现场平面布置图。
     为了验证所提出模型的可行性和有效性,文中引入大连地区某城市综合体项目,针对施工场地平面布置安全模型进行算例分析,结果表明:经优化的与原有的施工平面布置相比,优化后的施工现场平面布置可以减少安全成本7.7%-11.4%,提高安全水平11.9%-16.3%。
     本文的创新点:引入物流分析的量化方法,将安全管理这一半结构化问题转化为结构化问题研究;采用数学模型优化施工现场平面布置,从客观层面解决安全管理问题;开发了帕累托蚁群遗传算法解决多目标优化问题。
     本文开拓了工程安全管理研究的新思路,模型通过优化客观层面的施工现场平面布置,提高了施工现场的安全管理水平,促进了研究的实际应用性。该模型的应用与推广,有利于施工企业节约建筑成本,提高施工现场的安全水平。同时,从施工场地平面布置这一现实具体的微观层面着手展开研究,细化了工程管理研究领域,有利于工程管理研究领域的国际化。
It is necessary to improve construction site safety management capability and construction management theory. The healthy development of the construction industry has become an important and indispensable force in invigorating and promoting the national economy.
     Nowadays, the studies on safety managent focused on safety risk management, safety environment and safety behavior, system safety evaluation and so on, which need a lot of objective and historical data support, such as risk analysis in risk management and dangerous influence in system analysis. Moreover, safety environment and safety behavior was influenced by the human being's subjective evaluation. One hand, there are less historical construction accidents data recorded in paper. In the other hand, expert evaluation influenced by personal experience and professional standard. The two aspects restrict the development on safety studies.
     Recently, the researches abroad studies safety from planning stage before construction. According to document index, study on this aspect has hardly been found in china. Construction organization plan is a guide to organize the construction operation for construction firm. The plan clarified relationship among construction units in different construction stages and relationship between construction resources and construction work. Construction site is an important resource like labor, equipment, material and time and resources allocation was also important part in the construction organization plan. Construction site layout plan is optimization of construction site to put temporary facilities into free locations in construction site. A good site layout can shorten transportation time, reduce material transportation frequency, avoid material rehandling, reduced labor cost and thus to reduce construction cost. Through reasonable assignment of construction operation area, auxiliary operational area, material lay down area in construction site layout plan can avoid conflict between human and facilities, facilities and facilities, human and environment, facilities and environment thus to improve construction site safety level. The study aims to optimize construction site layout to avoid conflict in construction site, reduced safety risk and improve construction safety level. In order to guarantee the implement of construction site layout plan, the cost related to the site plan should be reduced. In the construction practice, construction safety was sacrificed when construction cost was improved, which is also the reason why construction safety level in construction firm is hard to improved. So, a good site layout should satisfy the requirement of safety improvement and cost reduction.
     Construction site layout planning can be regarded as a method of optimizing the usage of construction space by assigning site facilities to the available construction space, with the fulfillment of a number of conflicting and/or congruent objective functions, under a set of layout constraints. Construction site layout plan always be modeled as Quadratic Assignment Problem (QAP) and can be solve by optimization model established. In the study, a construction site layout plan safety model was proposed and the conflicting objective functions are improve safety level in construction site and reduced safety cost deduced by construction site layout plan. In order to find the optimization solution for the model, Pareto-based ant colony optimization and genetic algorithm was developed. A construction project was used to verify the proposed model. The proposed model was applicable for residential and commercial building construction but not applicable for infrastructure construction and industrial construction. It is because construction technology between residential and commercial building construction are similar while there are big differences between them to infrastructure construction and industrial construction. Construction duration for infrastructure is very long and constructon site are varied. It is hard to define construction site boundary and the facilities involved in construction operation are limited. Thus, safety influenced by construction site layout plan is limited. For industrial construction, most of structure member was precast outside construction site. The structure members are need to assembled in construction site. Thus, the temporary facilities in construction site have little influenced to the construction operation. For residential and commercial building construction, the types and amount of facilities are similar for similar construction technology. The construction site boundary can easily and clearly defined and at the same time, the temporary facilities involved in the construction site play an important part to construction operations.
