用户名: 密码: 验证码:
水稻一般配合力与杂种优势分子机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优良亲本的选择在传统育种与杂交水稻育种过程中均起到至关重要的作用。但亲本选择是一个需要耗费大量时间并且效率低下的繁重工作,更为复杂的是并非所有亲本的优良性状均能在其后代得到表现,不同亲本对杂种后代表现出不同的遗传效应,为了解释这一现象和评价亲本的优劣,Sprague与Tatum于1942年提出了一般配合力(general combining ability, GCA)的概念用于评价育种亲本的优劣,并同时提出了特殊配合力的概念(specific combining ability, SCA)用于评估杂交配组的好坏。从那时起,一般配合力便被广泛应用于传统遗传育种与杂种优势利用的亲本选择与评估。但一般配合力的遗传学与分子生物学基础至今仍不明确。为了探讨和揭示一般配合力的遗传学基础,我们构建了包含我国不同历史阶段的六个优良籼稻品种:珍汕97B、矮脚南特、广陆矮四号、93-11、特青、矮仔占,按照双列杂交设计由这些亲本杂交得到的15个F1代的双列杂交群体来评价水稻的株高、生育期与每穗粒数等三个与产量相关农艺性状的一般配合力。在此基础上,我们构建了高配合力亲本特青与低配合力亲本广陆矮4号的F2群体,对140个分离单株与五个亲本进行测交,根据测交亲本的表型计算一般配合力,以GCA值作为表型进行遗传作图,研究GCA的遗传基础;同时,对广陆矮四号、特青和93-11三个亲本和相互配组的三个F1代的叶片的转录组进行RNA测序分析,试图揭示GCA的分子基础。主要结果如下:
     1、一般配合力分析结果显示:亲本93-11与特青的株高、生育期和穗粒数三个与产量相关农艺性状的一般配合力均表现为正值,而其余亲本则表现为负值。
     2、各个亲本的一般配合力在武汉与海南省不同生态环境下基本保持稳定,受环境影响较小。
     3、我们构建了高配合力亲本特青与低配合力亲本广陆矮4号的140个单株的F2群体,对140个单株与五个亲本进行测交,通过F1代的生育期、株高及穗粒数表型计算出GCA,利用1,136个SSR标记对亲本特青与广陆矮4号进行全基因组扫描,并得到121个多态性标记;利用这些多态性标记,我们构建了平均遗传间隔13.1cM的遗传连锁图。随后对株高、生育期、穗粒数等三个与产量相关性状的一般配合力进行遗传作图分析,检测到控制一般配合力的两个主效位点。其中一个位点位于一号染色体SSR标记RM3148与RM462之间,控制穗粒数的一般配合力,Lod值5.7;另一个位点位于七号染色体SSR引物RM1306附近,同时控制生育期、株高、穗粒数等三个性状的一般配合力,对三个性状的Lod值分别为35.5、129、12.5。结果显示由统计分析所得出的一般配合力概念具有遗传学基础,受QTL遗传位点控制。
     4、对双列杂交群体中各样本的表型进一步分析发现:以93-11或特青作为亲本的杂种F1代的生育期、株高及穗粒数等三个农艺性状表型明显偏向于93-11或特青,与另一个亲本(广陆矮四号、矮脚南特或珍汕97)的表型具有较大差异。针对这一现象,我们对各亲本及其对应的杂种F1代生育期、株高、穗粒数等性状进行了相关性分析,结果显示:亲本93-11及特青与其杂种F1代的表型之间具有较高的相关性(r>0.97,P<3.80E-07),而亲本广陆矮四号、矮脚南特、珍汕97与其杂种F1代的表型之间相关性较低(r=0.81,P<1.33E-03)。这一结果显示具有高一般配合力的亲本对其杂种F1代表型的影响大于一般配合力低的亲本。
     5、为了揭示F1代表型偏向高一般配合力亲本的原因,对特青、93-11和广陆矮4号和相互配组的三个F1代的二次枝梗分化期叶片的转录组进行了测序分析,三个亲本和F1代的转录组测序深度为89.5到114.1兆reads,对转录组数据的分析结果显示F1代转录组偏向于高一般配合力的亲本。
     6、对水稻开花及GA调控相关的基因表达量的分析,证实了转录组数据与表型具有对应关系,结果揭示了F1代农艺性状表型偏向高一般配合力亲本,并与转录组的亲本偏向性相关。
     对开花和GA代谢的通路的相关基因的表达模式进行了分析,Ehd1、Ehd2、 Hd3a、RFT1基因在三个F1代及亲本93-11、特青中表达量显著低于亲本广陆矮四号;Hd1、OsPRR1与Ghd7基因的表达量则在亲本广陆矮四号中显著下调。在GA调控通路中,促进GA合成的基因OsCPS1与OsKAO以及受高GA含量刺激表达的基因GA2ox在三个F1代和93-11、特青中的表达量显著上调;而受高GA含量抑制的基因GA3ox与GA20ox的表达量则在上述材料中显著下调,这些结果与表型一致。
     7、为了探索在水稻杂种优势的产生机制及水稻F1中等位基因表达模式与杂种优势的关系,我们对上述三个F1代的杂种优势进行了分析,亲本差异较大亲本杂交产生的广陆矮4号×93-11、广陆矮4号×特青的杂种优势水平较高,反之,93-11×特青的杂种优势水平较低。随后对广陆矮4号×93-11、广陆矮4号×特青和低杂种优势水平的93-11×特青及其亲本广陆矮4号、93-11、特青进行了转录组测序及全基因组等位特异性表达分析。为了完成全基因组等位特异性表达分析,我们对三个亲本基因组进行了17.7-27.7倍于水稻基因组大小的重测序以保证亲本中至少90%的SNP位点被检出,为等位基因特异性表达分析奠定了基础。为了保证等位特异性分析的准确性,我们对三个F1代样本转录组进行了高深度的测序,得到89.5到114.1兆的reads,并使三个杂种F1代中SNP的平均reads覆盖深度分别达到8.6到10.9。
