用户名: 密码: 验证码:
渤海湾元素生物地球化学及环境演变指标的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文聚焦于2008年所取的渤海湾沉积物,集中研究了沉积物中常量元素、微量元素以及海水中重金属的生物地球化学特征,通过剖析元素形态并结合对渤海湾生态环境信息的综合分析,系统探讨了渤海湾沉积物元素的分布特征、潜在生态风险、影响控制因素以及演变趋势,获得了以下一系列新的结果和认识:
     1.根据渤海湾沉积物稀土元素的配分模式,明显的Eu负异常和Y/Ho比值特征揭示了陆源自然输入而非人为输入是渤海湾沉积物的主要来源,另外稀土元素的埋藏通量可以指示洪水等的异常输入。
     稀土元素在渤海湾沉积物中的含量水平差异较小,不同形态稀土元素从大到小的含量顺序为:残渣态(R5)、铁锰氧化物结合态(L3)、碳酸盐结合态(L2)、有机结合态(L4)、可交换态(L1),可浸取态稀土元素容易富集在细颗粒物含量较高的站位。渤海湾沉积物的稀土配分模式具有明显的Eu负异常,没有明显的轻重稀土分异,由渤海湾沉积物的Y/Ho比值及其配分模式可以推断出渤海湾沉积物主要是海河和黄河等陆源自然输入而非人为输入。
     20世纪30年代末对应的海河口附近柱子的沉积层,稀土元素埋藏通量发生了异常改变,对应1939年海河北系的大洪水,洪水带来的物质“稀释”了稀土元素的浓度,导致其埋藏通量的降低。
     2.渤海湾海水和沉积物中重金属的地球化学分布特征揭示了重金属有不同的来源。从总含量角度分析,渤海湾沉积物总体状况良好。基于形态分析的污染评价显示,Zn、Co、Cu、Ni和Pb都有不同程度的污染,Pb是所有重金属中污染最严重的。表明评价海洋沉积物的重金属污染状况必须结合各形态和生物可利用性有关的浓度,而不能简单地采用重金属的总浓度来评价。
     渤海湾海水中重金属主要在海河口附近富集,海水中As、Cd、Cr、Cu、Zn和Hg主要来自径流输入,Pb的来源有径流输入和大气沉降两部分组成。表层沉积物中重金属在渤海湾中央的泥质区富集。海河口附近沉积柱重金属的含量有几次突变,分别对应:1939年海河北系的洪水,导致20-22 cm段重金属达极小值;1963年海河南系洪水,导致10-12 cm重金属达极小值;1963年至今重金属含量有逐渐增加的趋势。另外,不同形态重金属的百分含量从大到小的顺序为:R5 >L3 >L2 >L4 >L1。重金属元素在海河口附近站位都表现出较高的可浸取态百分含量。
     总量重金属富集因子顺序为:Pb>Cd>Zn>Cr>V>Co>Cu>Ni,其中Pb、Cd和Zn的富集因子均大于1,说明其受到了污染。但渤海湾沉积物总体质量良好,潜在生态风险较低。从重金属的形态角度评价,V和Cr基本无污染;Zn大部分无污染或有轻微污染,Co大部分轻度污染,Cu的污染水平由中度污染变到基本无污染,Ni则是由重度污染到轻度污染,Pb是所有重金属污染最严重的。综合两种评价方法,得出Pb是渤海湾污染最严重的重金属,Cu和Zn有潜在污染的可能性,V、Cr和Co基本是清洁的。
     3.渤海湾沉积物中碱金属和碱土金属的生物地球化学特征可用来表征径流输入和环境变化对渤海湾的影响,研究显示Li/Ba和Rb/Sr是反映环境气候变化信息的良好指标。
     陆源输入是影响碱金属和碱土金属含量的主要因素,外界环境条件也会对其含量造成一定程度的影响。残渣态Rb、Cs和Ba对其总量起决定性的作用,而Sr的可浸取态百分含量较高,其碳酸盐结合态的百分含量已经超过残渣态的百分含量,说明Sr是这些元素中最易受环境条件影响的元素。
     Sr和Ca的高度富集说明碳酸盐对渤海湾的沉积过程有重要影响,Sr/Ba的垂向变化特征显示,虽然百年来渤海湾沉积物一直是陆源淡水沉积,但海相沉积作用却有所增强。根据Rb/Sr和Li/Ba出现的极小值可推断出,对应年代Sr和Ba淋溶量的增加是海河流域1939年和1963年两次大洪水导致的。Rb/Sr和Li/Ba近年来均有降低的趋势,而A6沉积柱对应Rb/Sr和Li/Ba的减小程度均大于A2沉积柱,说明Sr和Ba向渤海湾的迁移逐渐增加,且向渤海湾中央海区方向发生了较大程度的迁移。
     4.渤海湾沉积物可浸取态Nb、Ta、Zr和Hf的研究表明,它们的特定比值也可用来指示异常洪水及泥沙的输入等外来因素的影响。地球化学环境条件的改变可使Nb和Ta的形态发生较大的分馏,但对Zr和Hf的影响相对较小。
     Nb、Ta、Zr和Hf都在渤海湾中央的细颗粒沉积海域出现高值区,各形态含量的大小顺序为Nb:R5>> L4> L3> L1> L2;Ta:R5>> L1> L2> L3> L4;Zr:R5>> L4> L3 > L1> L2;Hf:R5>> L4> L3> L2> L1。残渣态在各形态中占据绝对优势,但各浸取态元素及特征比值的变化能指示地质环境的变化情况。Nb较容易与水合氧化物、有机质等有机配体结合,Ta更易以可交换态和碳酸盐结合态等无机态形式存在,可浸取态Zr和Hf与各个配体的结合情况差异不大,都是较易以有机配体等形式存在。
     根据Ti/Nb垂直变化的异常点推断,可能影响A2柱的主要环境事件有1938年黄河改道向南、1939年海河北系的大洪水和1963年海河南系的大洪水。可能影响A6柱的主要环境事件有1947年后黄河改道向北和1984-1990年期间的高含沙洪水。不同形态Nb、Ta、Zr和Hf近百年来的含量变化特征表明,近期渤海湾沉积环境条件的变化,使得可浸取态Nb和Ta的分馏越来越大,尤其是有机结合态Nb和Ta的分馏最为显著,但并没有造成可浸取态Zr和Hf分馏的明显增强。