     The research methodologies involved in proposed model are systematic layout planning, entropy theory, Pareto-based ACO-GA and technique for order preference by similarity to an ideal solution (TOPSIS). Construction site layout planning problem is facility layout problem. The problem existed not only in the planning and programming of project construction, but also in production logistic system design of the manufacturing industry. The thesis applied systematic layout planning in the manufacturing industry to analyze the interaction flows between the facilities in the construction site; The weights between qualitative and quantitative factors in interaction flows and the weights between the attributes describe the construction site layout candidates are deduced by entropy theory, the theory focus on removal of uncertainty; ACO and GA are commonly used in solving construction site layout planning problem, in order to improve the optimization capability of GA, the proposed algorithm make use of ACO to improve quality of initial population of GA. At the same time, the proposed algorithm combine Pareto optimization theory to ACO and GA to solve multi-objective construction site layout planning problem, the algorithm called Pareto-based ACO-GA; TOPSIS is a method to solve multiple attributes decision-making problem, the method based on the principle of choosing an alternative which has the shortest distance from the positive ideal solution and the longest distance from the negative-ideal solution.
     The proposed model consists of four parts, which are parts of input, optimization, evaluation and output. In the part of input, temporary facilities and free location in the construction site are recognized and the interaction flows between the facilities are determined via theory of logistics analysis in system layout planning. The most important part in the model is optimization part. There are two objective functions in the part, one is minimizing the safety cost in the construction site, and the other is maximizing the safety level in the construction site. The two objective functions are conflicting. In order to solve the mullet-objective function optimization problem, the research proposed Pareto optimization based ant colony optimization and genetic optimization algorithm. The algorithm helps the decision maker find "trade-off" solutions to balance all the objectives, which are conflicting or orthogonally involved. Therefore, there is hardly a global optimal solution to the objective function with the consideration of all constraints existed. Nevertheless, there is a set of optimal trade-off solutions called the Pareto set in any MOO problem. In the evaluation part, Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) was applied to select the best construction site layout among site layout candidates in terms of some pre-determined attributes, such as efficient movement of materials, tie in with external transportation, which are not considered in the objective functions. The output part is the last part in the model, the best construction site layout selected in the evaluation part was the final decision making for the site planner.
     In order to prove the feasibility and effectiveness of proposed model, a project in the city of Dalian was used to validate the model. The results showed that with the application of the model, the safety cost should be reduced by7.7%~11.4%and safety level should be improve by11.9%~16.3%with the comparison with the original site layout designed in the project planning.
     The research innovation points are transfer semi-structured problem into structured problem make use of quantitative method of logistic analysis; apply mathematic model solve construction site layout safety problem from the aspect of objective; develop pareto-based ACO-GA to solve multi-objective optimization problem.
     The proposed model should help the site planning to design a good site layout to improve the construction site safety level and reduced the safety cost at the same time. The research is applicable and by optimizing the construction site layout planning from the objective aspect. The development of theory of construction site layout planning optimization is benefit to domain construction management in line with internationalization.
引文
[1]白剑峰.工程项目PFI模式风险识别技术[N].科技创新导报,2010,(35):108.
    [2]曹德军.产学研合作项目的风险定量分析方法研究[J],商业经济,2010(20):62-63.
    [3]曹德军.土建施工中风险管理探讨[J],管理论坛,2010(03):39-41.
    [4]陈柏,陈培,张江石,傅贵,企业安全氛围因子结构和要素组合关系测评研究[J],2008(3):95-101.
    [5]陈红,祁慧,谭慧,基于特征源与环境特征的中国煤矿重大事故研究[J].中国安全科学学报,2005,15(9):33-38.
    [6]陈晓慧,刘炜.房地产投资风险的模糊评价.武汉理工大学学报.2003,(1).
    [7]程明,袁凤英.动态安全评价方法浅析[J].理论与探索,2005,(1):26-31.
    [8]池秀文,姚雪梅,张海峰.基于AE的地下工程施工安全风险管理系统研究[J].武汉理工大学学报,2010,(11):26-27.
    [9]邓铁军.工程建设环境与安全管理[M].北京:中国建筑工业出版社,2009.
    [10]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005.
    [11]方东平,黄新宇,HinzeJ.工程建设安全管理[M].北京:中国水利水电出版社,2001.
    [12]方东平,黄新宇,李晓东,黄志伟.建筑业安全损失经济研究[J].建筑经济,2000,(3):13-16.
    [13]冯立军.建筑安全事故成因分析及预警管理研究[D].天津财经大学博士论文,2008.