     8、全基因组的等位基因表达模式分析,在三个杂种F1代中,有3.4%到3.9%的基因呈现单等位表达模式,23.5%到24.2%的基因显示偏等位表达,而72.0%到73.0%的表达基因可归为共表达基因。进一步对F1代中等位基因的表达模式与其亲本之中对应基因的表达量的相关性分析,我们发现F1代中等位基因的表达模式与其亲本之中对应基因的表达量比值具有显著的正相关性;等位特异性表达基因(包括单等位表达基因与偏等位表达基因)与其亲本表达量具有更显著的正相关性;等位特异性表达在F1代种发挥重要作用。
     9、通过对单等位表达和偏等位表达基因的正反交的表达模式分析,发现所有分析的基因均表现为偏向单一亲本,与目前在动物中被深入研究的三种单等位基因表达模式不同,我们将这类新发现的单等位表达类型称为基因型依赖性(genotype—dependent)单等位表达基因。
     10、发现在杂种一代的转录组中,80.7-94.6%基因表现以顺式调控机制(cis-regulated mechanism),只有5.4-19.3%基因表现为反式调控,在水稻杂种F1代转录组以顺式调节为主;结果显示平均79.7%的基因表达具有互补效应的基因由等位特异性表达造成;对F1代等位特异性表达及亲本间基因表达量的分析显示在F1代中激活及表达量升高的基因主要由亲本之间的互补效应造成。
     11、对亲本与F1代的差异基因表达进行分析结果表明:等位特异性表达基因造成了F1代与亲本之间平均42.4%的差异表达基因。更重要的是等位特异性表达基因造成了79.8%的F1代与亲本之间表达量差异大于10倍的差异表达基因;这类基因的在F1代表达而在亲本之一不表达的基因占97.3%。多数F1代与亲本之间的差异表达基因的表达量偏向高一般配合力的亲本;进一步证明杂种F1代的互补效应主要由单等位表达及偏等位表达基因贡献的结果。
Selecting elite parents is of paramount importance in conventional breeding and cross breeding programs. However, the selection of parents from a phalanx of inbred lines is extremely time consuming and often no better than a random process. Furthermore, parents with excellent agronomic traits do not always transmit those traits to their progeny. Thus, Sprague and Tatum proposed the concepts of general combining ability (GCA) and specific combining ability (SCA) to evaluate breeding parents and the parent combination, respectively. Since then, GCA has been widely and successfully used as criteria to evaluate elite parents in conventional breeding and in cross breeding practices. However, the genetic and molecular basis of GCA has been largely overlooked.
     To explore the genetic basis of GCA, we first analyzed GCA using a diallelcross population including six rice indica varieties, Zhenshan97(ZS), Aijiaonante (AJ), Guangluai#4(GL),93-11and Teqing (TQ), and15F1hybrids that mated from these parents. The diallel cross population were planted in three seasons: the summers of2008and2009in Wuhan and the winter of2009in Hainan Island. In each season, triplicates of30plants were grown. Three agronomic traits mainly contributed to rice yield, plant height (PH), heading date (HD) and grain number of per panicle (GP), were measured. The general combining ability (GCA) for each parent was calculated according to Griffing.