The Bohai Bay is a semi-enclosed epicontinental sea in the southwestern Bohai Sea. With experienced rapid industrial developments, marine environmental quality of the Bohai Bay has seen a major decline due to the increase of populations and pollutants. Sediment samples were collected at 27 stations and two cores of Bohai Bay, North China in 2008. Sequential extractions have been carried out. Combining with heavy metals in sea water and ecological environmental information, a series of results and viewpoints with regard to biogeochemical characteristics of major and trace elements were presented, going with ecological risk and controlling factors:
     1. Geochemical characteristics and NASC patterns of REE in sediment were discussed in detail to reveal the source and their main regulating factors, and a large flood event can be reflected by the burial fluxes of REE
     The total REE fluctuate slightly in Bohai Bay sediment. Four labile phases were leached in Exchangeable (L1), Bound to carbonates (L2), Bound to Fe-Mn oxides (L3), Bound to organic matter (L4), and the remainder was Residual (R5). Percentages of fractions followed the order: R5> L3> L2> L4> L1. Sediments in Bohai Bay were mainly composed of clay and silt. Leached REE would rather enrich in the fine-grained particles. Normalized to North American Shale Composite (NASC), REE generally indicated significantly negtive Eu anomaly, showing no significant fractionations of REE. According to REE patterns and Y/Ho ratios of samples, REE are not anthropogenic or oceanic sources but riverine input, whereas suitable environment varieties can slightly affect the patterns and fractionations of REE, espacially for L2.
     Based on the distributions and burial fluxes of REE, it reflected that there was a large flood event in 1939, followed by the decreasing discharge of sediments from then on.
     2. Geochemical characteristics of heavy metals in sea water and sediment were discussed to reveal their sources, main regulating factors and ecological risk. Based on total contents of heavy metals, the quality of Bohai Bay sediment was good, while there were different results from fraction view, that was, Zn, Co, Cu, Ni, Pb all were in potential ecological risk. It suggested that the quality of sediment should be estimated not only by total contents but also by concentrations in fraction.