    [14]高娟,游旭群.安全氛围及其对影响机制研究[J].宁夏大学学报,2007,29(3):48-53.
    [15]高文宇,核电厂人因可靠性分析的几个问题研究[D].南华大学博士论文,2011.
    [16]郭伏,杨学涵.人因工程学[M].沈阳:东北大学出版社,2001.
    [17]郭君,刘青.基于突变理论的航运事故发生机理[J],水运管理,2008(4):25-28.
    [18]华燕,王际芝,汪东.建筑企业需要什么样的安全管理[J].土木工程学 报,2003,36(3).
    [19]黄凯,柴毅.施工企业的现场环境管理[J].重庆建筑大学学报,2004,(3):115-120.
    [20]贾楠,刘志才.关于房地产投资风险类型的研究[J].建筑管理现代化,2002,(2):38-40.
    [21]姜鑫,刘新建,陈超.基于多主体影响图及博弈论的军事决策建模[J].系统工程与电子技术,2011,(7):1565-1569.
    [22]蒋军成,突变理论及其在安全工程中的应用[J],南京化工大学学报,1999,(1):24-28.
    [23]金龙哲,宋存义.安全科学原理[M].北京:化工工业出版社,2004:20-34.
    [24]金明,廖桂生,李军.基于遗传算法的类零相关多相码设计[J].系统工程与电子技术,2010,(1):14-17.
    [25]阚华峰.SWOT分析法在工程项目风险识别中的应用研究[J].现代商贸工业,2010,(21):59-60.
    [26]李高扬,刘明广,吴育华.工程项目风险预测模型[J].统计与决策,2006,(22):143-144.
    [27]李磊,田水承,邓军,王莉,李停军,矿工不安全行为影响因素分析及控制对策[J].西安科技大学学报,2011,31(6):794-798.
    [28]李立萍,徐正武等.信息论导引[M].成都:电子科技大学出版社,2008
    [29]李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用[M].北京:科学出版社,2003.
    [30]李睿,唐李雅宁,陈扬,方东平.北京地区建筑农民工工作和生活状况调查[J].建筑经济,2005,(8):13-17.
    [31]林大建,蔡嗣经,周永安,基于蝴蝶型突变理论的安全生产保障系统分析和探讨[J].2007,(10):28-31.
    [32]林大建,蔡嗣经,周永安,基于突变理论的环境不安全生产因素动态安全评价探讨[J],黄金,2008,(2):19-21.
    [33]刘春荣,齐元胜,杨明忠,现代制造系统中的人因工程[J],机械设计与制造工程,2002,(1).
    [34]刘海藩.现代领导百科全书·经济与管理卷[M].北京:中共中央党校出版社,2008.436-437.
    [35]刘金兰,韩文秀,李光泉.大型工程建设项目风险分析方法及应用[J].系统工程理 论与实践,1996,(8):63-69.
    [36]刘军,潘德惠,田喜龙.房地产项目投资前期的风险评价[J].系统管理学报,2007,(2).
    [37]刘伟涛,陈锴.国内外建筑施工安全事故现状对比研究[J].科技信息,2009,(32):281-282.
    [38]刘亚莲,周翠英.突变理论在堤防安全综合评价中的应用[J],水利水运工程学报,2011(1):60-64.
    [39]刘轶松,安全管理中人的不安全行为的探讨[J],西部探矿工程,2005,(6):226-228.
    [40]刘勇,康立山,陈毓屏.非数值并行算法(第二册)[M].北京:科学出版社,2000.
    [41]马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008.
    [42]孟宪海,赵启.EPC模式下业主与承包商的风险分担与应对[J],国际经济合作,2004.
    [43]宁德春,矿井建设项目安全事故机理与控制研究[D],中国矿业大学博士学位论文,2009.
    [44]欧阳建涛,陈睿,刘晓君.工程项目全寿命周期风险集成化管理研究[J].基建优化,2006,27(2):70-73.
    [45]钱寅星.工程建设行业三体系实战[M].北京:中国标准出版社,2006.
    [46]石晓军,任志安.项目投资风险分析方法研究:一种基于影响图的解析方法[J].系统工程理论与实践,2000,(3):48-51.
    [47]宋一平,陆名彰,曾湘黔,胡忠举.基于安全系统工程设计方法的超高速铣床机械安全设计研究[J].机械设计与制造,2008,(4):217-219.