     For the further analysis of genetic basis of GCA, we constructed a F2population with the parents GL and TQ, which exhibited significantly difference on GCA for all the three traits. To evaluate the genetic base of GCA, total of700hybrids derived from the five test parents mating with140individual plants in the F2population of GLxTQ. A genetic map for GCA loci was made using the GCA score of individuals in the F2population. To further study the molecular basis of GCA, we did the transcriptome sequencing of GL, TQ and93-11, and their F1hybrids GLxTQ, GLx93-11and93-11xTQ. The main results as follows:
     1, We found that the GCA effects about the three agronomic traits of the parents tested appeared significantly difference. The GCA effects of93-11and TQ exhibited positive GCA effects, while ZS, AJ and GL exhibited negative GCA effects.
     2, We also found that the GCA effects does not be significantly affected by the environmental conditions in Wuhan and Hainan Island.
     3, A total of121polymorphic SSR markers were used for genetic linkage analysis of the GCA using140individuals of the F2population of GLxTQ. Two major QTLs were detected from the genetic mapping of the GCA for the three traits. One QTL controlling the GCA of GN with a Lod score5.7located between RM3148and RM462on chromosome1; the other QTL located near the RM1306on chromosome7, which has pleiotropism on controlling the GCA of three traits, HD, PH and GP, exhibited the Lod scores of35.5,12.9and12.5, respectively. These results indicated the concept of GCA derived from statistical analysis was controlled by QTLs.
     4, We found that the three agronomic traits from the F1hybrids were always similar to93-11and TQ in the diallel cross population, when either93-11or TQ was used as one parent in the hybrids. The correlation analysis for the three agronomic traits between Fl hybrids and the parents showed significant correlation with the parents of93-11and TQ (r>0.97, P<3.80E-07), but less significant correlation with the parents of GL, ZS and AJ (r=0.81, P<1.33E-03). These results indicated that the parents with higher GCA effects would make more contibutions to the phenotypes of F1hybrids than that of the parents with lower GCA effects.
     5, To explore the machanism of the agronomic traits in F1hybrids always biased to the high GCA parents, the transcriptome sequencing of the leaves at the development stage of secondary branch meristem from three F1hybrids, GLx93-11, GLxTQ and93-11XTQ, and their parents were accomplished. The results revealed that the global transcriptome profiles of F1hybrids were biased to the positive GCA effect parents.
     6, The transcriptome of F1hybrids biased to the positive GCA effect parents were validated by analyzing the gene expression patterns of the GA and flowering pathways that are corresponding for plant height and flowering time. In long day condition, the up-regulation of Ehdl, Ehd2, Hd3a, RFT1will induce rice flowering, these gene expression levels were obviously lower in GLx93-11, GLxTQ,93-11and TQ than that of in GL; while these gene expression levels of Hdl, OsPRR1and Ghd7that depressed the flowering in rice were significantly down-regulated in GL. In the GA regulation pathway, the gene expression levels of OsCPSl and OsKAO that enhance the GA synthesis were up-regulated in GLx93-11, GLxTQ,93-11and TQ. The similar results were obtained from expression anyalysis of GA2ox. While the expression level of GA3ox and GA20ox that feedbackly regulated by high level of GA were down-regulated.
     7, To explore the molecular basis of heterosis and the relationship between allelic expression and heterosis, we chose three F1hybrids, GLxTQ and GLx93-11, exhibited high heterosis, and the third,93-11XTQ, low heterosis and their parents GL, TQ and93-11for the transcriptome sequencing and allele-specific expression analysis.17.7-27.7of rice genome coverage were obtained from three parents to satisfy the minimum requirement for obtaining more than90%SNPs and a total of89.5to114.1million reads (90bp per read) were obtained from analogous tissue from the three F1hybrids used for the further allele-specific study. For the three F1hybrids, the sequencing depths were rached to8.6-11.9reads per SNP, repectively.
     8, We found that3.4to3.9%of the genes were classified as monoallelic expression (MAE),23.5to24.2%as preferential allelic expression (PAE) and72.0to73.0%as biallelic expression (BAE) from the three F1hybrids by the allele-specific expression analysis. The correlation analysis indcicated that correlation coefficients ranging from0.70to0.76(P<2.2E-16) in three F1hybrids between gene expression in the parents and the ASE in the F1hybrids, respectively. A higher correlation coefficient was obtained from the same analysis with ASE genes in the F1hybrids (r>0.80, P<2.2E-16). These results imply a cis-regulatory mechanism contributed to the allele-specific expression in rice hybrids.