     The contents of heavy metals (except Pb) was low in central area while high inshore especailly near Haihe estuary. Heavy metals mainly came from river input, while the source of Pb were composed of river input and atmospheric deposition. Heavy metals in sediments were mainly concentrated in the middle region with fine particle. According to sedimentary data and vertical distribution of heavy metal, there were several break which could be corresponding as follow: The lowest level occurred in 1939 resulting from the flood of Haihe basin; there was another flood in 1963 resulting in the decreasing of heavy metals by the dilution of flood; the contents of heavy metals kept increasing from 1963. Percentages of fractions followed the order: R5 >L3 >L2 >L4 >L1. Labile heavy metals were enriched near the estuary of Haihe River.
     The order of enrichment factors (EF) of heavy metals was Pb> Cd> Zn> Cr> V> Co> Cu> Ni. And the EF of Pb, Cd and Zn were above 1, suggesting that they could be polluted by exterior input. The ratios of labile and residual fraction showed that V and Cr were clean, Zn was mostly clean or in slightly polluted, Co was mostly slightly polluted, Cu and Ni were polluted in different levels at different stations, Pb was polluted heaviest in all heavy metals. In conclusion, the ecological risk of Bohai Bay was low and indicated that the sediment quality was relatively good in general. What have been studied on ecological risk of heavy metals in sediment suggested that the level of polluted sediment should be related to labile fractions of heavy metals, not simply employing the total content of heavy metals.
     3. Distributions of alkali metals and alkaline earth metals in Bohai Bay sediment were initially elucidated to reflect the influence of riverine input and filtrate the main factor indicating environmental changes. Li/Ba and Rb/Sr are good indicators reflecting the environmental change.
     Based on Principal Component Analysis (PCA), it was terrestrial input that held the key factor controlling the distribution of alkali metals and alkaline earth metals, suitable environmental varieties and sedimentary conditions can slightly affect the distributions. In different fractions, the R5 percentage of Rb, Cs, Ba were much higher than the sum of other fractions; while the L2 percentage of Sr was higher than R5, suggesting Sr was relatively sensitive to the environmental conditions.
     The significant enrichment of Sr and Ca can be explained that carbonate played an important role in Bohai Bay, the Sr/Ba ratio showed that core A6 was much more influenced by the decomposition of biology than core A2. The vertical distributions of Rb/Sr and Li/Ba showed that there were two floods in 1939 and 1963, resulting in the increasing input of Sr and Ba. The decreasing ratios of Rb/Sr and Li/Ba suggested that Sr and Ba were transferring into Bohai Bay more and more, and the ratios of Rb/Sr and Li/Ba in A6 were lower than those in A2, indicating that Rb/Sr and Li/Ba were also transferring from coastal area to the middle of Bohai Bay.
     4. Labile fractions of Nb, Ta, Zr, Hf were discussed to reveal that he specific ratios of Nb, Ta, Zr, Hf could account for the environmental change in Bohai Bay, such as the floods and the sandiness input. The environmental change could promote the fractionation of Nb and Ta, but the effect was much less on Zr and Hf.
     Nb, Ta, Zr, Hf in Bohai Bay sediments were mainly concentrated in the middle region with fine particle. Percentages of fractions followed the order Nb: R5>> L4> L3> L1> L2; Ta:R5>> L1> L2> L3> L4; Zr: R5>> L4> L3 > L1> L2; Hf: R5>> L4> L3> L2> L1. In different fractions, the R5 percentage almost control the total contents of Nb, Ta, Zr, Hf, while labile fractions can be used to indicate the environmental change. Ta preferred to exist in inorganic fractions, such as L1 and L2, and Ta can be easily combined in organic fractions, such as L3 and L4. The combinative ability of Zr in labile fraction was similar with that of Hf.
     Based on the vertical distribution of Ti/Nb, the environmental evens that affect core A2 were as follow: Yellow River changing its route to the south in 1938, the flood of northern Haihe drainage basin in 1939 and the flood of southern Haihe drainage basin in 1963. The environmental evens that have impacted A6 were Yellow River changing its route to the north in 1947 and the flood in heavy sandiness from 1984 to 1990. Recently the environment of Bohai Bay changed relatively, which could lead to the fractionations of Nb and Ta in labile fraction were more and more, especially for L4. But the change of environment played less impact on the fractionation of Zr and Hf in labile fractions.