    [48]苏义坤,张守健.预先危险性分析在施工安全管理中的应用[J].低温建筑技术,2003,(5):100-101.
    [49]孙建平.施工现场安全生产保证体系[M].北京:中国建筑工业出版社,2003.
    [50]孙寿鹏.建筑施工安全评价研究[J].青岛理工大学学报,2009,(6):45-52.
    [51]孙忠顺.工程项目施工阶段安全监理工作初探[J].建设监理,2000,(3):31-32.
    [52]唐文艳.结构优化中的遗产算法研究和应用[D].大连理工大学博士论文,2002.
    [53]田水承,景国勋.安全管理学[M].北京:机械工业出版社,2009.
    [54]田水承.第3类危险源辨识与控制研究[D].北京:北京理工大学,2001.
    [55]王保国,王新泉.安全人机工程学[M].北京:机械工业出版社,2007.
    [56]王国平,安全行为科学与电力安全生产[J],科技视窗,2010,(10):85-87.
    [57]王宏伟,孙建峰,吴海欣等.现代大型工程项目全面风险管理体系研究[J].水利水电技术,2006,(2):103-105.
    [58]王嘉兰,“鱼刺图”改进的探讨[J].标准科学,2010,(2).
    [59]王娟,赵江平,张俊,杨晓璐,王智懿.我国深林火灾预测及风险分析[J],中国安全生产科学技术,2008,4(4):41-45.
    [60]王俊松,房地产投资风险概述[J],经济与管理,,2005,19(5):51-53.
    [61]王盼盼,邓小鹏,陆莹.基于人的因素分析和分类系统的建筑施工事故研究[J].工程管理学报,2010,24(1):60-64.
    [62]王茜,组织安全气氛的实质及对安全行为的影响[J],山西高等学校社会科学学报,2009,21(1):96-97.
    [63]王文先,对不安全行为的分析与控制[J],中国矿业,2003,12(7):34-37.
    [64]王银年,葛洪伟.求解TSP问题的改进模拟退火遗传算法[J].计算机工程与应用,2010,46(5):44-47.
    [65]王卓甫.工程项目风险管理—理论、方法与应用[M].北京:中国水利水电出版社,2003.
    [66]魏静营.解决全局优化问题的几种进化算法网[D].西安电子科技大学学位论文,2008.
    [67]伍颖,杨用君.事故归因理论探讨[J].安全与环境工程,2007,14(1):87-88.
    [68]谢亚伟,金德民.工程项目风险管理与保险[M].北京:清华大学出版社,2009.
    [69]胥悦红,刘嘉.马氏链在国际工程投标风险预测中的应用[J].华侨大学学报(自然科学版),1999,(4):433-436.
    [70]徐孟,孙守迁.计算机辅助人机工程研究进展[J],计算机辅助设计与图形学学报,2004,16(11):1469-1472.
    [71]徐茵,突变理论在建筑工程安全中的应用[J],吉林建筑工程学院学报,2009,26(2):6-10.
    [72]徐志胜,吴超.安全系统工程[M].北京:机械工业出版社,2011.
    [73]许世杰,刘弘.基于初始路径优化的蚁群算法及应用[J].计算机工程与设计,2010,(5):1031-1034.
    [74]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [75]杨俊安,庄镇泉.量子遗传算法研究现状[J].计算机科学,2004,(11):13-15.
    [76]杨青.精益价值管理[M].北京:科学出版社,2009.
    [77]杨太华,郑庆华.基于故障树方法的项目安全风险分析[J].系统管理学报,2009,(5).
    [78]杨太华,郑庆华.基于故障树方法的项目安全风险分析[J].系统管理学报,2009,(5):511-515.
    [79]姚国庆,黄渝祥.企业安全行为及其经济分析[J].安全生产,2005,(07):66-69.
    [80]姚文俊.遗传算法及其研究进展[J].计算机与数字工程,2004,(4):41-43.
    [81]姚先成.工程项目关系创新: “5+3”工程项目管理模式研究与应用[M].北京:中国建筑工业出版社,2008.
    [82]姚雪梅,地下工程施工安全风险管理系统研究[D],武汉理工大学,2010.
    [83]耀寰.自适应滤波[M].北京:电子工业出版社,2003.
    [84]游普元.基于JHA的建筑工程施工安全控制分析[J].煤炭技术,2011,30(3).