     9, By comparing the allelic expression pattern of monoallelic and preferential allelic expression genes in reciprocal hybrids, we found the allelic expression pattern of all the genes tested biased to the high GCA effect parents. This allelic expression pattern was different from the three types of monoallelic expression genes that have well studied in mammals, so we designate this type of monoallelic expression gene as genotype-dependent monolallelic expression gene.
     10, We found80.7-94.6%expressed genes were regulated as cis-regulated mechanism in F1hybrids, while5.4-19.3%expressed genes regulated as trans-regulated effects through the gene expression level analysis. The results showed79.7%genes exhibited complementary effects, which were resulted from allele-specific expression. Our results revealed the categories of the expression activated and enhanced in the F1hybrids mainly resulted in complementary effects of superior alleles from both parents.
     11, The further analysis between allele-specific expression and differentially expressed genes occurred in F1hybrids indicated that these genes exhibiting allele-specific expression comprised42.4%of the genes differentially expressed between F1hybrids and their parents in average. Allele-specific expression accounted for79.8%of the genes displaying more than a10-fold expression level difference between an F1and its parents, and almost all (97.3%) of the genes expressed in F1, but non-expressed in one parent.
引文
1. Sprague, G.F. and L.A. Tatum, General Vs specific combining ability in single crosses of Corn. J. Ame. Soc. Agron,1942.34(10):p.923-932.
    2. 何友勋等,10含粳稻不育系和恢复系的一般配合力表现.浙江农业科学,2012(9):p.1235-1236.
    3. 覃兰秋等,13个糯玉米自交系主要性状的遗传规律及利用分析.广西农业科学,2006(2):p.101-103.
    4. 钱忠英等,全雌性单性结实黄瓜主要性状配合力分析.上海师范大学学报,2002(3):p.61-65.
    5. 李开隆等,白桦5X5完全双列杂交种苗性的遗传效应分析.北京林业大学学报,2006(4):p.82-87.
    6. 张晓明和曲振环,薄皮甜瓜农艺性状配合力分析.吉林农业大学学报,2008(3):p.284-290,293.
    7. 詹永发等,朝天椒自交系表型性状的配合力和遗传分析.贵州农业科学,2009(6):p.13-15.
    8. 相吉山等,春小麦产量及穗部主要性状的配合力分析.青海大学学报,2007(6):p.42-45,48.
    9. 李怀德等,春小麦品种(系)主要农艺性状配合力与遗传力分析.甘肃农业科技,2008(3):p.13-16.
    10. 黄中文等,大豆动态株高及其生长速率与产量的相关分析.河南科技学院学报,2010(2):p.16-19.
    11. 桑伟等,冬小麦主要品质性状在F1及F2代杂种优势和配合力的研究.新疆觳农业科学,2007(3):p.91-96.
    12. 安凤霞等,番筋耐热性遗传分析.中国蔬菜,2007(9):p.15-17.
    13. 黄金堂等,花生主要农艺性状的配合力和杂种优势分析.江西农业学报,2007(1):p.29-30.
    14. 李红等,抗虫杂交棉产量性状杂种优势及配合力分析.河南科技学院学报,2007(3):p.12-14.
    15. 许健等,烤烟亲本配合力的双列杂交分析.烟草科技,2004(1):p.29-32.
    16. 宋晓燕等,苦瓜产重与品质性状配口合力及遗传力分析.中国瓜菜,2009(6):p.1-4.
    17. 苏俊和刘志增,三个玉米合成群体选系的配口合力及杂种优势分析.植物遗传资源学报,2007(4):p.436-441.
    18. 赵景云等,色素万寿菊主要数量性状的配合力分析.北方园艺,2007(8):p.114-115.
    19. 卞桂杰等,甜菜雄性不育系的一般配合力测定.中国糖科,2007(1):p.31-33.
    20. 王瑞清等,小黑麦饲草品质性状的配合力分析.新疆农业科学,2007(6):p.881-884.
    21. 唐文邦等,籼型三系杂交水稻产量及生育期的配合力分析.湖南农业科学,2007(1):p.28-31.
    22.程辉等,用灰色局势决策法多因素综合评估甘蓝型油菜早代自交系的一般配合力.中国油料作物学报,2007(3):p.342-346.
    23. 周俊国等,中国南瓜干物质含量配合力的研究.广东农业科学,2011(4):p.53-55.