引文
1. Mannand, A.W., Lintern, M. (1983). Heavy metal dispersion patterns from tailings dump, Northampton district, Western Australia. Environmental Pollution 6: 33-69.
    2. Bostrom, K., Peterson, M.N. (1969). Origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on east pacific rise. Marine Geology 7(5): 427-440.
    3. Gundacker, C. (2000). Comparison of heavy metal bioaccumulation in freshwater molluscs of urban river habitats in Vienna. Environmental Pollution 110: 61-71.
    4. Castillo, P.R. (2002). The origin of some of the adakite-like and Nb-enriched lavas in southern Philippines. Acta Petrologica Sinica 18(2): 143-151.
    5. Chatterjee, M., Silva Filho, E.V., Sarkar, S.K., Sella, S.M., Bhattacharya, A., Satpathy, K.K., Prasad, M.V.R., Chakraborty, S., Bhattacharya, B.D. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International 33(3): 346-356.
    6. Che, Y., He, Q., Lin, W.Q. (2003). The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay, China. Marine Pollution Bulletin 46(1): 123-131.
    7. Chen, Z.Y., Saito, Y., Kanai, Y., Wei, T.Y., Li, L.Q., Yao, H.S, Wang, Z.H. (2004). Low concentration of heavy metals in the Yangtze estuarine sediments, China: a diluting setting. Estuarine, Coastal and Shelf Science 60(1): 91-100.
    8. Class, C., Le R.A.P. (2008). Ce anomalies in Gough Island lavas--Trace element characteristics of a recycled sediment component. Earth and Planetary Science Letters 265(3-4): 475-486.
    9. Cubadda, F., Conti, M.E., Campanella, L. (2001). Size-dependent concentrations of trace metals in four Mediterranean gastropods. Chemosphere 45(4-5): 561-569.
    10. Cundy, A.B., Hopkinson, L., Lafite, R., Spencer, K., Taylor, J.A., Ouddane, B., Heppell, C.M., Carey, P.J., Charman, R., Shell, D., Ullyott, S. (2005). Heavy metal distribution and accumulation in two Spartina sp.-dominated macrotidal salt marshes from the Seine estuary (France) and the Medway estuary (UK). Applied Geochemistry 20(6): 1195-1208.
    11. Dai, J.C., Song, J.M., Li, X.G., Yuan, H.M., Li, N., Zheng, G.X. (2007). Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay, North China. Environmental Pollution 145(3): 656-667.
    12. Dasch, E.J. (1969). Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochimica Et Cosmochimica Acta 33(12): 1521-1540.
    13. Dave, G.R., Nilsson, E. (1999). Sediment toxicity and contaminants in the Kattegat and Skagerrak. Aquatic Ecosystem Health and Management 2: 347-360.
    14. David, K., Schiano, P., Allegre, C.J. (2000). Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth and Planetary Science Letters 178(3-4): 285-301.
    15. De Oliveira, S.M.B., Da Silva, P.S.C., Mazzilli, B.P., Favaro, D.I.T., Saueia, C.H. (2007). Rare earth elements as tracers of sediment contamination by phosphogypsum in the Santos estuary, southern Brazil. Applied Geochemistry 22(4): 837-850.
    16. Dubinin, A.V., Strekopytov, S.V. (2001). Behavior of rare earth elements during leaching of the oceanic sediments. Geochemistry International 39(7): 692-701.
    17. Dypvik, H., Harris, N.B. (2001). Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr plus Rb)/Sr ratios. Chemical Geology 181(1-4): 131-146.
    18. Francois, R., Honjo, S., Manganini, S.J.and Ravizza, G.E. (1995). Biogenic barium fluxes to the deep-sea --implications for paleoproductivity reconstruction. Global Biogeochemical Cycles 9(2): 289-303.
    19. Fukue, M., Nakamura, T., Kato, Y., Yamasaki, S. (1999). Degree of pollution for marine sediments. Engineering geology 53: 131-137.
    20. Bryanand, G.W., Langston, W.J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special references to UK estuaries: a review. Environemtal Pollution 76: 89-131.
    21. Gascoyne, M. (1983). Trace-element partition-coefficients in the calcite water-system and their paleoclimatic significance in cave studies. Journal of Hydrology 61(1-3): 213-222.