    [85]余建强,周晓冬.我国建筑工程安全标准体系的现状分析[J].工程管理学报,2010,(3):276-280.
    [86]余建星,工程项目风险管理[M].天津大学出版社,2006.
    [87]袁大祥,严四海.论动态安全评价[J].中国安全科学学报,2003,13(5):38-40.
    [88]袁杰,夏成华.建筑火灾风险定量评估方法研究[J],硅谷,2009(15):107-108.
    [89]张建坤,张蹼.房地产投资项目融资风险的灰色模糊评判研究[J].建筑管理现代化,2004,(4).
    [90]张建设.面向过程的工程项目风险动态管理方法研究[D],天津大学博士论文2002.
    [91]张江石,傅贵郭芳,李建霆.安全氛围测量量表研究[J].中国安全科学学报,2009,19(6):85-92.
    [92]张军.建筑施工危险源安全评价及管理的方法研究[D].大连理工大学博士论文,2007.
    [93]张守健.工程建设安全生产行为研究[D].同济大学博士论文,2006.
    [94]张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2000.
    [95]张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-176.
    [96]张卓元(中国社会科学院经济研究所)主编.政治经济学大辞典.北京:经济科学出版社,1998.
    [97]章连根,房地产市场风险分析方法研究[J],中国水运(学术版).2007(8).
    [98]赵金煜.矿建工程项目风险管理理论与研究方法[D].中国矿业大学博士论文,2010.
    [99]赵黎明,可用“事件树”管理安全[J].中国石油企业,2008,(3).
    [100]赵立祥,刘婷婷.事故因果链锁理论评析[J].经济论坛,2009,(8):96-97.
    [101]赵挺生,卢学伟,方东平.建筑施工伤害事故诱因调查统计分析[J].施工技术,2003,(12).
    [102]赵挺生,卢学伟,方东平.建筑施工伤害事故诱因调查统计分析[J].施工技术,2003,(12):54-55.
    [103]赵秀珍,徐德蜀,刘潜.从“系统安全”到“安全系统”发展的理论初探[J],中国安全科学学报,1992,(4):46-50.
    [104]中国土木工程学会等,地铁及地下工程建设风险管理指南[S].北京:中国建筑工业出版社,2007.
    [105]中国土木工程学会等.地铁及地下工程建设风险管理指南[S].北京:中国建筑工业出版社,2007.
    [106]周刚,程卫民,人因失误与人不安全行为相关原理的分析与探讨[J].中国安全科学学报,2008,18(3):10-14.
    [107]周平,方东平.建筑业安全氛围对安全行为影响机理的实证研究[J].土木工程学报,2009,(11):129-132.
    [108]周鲜华,周立颖.房地产投资的风险及其防范[J].哈尔滨建筑大学学报,1998,(5).
    [109]朱晓雯,郭琦.我国建筑业安全现状分析[J].安全与健康,2007,(11):42-43.
    [110]AbdelRazig, Y., El-Gafy, M. and Ghanem, A. Dynamic construction site layout using ant colony optimization [C], Transportation Research Board 85th Annual Meeting, Washington DC, United States,2006.1.22-2006.1.26. Sponsors: Transportation Research Board.2006.
    [111]Alcaraz, J. and Maroto, C. A robust genetic algorithm for resource allocation in Project scheduling [J]. Annals of Operations Research,2001,102:83-109.
    [112]Boehm B. W. Software Risk Management:Principles and Practices [J]. IEEE Software.1991,8(1):32-41.
    [113]Chau, K. W. and Anson, M. A knowledge-based system for construction site level facilities layout [C], Developments in Applied Artificial Intelligence:15th International Conference on Industrial and Engineering. Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2002, Cairns, Australia, June 17-20, 2002, pp.25-67.
    [114]Cheng, M. Y. and Connor, J. T.1996, Arcsite:enhanced GIS for construction site layout [J], Journal of Construction Engineering and Management,1996,122(4): 329-336.
    [115]Cheung, S. O., Lam, T. I., Leung, M. Y. and Wan, Y. W. An analytical hierarchy process based procurement selection method [J], Construction Management and Economics,2001,19:427-437.
    [116]Deb, K. Multi-objective optimization using evolutionary algorithms [M], John Wiley & Sons, Ltd, England.2001.