    24. 巩秀峰等,马铃薯杂种群体的性状相关及其配合力分析.马铃薯杂志,1992(2):p.86-91.
    25. 杨青川等,紫花苜蓿耐盐新种质一般配合力分析与轮回选择.草地学报,2006(1):p.4-8.
    26. Griffing, B., Concept of general and specific combining ability in relation to diallel crossing systems. Australian J. of Biol. Sciences,1956(9):p.463-493.
    27. 孔繁玲,植物数量遗传学.2006:中国农业大学出版社.
    28. 齐绍武和盛孝邦,籼型两系杂交水稻主要农艺性状配合力及遗传力分析.HYBRIDRICE,2000(3):p.38-41.
    29. Qu, Z., et al., QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. PLoS One,2012.7(1):p. e28463.
    30. Qi, H., et al., Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet,2012126(2):P. 369-377.
    31. Paterson, A.H., et al., Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature,2012.492(7429):p.423-7.
    32. Brenchley, R., et al., Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature,2012.491(7426):p.705-10.
    33. Schmutz, J., et al., Genome sequence of the palaeopolyploid soybean. Nature,2010. 463(7278):p.178-83.
    34. Palmer, L.E., et al., Maize genome sequencing by methylation filtration. Science,2003. 302(5653):p.2115-7.
    35. Yu, J., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002.296(5565):p.79-92.
    36. Shull, GH., The composition of a field of maize. Am. Breeders Assoc. Rep.,1908.4:p. 296-301.
    37. East, E.M., Inbreeding in corn. Conn. Agric. Exp. Sta. Rpt,1908.1907:p.419-428.
    38. Darwin, C.R., ed. The Effects of Cross and Self Fertilization in the Vegetable Kingdom. 1876.
    39. Birchler, J.A., et al., Heterosis. Plant Cell,2010.22(7):p.2105-12.
    40. Garcia, A.A., et al., Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics,2008.180(3):p.1707-24.
    41. Hochholdinger, F. and N. Hoecker, Towards the molecular basis of heterosis. Trends Plant Sci,2007.12(9):p.427-32.
    42. Crow, J.F., Alternative hypotheses of hybrid vigor. Genetics,1948.33(5):p.477-87.
    43. Hua, J., et al., Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A,2003.100(5):p.2574-9.
    44. Zhou, G., et al., Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A,2012.109(39):p.15847-52.
    45. Luo, L.J., et al., Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics,2001.158(4):p. 1755-71.
    46. Li, L., et al., Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics,2008.180(3):p.1725-42.
    47. Lu, H., J. Romero-Severson, and R. Bernardo, Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003.107(3):p.494-502.
    48. Meyer, R.C., et al., QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet,2010.120(2):p.227-37.
    49. Krieger, U., Z.B. Lippman, and D. Zamir, The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet,2010.42(5):p.459-63.
    50. Springer, N.M. and R.M. Stupar, Allelic variation and heterosis in maize:how do two halves make more than a whole? Genome Res,2007.17(3):p.264-75.
    51. Vroh Bi, I., McMullen, M.D., Sanchez-Villeda, H., Schroeder, S., Gardiner, J., Polacco, M., Soderlund, C., Wing, R., Fang, Z., and Coe Jr., E.H., Single nucleotide polymorphisms and insertion—deletions for genetic markers and anchoring the maize fingerprint contig physical map.. Crop Sci.,2005.46:p.12-21.
    52. Ching, A., et al., SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet,2002.3:p.19.
    53. Tenaillon, M.I., et al., Patterns ofDNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A,2001.98(16):p.9161-6.
    54. Zhao, W., et al., Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Res,2006.34(Database issue):p. D752-7.
    55. Adawy, S.S., R.M. Stupar, and J. Jiang, Fluorescence in situ hybridization analysis reveals multiple loci of knob-associated DNA elements in one-knob andk nobless maize lines. J Histochem Cytochem,2004.52(8):p.1113-6.
    56. Brown, W.L., Numbers and Distribution of Chromosome Knobs in United States Maize. Genetics,1949.34(5):p.524-36.
    57. Kato, A., J.C. Lamb, and J.A. Birchler, Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A,2004.101(37):p.13554-9.
    58. Lee, J.H., et al., Variability of chromosomal DNA contents in maize (Zea mays L.) inbred and hybrid lines. Planta,2002.215(4):p.666-71.