    22. Giarratano, E., Comoglio, L., Amin, O. (2007). Heavy metal toxicity in Exosphaeroma gigas (Crustacea, Isopoda) from the coastal zone of Beagle Channel. Ecotoxicology and Environmental Safety 68: 451-462.
    23. Goede, A., Vogel, J.C. (1991). Trace-element variations and dating of a late pleistocene tasmanian speleoyhem. Palaeogeography Palaeoclimatology Palaeoecology 88(1-2): 121-131.
    24. Gonzalez, I., Aguila, E., Galan, E. (2007). Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management. Environmental Geology 52(8): 1581-1593.
    25. Haas, P.M. (2000). Prospects for effective marine governance in the NW Pacific region. Marine Policy 24: 341-348.
    26. Han, G.L., Liu, C.Q. (2007). Dissolved rare earth elements in river waters draining karst terrains in Guizhou Province, China. Aquatic Geochemistry 13(1): 95-107.
    27. He, J., Mi, N., Kuang, Y.C., Fan, Q.Y., Wang, X., Guan, W., Li, G.H., Li, C.S.and Wang, X.W. (2004). Speciation and distribution characters of rare earth elements in the Baotou section of the Yellow River. Environmental Science 25(2): 61-66.
    28. Huang, T.L., Zhu, W.H., Chai, B.B., Zhang, Y.Z., Lu, J.S. (2008). Influence of redox conditions on speciation and assessment of potential ecological risk of heavy metals in the sediment of Fenhe reservoir. Advances in Chemical Technologies for Water and Wastewater Treatment. Wang, X.and Chen, R.: 809-816.
    29. Huh, Y., Chan, L.H., Zhang, L., Edmond, J.M. (1998). Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimica Et Cosmochimica Acta 62(12): 2039-2051.
    30. Hyun, S.,Lee, H.S., Lee, T., Choi, J.W. (2007). Anthropogenic contributions to heavy metal distributions in the surface sediments of Masan Bay, Korea. Marine Pollution Bulletin 54(7): 1059-1068.
    31. Idris, A.M., Eltayeb, M.A.H., Potgieter-Vermaak, S.S., Van Grieken, R., Potgieter, J.H. (2007). Assessment of heavy metals pollution in Sudanese harbours along the Red Sea Coast. Microchemical Journal 87(2): 104-112.
    32. Ingall, E., Jahnke, R. (1994). Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochimica Et Cosmochimica Acta 58(11): 2571-2575.
    33. Ingram, B.L., Sloan, D. (1992). Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science 255(5040): 68-72.
    34. Ruler, J. (1986). Assessment of trace elements geochemistry of Hampton Roads Harbour and lower Cheaspeake Bay area sediments. Environmental Geology 8: 209-219.
    35. Bubband, J.M., Lester, J.N. (1994). Anthropogenic heavy metals inputs to lowland river systems, a case study. The River Stour UK. Water, Air Soil Pollution 78: 279-296.
    36. Johannesson, K.H., Lyons, W.B., Yelken, M.A., Gaudette, H.E., Stetzenbach, K.J. (1996). Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare-earth element enrichments. Chemical Geology 133(1-4): 125-144.
    37. Murray, K.S. (1996). Statistical comparisons of heavy metal concentrations in river sediments. Environmental Geology 27: 54-58.
    38. Kim, G., Yang, H.S., Church, T.M. (1999). Geochemistry of alkaline earth elements (Mg, Ca, Sr, Ba) in the surface sediments of the Yellow Sea. Chemical Geology 153(1-4): 1-10.
    39. Kimoto, A., Nearing, M.A., Shipitalo, M.J., Polyakov, V.O. (2006). Multi-year tracking of sediment sources in a small agricultural watershed using rare earth elements. Earth Surface Processes and Landforms 31(14): 1763-1774.
    40. Kimoto, A., Nearing, M.A., Zhang, X.C., Powell, D.M. (2006). Applicability of rare earth element oxides as a sediment tracer for coarse-textured soils. Catena 65(3): 214-221.
    41. Koschinsky, A. (2001). Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments. Deep Sea Research Part II: Topical Studies in Oceanography 48(17-18): 3757-3777.