    [117]Dedobbeleer N and Beland F. Is risk perception one of the dimensions of safety climate. London:Taylor and Francis,1998.
    [118]Dorigo M, Caro GD, Gambardella LM.Ant algorithms for discrete optimization [J].Artificial Life,1999,5(3):137-172.
    [119]Dorigo M, Maniezzo V, Colony A.Ant system optimization by a colony of cooperating agents [J].IEEE Transaction on Systems, Man, and Cybernetics-Part B,1996,26(1):29-41.
    [120]Dorigo, M. and Gambardella, L. M. An Ant colonies for the traveling salesman problem [J], Biosystems,1997,43:73-81.
    [121]Dorigo, M. and Stutzle, T. Ant Colony Optimization [M]. MIT Press, Cambridge, Massachusetts, London, England.2004.
    [122]Dorigo, M. Optimization, learning and nature algorithms [D], PhD. Thesis, Department of electronics, Politecnico diMilano, Italy.1992.
    [123]Dumitrescu, D. Entropy of fuzzy dynamical systems [J], Fuzzy Sets and Systems, 1995,70(1):45-57.
    [124]Dweiri, F. and Meier, F. A. Application of fuzzy decision-making in facilities layout planning [J], International Journal of Production Research,1996,34(11): 3207-3225.
    [125]Easa, S.M. and Hossain, K.M.A. New mathematical optimization model for construction site layout [J], Journal of Construction engineering and Management, 2008,134(8):653-662.
    [126]Elbeltagi, E. and Hegazy, T. A Hybrid AI-based system for site layout planning in construction site [J], Computer-aided Civil and Infrastructure Engineering,2001, 16:79-93.
    [127]Elbeltagi, E., Hegazy, T. and Eldosouky, A. Dynamic layout of construction temporary facilities considering safety [J], Journal of Construction Engineering and Management,2004,130(4):534-541.
    [128]F.W. Guldenmund. The nature of safety culture:a review of theory and research. Safety Science,2000, (34):215-257.
    [129]Fang, D.P., Lan, R.X., hua, B., Wu, S.H. and Li, N. workplace safety evaluation based on experimental psychology [C]. Proceedings of Triennial conference CIB W99 Implementation of Safety and Health on construction Sites, PP 41-47, May 7-10,2002, Hong Kong.
    [130]Flin R., Mearns, P., O'Connor, P. and Bryden, R. Measuring safety climate: identifying the common features. Safety Science,2000,34:177-192.
    [131]Gilad, I., Karni, R. Architecture of an expert system for ergonomics analysis and design [J].International Journal of Industrial Ergonomics,1999,23(3):205-221.
    [132]Gleneden, A.I, Lither land D. K. Safety climate factors, group differences and safety behavior in road construction [J]. Safety Science,2001,39(3):157-188.
    [133]Goldberg D.E. Genetic Algorithms in Search [M], Optimization and Machine Leaning, Addison-Wesley, Reading, Mass.1989.
    [134]Greenwood G.W., Hu X.S. and Ambrosio J.G. Fitness functions for multiple objective Optimization problems:Combining Preferences with Pareto rankings [C].In:Belew R K and Vose M D, ed. Foundations of Genetic Algorithms. San Francisco, California:MorganKau Fann,1996.
    [135]Guastello, S.J. Catastrophe modeling of the accident process:evaluation of an accident reduction program using the occupational hazards survey [J]. Accident Analysis and Prevention,1989,21(1):61-77.
    [136]Hamiani, A. CONSITE:A knowledge-based expert system framework for construction site layout [D], Ph.D. thesis, University of Texas, Austin, TX.1987.
    [137]Han, S.H., Kim, D.Y., Kim, H. and Jang, W.S. A web-based integrated system for international project risk management [J], Automation in construction,2008(17): 342-356.
    [138]Hegazy, T. and Elbeltagi, E. EVOSITE:Evolution-based model for site layout planning [J], Journal of Computing in Civil Engineering,1999,13(3):198-206.
    [139]Hinze J.W. Construction Safety. New Jersy:Prentice-Hall.1997:124-128.
    [140]Holland J.H. Adaptation in Natural and Artificial systems [M].Ann Arbor: University of Michigan Press.1975.
    [141]Hwang, C. L. and Yoon, K. Multiple attribute decision making:methods and applications, a state-of-art survey [M], Berlin/Heidelberg/New York: Springer-Verlag,1981.