    59. Buckler, E.S., B.S. Gaut, and M.D. McMullen, Molecular and functional diversity of maize. Curr Opin Plant Biol,2006.9(2):p.172-6.
    60. Fu, H. and H.K. Dooner, Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A,2002.99(14):p.9573-8.
    61. Lai, J., et al., Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci U S A,2005.102(25):p.9068-73.
    62. Kapitonov, V.V. and J. Jurka, Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet,2007.23(10):p.521-9.
    63. Brunner, S., G. Pea, and A. Rafalski, Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize. Plant J,2005.43(6):p.799-810.
    64. Wang, Q. and H.K. Dooner, Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A,2006.103(47):p. 17644-9.
    65. Song, R. and J. Messing, Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A,2003.100(15):p.9055-60.
    66. Brunner, S., et al., Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell,2005.17(2):p.343-60.
    67. Morgante, M., et al., Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet,2005.37(9):p.997-1002.
    68. Bennetzen, J.L., Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev,2005.15(6):p.621-7.
    69. Bureau, T.E., S.E. White, and S.R. Wessler, Transduction of a cellular gene by a plant retroelement. Cell,1994.77(4):p.479-80.
    70. Emrich, S.J., et al., Nearly identical paralogs: implications for maize (Zea mays L.) genome evolution. Genetics,2007.175(1):p.429-39.
    71. Jiang, N., et al., Pack-MULE transposable elements mediate gene evolution in plants. Nature,2004.431(7008):p.569-73.
    72. Stam, M., et al., Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev,2002.16(15):p. 1906-18.
    73. Clark, R.M., et al., A distant upstream enhancer at the maize domestication gene tbl has pleiotropic effects on plant and inflorescent architecture. Nat Genet,2006.38(5):p. 594-7.
    74. Meyer, R.C., et al., Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. Plant J,2012.71(4):p.669-83.
    75. Fujimoto, R., et al., Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc Natl Acad Sci U S A,2012.109(18):p. 7109-14.
    76. Ma, Q., P. Hedden, and Q. Zhang, Heterosis in rice seedlings:its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiol,2011.156(4):p.1905-20.
    77. He, G, et al., Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell,2010.22(1):p.17-33.
    78. Wei, G, et al., A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci U S A,2009.106(19):p.7695-701.
    79. Stupar, R.M., et al., Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol,2008.8:p.33.
    80. Stupar, R.M. and N.M. Springer, Cis-transcriptional variation in maize inbred lines B73 and Mo 17 leads to additive expression patterns in the F1 hybrid. Genetics,2006.173(4): p.2199-210.
    81. Bao, J., et al., Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol,2005.138(3):p.1216-31.
    82. Auger, D.L., et al., Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics,2005.169(1):p.389-97.
    83. Guo, M., et al., Genome-wide transcript analysis of maize hybrids:allelic additive gene expression and yield heterosis. Theor Appl Genet,2006.113(5):p.831-45.
    84. Melchinger, A.E., Genetic diversity and heterosis. In The Genetics and Exploitation of Heterosis in Crops (Coors, J.G. and Pandey S., eds).1999:American Society of Agronomy, Inc and Crop Science Society of America, Inc.
    85. Meyer, S., H. Pospisil, and S. Scholten, Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol,2007.63(3):p.381-91.
    86. Kollipara, K.P., et al., Expression profiling of reciprocal maize hybrids divergent for cold germination and desiccation tolerance. Plant Physiol,2002.129(3):p.974-92.
    87. Monk, M., Epigenetic programming of differential gene expression in development and evolution. Dev Genet,1995.17(3):p.188-97.
    88. Cedar, H. and Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet,2009.10(5):p.295-304.
    89. Sheldon, C.C., et al., The molecular basis of vernalization:the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A,2000.97(7):p.3753-8.
    90. Fedoroff, N.V. and J.A. Banks, Is the Suppressor-mutator element controlled by a basic developmental regulatory mechanism? Genetics,1988.120(2):p.559-77.
    91. Futscher, B.W., et al., Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet,2002.31(2):p.175-9.
    92. Stancheva, I., et al., DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev Biol,2002.243(1):p.155-65.
    93. Stancheva, I. and R.R. Meehan, Transient depletion ofxDnmtl leads to premature gene activation in Xenopus embryos. Genes Dev,2000.14(3):p.313-27.
    94. Jackson-Grusby, L., et al., Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet,2001.27(1):p.31-9.
    95. Ng, D. W., J. Lu, and Z.J. Chen, Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr Opin Plant Biol,2012.15(2):p.154-61.