    42. Ku, T.L.and Li, H.C. (1998). Speleothems as high-resolution paleoenvironment archives: Records from northeastern China. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences 107(4): 321-330.
    43. Kwon, Y.T., Lee, C.W. (2001). Ecological risk assessment of sediment in wastewater discharging area by means of metal speciation. Microchemical Journal 70: 255-264.
    44. Leleyter, L., Probst, J.L., Depetris, P., Haida, S., Mortatti, J., Rouault, R., Samuel, J. (1999). REE distribution pattern in river sediments: partitioning into residual and labile fractions. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes 329(1): 45-52.
    45. Li, F.L., Shan, X.Q., Zhang, T.H., Zhang, S.Z. (1998). Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis. Environmental Pollution 102(2-3): 269-277.
    46. Li, J.F., Wang, H., Xia, W.L., Goodbred, S.L., Kang, H., Zhang, Y.F (2003). 210Pbexc and 137Cs dating and modern sedimentation rate on the weatern coast of Bohai Bay. Geological Survey and Research 26(2): 114-128.
    47. Li, X.d., Shen, Z.G., Wai, O.W.H., Li, Y.S. (2001). Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River Estuary. Marine Polluntion bullitin 42(3): 215-223.
    48. Li, X.d., Wai, O.W.H., Li, Y.S., Coles, B.J., Ramsey, M.H., Thornton, I. (2000). Heavy metal distribution in sediment profiles of the Pearl River estuary, South China. Applied Geochemistry 15(5): 567-581.
    49. Liang, J.L., Ding, X., Sun, X.M., Zhang, Z.M., Zhang, H., Sun, W.D. (2009). Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology 268(1-2): 27-40.
    50. Lin, S, Hsieh, I.J., Huang, K.M., Wang, C.H. (2002). Influence of the Yangtze River and grain size on the saptial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology 182: 377-394.
    51. Liu, Y.S., Gao, S., Wang, X.C., Hu, S.H., Wang, J.Q. (2005). Nb/Ta variations of mafic volcanics on the Archean-Proterozoic boundary: Implications for the Nb/Ta imbalance. Science in China Series D-Earth Sciences 48(8): 1106-1119.
    52. Lu, Y., Gong, Z.T., Zhang, G.L., Burghardt, W.G. (2003). Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma 115: 101-111.
    53. Carolina, M., Carolina, M., Manuel, G.V. (2007). Evaluation of natural and anthropogenic influences on the Guadalquivir River (Spain) by dissolved heavy metals and nutrients. Chemosphere 69(10): 1509-1517.
    54. Moermond, C.T.A., Tijink, J., Van Wezel, A.P., Koelmans, A.A. (2001). Distribution, speciation, and bioavailability of lanthanides in the Rhine-Meuse estuary, the Netherlands. Environmental Toxicology and Chemistry 20(9): 1916-1926.
    55. Paytan, A., Kastner, M. (1996). Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle. Earth and Planetary Science Letters 142(3-4): 439-450.
    56. Paytan, A., Mearon, S., Cobb, K., Kastner, M. (2002). Origin of marine barite deposits: Sr and S isotope characterization. Geology 30: 747-750.
    57. Pempkowiak, J., Sikora, A., Biernacka, E. (1999). Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels. Chemosphere 39(2): 313-321.
    58. Polyakov, V.O., Nearing, M.A. (2004). Rare earth element oxides for tracing sediment movement. Catena 55(3): 255-276.
    59. Pourret, O., Davranche, M., Gruau, G., Dia, A. (2007). Competition between humic acid and carbonates for rare earth elements complexation. Journal of Colloid and Interface Science 305(1): 25-31.
    60. Ramirez, M., Massolo, S., Frache, R., Correa, J.A. (2005). Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin 50: 62-72.
    61. Rauret, G., Lopez-Sanchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring 1(1): 57-61.
    62. Rengarajan, R., Sarin, M.M. (2004). Distribution of rare earth elements in the Yamuna and the Chambal rivers, India. Geochemical Journal 38(6): 551-569.
    63. Roberts, M.S., Smart, P.L., Baker, A. (1998). Annual trace element variations in a Holocene speleothem. Earth and Planetary Science Letters 154(1-4): 237-246.