    [142]James J.R. Aggregation bias in estimates of perceptual agreement [J], Journal of Applied Psychology,1982,67(2):219-232.
    [143]Jang, H., Lee, S., Choi, S. optimization of floor-level construction material layout using genetic algorithms [J], Automation in Construction,2007,16:531-545.
    [144]Karray, F., Zaneldin, E., Hegazy, T., Shabeeb, A. H. M. and Elbeltagi, E. Tools of soft computing as applied to the problem of facilities layout planning [J], IEEE Transactions on Fuzzy Systems,2000,8(4):367-379.
    [145]Kennedy, J. and Everhart, R.C. Particle Swarm Optimization [C], Proc. of the IEEE Int. Conf. on Neural Networks,1995,4:1942-1948.
    [146]Khalafallah, A. and El-Rayes, K. Automated multi-objective optimization system for airport site layouts [J], Automation in Construction,2011,20:313-320.
    [147]Khalafallah, A. and El-Rayes, K. Optimizing airport construction site layouts to minimize wildlife hazards [J], Journal of Management in engineering,2006,22(4): 176-185.
    [148]Kong, M. and Tian P.A. Direct application of ant colony optimization to function optimization problem in continuous domain[C].Brussels, Belgium:Proceedings of 5th International Workshop on Ant Colony Optimization and Swarm Intelligence, 2006.
    [149]Krokhmal, P., Zabarankin, M. and Uryasev, S. Modeling and optimization of risk [J], Surveys in operations research and management science,2011 (16):49-66.
    [150]Lam, K. C., Ning, X. and Lam, C.K. Conjoining MMAS to GA to solve construction site layout planning problem [J], Journal of construction engineering and management,2009,135(10):1049-1057.
    [151]Lam, K. C., Ning, X. and Ng, T. The application of the ant colony optimization algorithm to the construction site layout planning problem [J], Construction Management and Economics,2007,25:359-374.
    [152]Lam, K.C, Ning, X. and Ng, T. The Application of the ant colony optimization algorithm to the construction site layout planning problem [J], Construction Management and Economic 2007,25 (4):359-374.
    [153]Lee, T. and Harrison, K. Assessing safety culture in nuclear power stations[J]. Safety Science,2000, (34):61-97.
    [154]Li, H. and Love, P. E. D. Genetic search for solving construction site-level unequal-area facility layout problems [J], Automation in Construction,2000,9(2): 217-226.
    [155]Li, H. and Love, P. E. D. Site-lever facilities layout using genetic algorithms [J], Journal of Computing in Civil Engineering,1998,12(4):227-231.
    [156]Ma, A. Y., Shen, Q. P. and Zhang, J. P. Application of 4D for dynamic site layout and management of construction projects [J], Automation in Construction,2005, 14:369-381.
    [157]Maniezzo, V., Colorni, A. and Dorigo, M. The Ant System Applied to the quadratic assignment problem [R], Technical report IRIDIA/94-28, IRIDIA, Universite Libre de Bruxelles, Brussels.1994.
    [158]Masys, A.F. Aviation accident aetiology:catastrophe theory perspective [J]. Disaster prevention and management,2004,13(1):33-38.
    [159]Mawdesley, M. J., AI-jibouri, S. H. and Yang, H. B. Genetic algorithms for construction site layout in project planning [J], Journal of Construction Engineering and Management,2002,128 (5):418-426.
    [160]Mohamed, S., Safety climate in construction site environments [J]. Journal of construction engineering and management.2002,(9/10):375-383.
    [161]Motowidlo, S.J., Scotter J.T. Evidence that task performance should be distinguished from contextual performance [J], Journal of Applied Psychology,1994,79:475-480.
    [162]Nicos, S., Intergrated Risk Management. The Journal of Risk and Insurance, 2000,67 (4):63-74.
    [163]Ning, X, Lam, K.C., Lam, M.C.K. Dynamic construction site layout planning using max-min ant system [J], Automation in Construction,2010,19:55-65.
    [164]Ning, X, Lam, K.C., Lam, M.C.K. A decision-making system for construction site layout planning [J], Automation in Construction,2010,20:459-473.
    [165]Osman, H. M. CAD-based dynamic layout planning of construction sites using genetic algorithms [D], M.Sc. Thesis, Faculty of engineering, Cairo University, Giza, Egypt.2002.