    96. Mosher, R.A. and C.W. Melnyk, siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci,2010.15(4):p.204-10.
    97. Slotkin, R.K., et al., Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell,2009.136(3):p.461-72.
    98. Mosher, R.A., et al., Uniparental expression of PolIV-dependent siRNAs in developing endosperm ofArabidopsis. Nature,2009.460(7252):p.283-6.
    99. Hsieh, T.F., et al., Genome-wide demethylation ofArabidopsis endosperm. Science,2009. 324(5933):p.1451-4.
    100. Gehring, M., K.L. Bubb, and S. Henikoff, Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science,2009.324(5933):p. 1447-51.
    101. Shen, H., et al., Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell,2012.24(3):p. 875-92.
    102. Groszmann, M., et al., Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci U S A,2011.108(6):p. 2617-22.
    103. Bix, M. and R.M. Locksley, Independent and epigenetic regulation of the interleukin-4 alleles in CD4+Tcells. Science,1998.281(5381):p.1352-4.
    104. Chess, A., et al., Allelic inactivation regulates olfactory receptor gene expression. Cell, 1994.78(5):p.823-34.
    105. Lyon, M.F., X chromosomes and dosage compensation. Nature,1986.320(6060):p.313.
    106. Pernis, B., et al., Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J Exp Med,1965.122(5):p.853-76.
    107. Waters, A.J., et al., Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell,2011.23(12):p.4221-33.
    108. Oh, E.C. and N. Katsanis, Neuroscience: Imprinting in the brain. Nature,2011.475(7356): p.299-300.
    109. Gregg, C., et al., High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science,2010.329(5992):p.643-8.
    110. Zhang, M., et al., Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc Natl Acad Sci U S A,2011. 108(50):p.20042-7.
    111. Wolff, P., et al., High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis Endosperm. PLoS Genet,2011.7(6):p. e1002126.
    112. Chess, A., Mechanisms and consequences of widespread random monoallelic expression. Nat Rev Genet,2012.13(6):p.421-8.
    113. Gimelbrant, A., et al., Widespread monoallelic expression on human autosomes. Science, 2007.318(5853):p.1136-40.
    114. Barr, M.L. and E.G. Bertram, A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature,1949.163(4148):p.676.
    115. Ohno, S., W.D. Kaplan, and R. Kinosita, Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res,1959.18:p.415-8.
    116. Lyon, M.F., Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, 1961.190:p.372-3.
    117. Lee, J.T., et al., A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell,1996.86(1):p.83-94.
    118. Lee, J.T. and M.S. Bartolomei, X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell,2013.152(6):p.1308-23.
    119. Puck, J.M. and H.F. Willard, X inactivation in females with X-linked disease. N Engl J Med,1998.338(5):p.325-8.
    120. Pageau, G.J., et al., The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer,2007.7(8):p.628-33.
    121. Liao, D.J., et al., Novel perspective: focusing on the X chromosome in reproductive cancers. Cancer Invest,2003.21(4):p.641-58.
    122. Moore, K.L. and M.L. Barr, The sex chromatin in benign tumours and related conditions in man. Br J Cancer,1955.9(2):p.246-52.
    123. Fentiman, I.S., A. Fourquet, and G.N. Hortobagyi, Male breast cancer. Lancet,2006. 367(9510):p.595-604.
    124. Kawakami, T., et al., The roles of supernumerical X chromosomes and XIST expression in testicular germ cell tumors. J Urol,2003.169(4):p.1546-52.
    125. Yildirim, E., et al., Xist RNA is a potent suppressor of hematologic cancer in mice. Cell, 2013.152(4):p.727-42.
    126. Kermicle, J.L., Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics,1970.66(1):p.69-85.
    127. Constancia, M., et al., Imprinting mechanisms. Genome Res,1998.8(9):p.881-900.
    128. Bartolomei, M.S. and S.M. Tilghman, Genomic imprinting in mammals. Annu Rev Genet, 1997.31:p.493-525.
    129. Barlow, D.P., Gametic imprinting in mammals. Science,1995.270(5242):p.1610-3.
    130. Nicholls, R.D., S. Saitoh, and B. Horsthemke, Imprinting in Prader-Willi and Angelman syndromes. Trends Genet,1998.14(5):p.194-200.
    131. Viljoen, D. and R. Ramesar, Evidence for paternal imprinting in familial Beckwith-Wiedemann syndrome. J Med Genet,1992.29(4):p.221-5.