    [166]Osman, H. M. Georgy, M. E. and Ibrahim, M.E.2003a, An automated system for dynamic construction site layout planning [C],10th International Colloquium on Structural and Geotechnical Engineering, Ain Shams University, Cairo, Egypt, 22nd-24th, April.
    [167]Osman, H. M., Georgy, M. E. and Ibrahim, M. E. A hybrid CAD-based construction site layout planning system using genetic algorithms [J], Automation in Construction,2003b,12:749-764.
    [168]Osman, H. M., Georgy, M. E. and Ibrahim, M. E. Integrated CAD-based model for construction site layout planning [J], Al-Azhar Civil Engineering Research Magazine,2002,24(3):1035-1051.
    [169]Osyczka, A. Multicriteria optimization for engineering design [C]. In Design Optimization, (Gero, J.S., Editor). Academic Press, New York,1985, pp193-227.
    [170]Reason, J. Human error[M]. Cambridge, UK:Cambridge University Press,1990.
    [171]Sadeghpour, F., Moselhi, O. and Alkass, S. A CAD-based model for site planning [J], Automation in Construction,2004,13:701-715.
    [172]Sadeghpour, F., Moselhi, O. and Alkass, S. T. Computer-aided site layout planning [J], Journal of Construction Engineering and Management,2006,132(2):143-151.
    [173]Samdani, S. A., Bhakal, L. and Singh, A. K. Site layout of temporary construction facilities using ant colony optimization [C], ASCE Los Angeles Section International Committee 4th International Engineering and Construction Conference at California State University, Fullerton on July 28.2006.
    [174]Sanad, H. M., Mohammad, A. A. and Moheeb, E.L. Optima; construction site layout considering safety and environmental aspect [J], Journal of Construction engineering and Management,2008,134(7):536-554.
    [175]Shannon, C.E. A mathematical theory of communication [J], Bell System Technical Journal,1948,27(3):379-423.
    [176]Shannon, C.E. The mathematical theory of communication [J], Bell System Technical Journal,1948,27:379-423 and 623-656.
    [177]Siu, O., Philips D, Leung T. Age differences in safety attitudes and safety performance in Hong Kong construction workers[J]. Journal of Safety Research, 2003,34(2):199-205.
    [178]Tam, C. M., Tong, K. L., Leung, W. T. and Chiu, W. C. Site layout planning using nonstructural fuzzy decision support system [J], Journal of Construction Engineering and Management,2002,128(3):220-231.
    [179]Tam, C.M. and Tong, T.K.L. GA-ANN model for optimization the location of tower crane and supply points for high-rise public housing construction [J], Construction Management and Economics,2003,21:257-266.
    [180]Tommelein, I. D. Sight Plan:An expert system that models and augments human decision making for designing construction site layout [D], Ph.D. thesis, Stanford University, Stanford, CA.1989.
    [181]Tserng, H. P., Yin, S.Y.L., Dzeng, R.J., Wou, B., Tsai, M.D. and Chen, W.Y. A study of ontology-based risk management framework of construction projects through project life cycle [J], Automation in construction,2009 (18):994-1008.
    [182]Tummala, V.M.R, Nkasu, M. and Chuah, K.B. A Systematic Approach to Risk Management [J]. Journal of Mathematical Modeling and Scientific Computing, 1994, (4):174-184.
    [183]Williams, R., Bertsch, B., Dale, B., Wiele, T., Iwaarden, J., Smith, M.and Visser, R. Quality and risk management:what are the key issues? [J]. The TQM Magazine, 2006,18(1):67-86.
    [184]Yeh, I. C. Construction-site layout using annealed neural network [J], Journal of Computing in Civil Engineering,1995,9(3):201-208.
    [185]Zhang, H. and Wang, J.Y. Particle swarm optimization for construction site unequal-area layout [J], journal of construction engineering and management, 2008,4, (9):739-748.
    [186]Zouein, P. P. and Tommelein, I. D. Dynamic layout planning using a hybrid incremental solution method [J], Journal of Construction Engineering and Management,1999,125(6):400-408.
    [187]Zouein, P. P., Harmanani, H. and Hajar, A. Genetic Algorithm for solving site layout problem with unequal-size and constrained facilities [J], Journal of Computing in Civil Engineering,2002,16(2):143-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700