    132. Falls, J.G., et al., Genomic imprinting: implications for human disease. Am J Pathol,1999. 154(3):p.635-47.
    133. Hollander, G.A., et al., Monoallelic expression of the interleukin-2 locus. Science,1998. 279(5359):p.2118-21.
    134. Guo, M., et al., Allelic variation of gene expression in maize hybrids. Plant Cell,2004. 16(7):p.1707-16.
    135. Raissig, M.T., C. Baroux, and U. Grossniklaus, Regulation and flexibility of genomic imprinting during seed development. Plant Cell,2011.23(1):p.16-26.
    136. Feil, R. and F. Berger, Convergent evolution ofgenomic imprinting in plants and mammals. Trends Genet,2007.23(4):p.192-9.
    137. Luo, M., et al., A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet,2011.7(6):p. e1002125.
    138. Yan, W., et al., Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res,2013.23(7):p.969-71.
    139. Xue, W., et al., Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,2008.40(6):p.761-7.
    140. Ashikari, M., et al., Cytokinin oxidase regulates rice grain production. Science,2005. 309(5735):p.741-5.
    141. Kojima, S., et al., Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol,2002. 43(10):p.1096-105.
    142. Li, R., et al., SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics, 2009.25(15):p.1966-7.
    143. Mortazavi, A., et al., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods,2008.5(7):p.621-8.
    144. Farre, E.M. and T. Liu, The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol,2013.16(5):p. 621-629.
    145. Inigo, S., et al., PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J,2012.69(4):p.601-12.
    146. Matsubara, K., et al., Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J,2011.66(4):p.603-12.
    147. Endo-Higashi, N. and T. Izawa, Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol,2011.52(6):p. 1083-94.
    148. Takahashi, Y., et al., Variations in Hdl proteins, Hd3a promoters, and Ehdl expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci U S A,2009.106(11):p.4555-60.
    149. Matsubara, K., et al., Ehd2, a rice ortholog of the maize INDETERMINATE 1 gene, promotes flowering by up-regulating Ehdl. Plant Physiol,2008.148(3):p.1425-35.
    150. Komiya, R., et al., Hd3a and RFT1 are essential for flowering in rice. Development,2008. 135(4):p.767-74.
    151. Murakami, M., et al., Characterization of the rice circadian clock-associated pseudo-response regulators in Arabidopsis thaliana. Biosci Biotechnol Biochem,2007. 71(4):p.1107-10.
    152. Doi, K., et al., Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes Dev,2004. 18(8):p.926-36.
    153. Murakami, M., et al., The evolutionarily conserved OsPRR quintet:rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol,2003.44(11):p.1229-36.
    154. Yano, M., et al., Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000. 12(12):p.2473-2484.
    155. Yamaguchi, S., Gibberellin metabolism and its regulation. Annu Rev Plant Biol,2008.59: p.225-51.
    156. Olszewski, N., T.P. Sun, and F. Gubler, Gibberellin signaling:biosynthesis, catabolism, and response pathways. Plant Cell,2002.14 Suppl:p. S61-80.
    157. Hedden, P. and A.L. Phillips, Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci,2000.5(12):p.523-30.
    158. Wang, J., et al., The diploid genome sequence of an Asian individual. Nature,2008. 456(7218):p.60-5.
    159. Audic, S. and J.M. Claverie, The significance of digital gene expression profiles. Genome Res,1997.7(10):p.986-95.
    160. Wang, W., et al., Comparative transcriptomes profiling ofphotoperiod-sensitive male sterile rice Nongken 58S during the male sterility transition between short-day and long-day. BMC Genomics,2011.12:p.462.
    161. Lam, H. Y., et al., Detecting and annotating genetic variations using the HugeSeq pipeline. Nat Biotechnol,2012.30(3):p.226-9.
    162. Zhang, K., et al., Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nat Methods,2009.6(8):p.613-8.
    163. Pignatta, D. and M. Gehring, Imprinting meets genomics: new insights and new challenges. Curr Opin Plant Biol,2012.15(5):p.530-5.
    164. Birchler, JA. and RA. Veitia, The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol,2010.186(1):p.54-62.
    165. Coors, J.G.aJP., S., Genetics and exploitation of heterosis in crops..1999: Crop Science Society of America, Madison, WI.
    166. Paschold, A., et al., Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res,2012.22(12):p. 2445-54.
    167. Mai, M., et al., Activation ofp73 silent allele in lung cancer. Cancer Res,1998.58(11):p. 2347-9.
    168. Springer, N.M. and R.M. Stupar, Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell,2007.19(8):p. 2391-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700