    64. Rosales-Hoz, L., Cundy, A.B., Bahena-Manjarrez, J.L. (2003). Heavy metals in sediment cores from a tropical estuary affected by anthropogenic discharges: Coatzacoalcos estuary, Mexico. Estuarine, Coastal and Shelf Science 58(1): 117-126.
    65. Jorge, R.I., Luis A.S., Federico, P.O. (2003). Heavy-metal accumulation in the hydrothermal vent clam Vesicomya gigas from Guaymas basin, Gulf of California. Deep Sea Research Part I: Oceanographic Research Papers 50(6): 757-761.
    66. Sarmani, M.P, Abdullah, L, Babaand A.A, Majid (1992). Inventory of heavy metals and organic micro pollutants in an urban water catchments drainage basin. Hydrobiologica 235.
    67. Sarι, E., a?atay, M.N. (2001). Distributions of heavy metals in the surface sediments of the Gulf of Saros, NE Aegean Sea. Environment International 26: 169-173.
    68. Sofiev, M., Petersen, G., Kruger, O., Schneider, B., Hongisto, M., Jylha, K. (2001). Model simulations of the atmospheric trace metals concentrations and depositions over the Baltic Sea. Atmospheric Environment 35(8): 1395-1409.
    69. Song, Y.H., Choi, M.S. (2009). REE geochemistry of fine-grained sediments from major rivers around the Yellow Sea. Chemical Geology 266(3-4): 337-351.
    70. Sonke, J.E. (2006). Lanthanide-humic substances complexation. II. Calibration of humic ion-binding model V. Environmental Science & Technology 40(24): 7481-7487.
    71. Sonke, J.E., Salters, V.J.M. (2006). Lanthanide-humic substances complexation. I. Experimental evidence for a lanthanide contraction effect. Geochimica Et Cosmochimica Acta 70(6): 1495-1506.
    72. Srinivasa, R.M., Basha, S., Joshi, H.V., Ramachandraiah, G. (2005). Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay, India. Chemosphere 61(11): 1587-1593.
    73. Stoffynegli, P., Mackenzie, F.T. (1984). Mass balance of dissolved lithium in the oceans. Geochimica Et Cosmochimica Acta 48(4): 859-872.
    74. Takahashi, Y., Shimizu, H., Kagi, H., Yoshida, H., Usui, A., Nomura, M. (2000). A new method for the determination of Ce-III/Ce-IV ratios in geological materials; application for weathering, sedimentary and diagenetic processes. Earth and Planetary Science Letters 182(3-4): 201-207.
    75. Tang, J. W., Johannesson, K.H. (2006). Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas, USA. Chemical Geology 225(1-2): 156-171.
    76. Taylor, M.P. (2007). Distribution and storage of sediment-associated heavy metals downstream of the remediated Rum Jungle Mine on the East Branch of the Finniss River, Northern Territory, Australia. Journal of Geochemical Exploration 92(1): 55-72.
    77. Tessier, A., Campbell, P.G.C., Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7): 844-851.
    78. Tiepolo, M., Vannucci, R., Oberti, R., Foley, S., Bottazzi, P., Zanetti, A. (2000). Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal chemicalconstraints and implications for natural systems. Earth and Planetary Science Letters 176(2): 185-201.
    79. Turekian, K.K. (1964). The marine geochemistry of strontium. Geochimica Et Cosmochimica Acta 28(SEP): 1479-1496.
    80. Turner, A. (1996). Trace-metal partitioning in estuaries: Importance of salinity and particle concentration. Marine Chemistry 54(1-2): 27-39.
    81. Van Alsenoy, V., Bernard, P., Van Grieken, R. (1993). Elemental concentrations and heavy metal pollution in sediments and suspended matter from the Belgian North Sea and the Scheldt estuary. The Science of The Total Environment 133(1-2): 153-181.
    82. Wade, J., Wood, B.J. (2001). The Earth's 'missing' niobium may be in the core. Nature 409(6816): 75-78.
    83. Wang, C.Y., Wang, X.L. (2007). Spatial distribution of dissolved Pb, Hg, Cd, Cu and As in the Bohai Sea. Journal of Environmental Sciences 19(9): 1061-1066.
    84. Wang, J.T. (1991). REE geochemistry of surficial sediments from the Yellow sea of China. Chinese Journal of Geochemistry 10(4): 88-98.
    85. Wang, L.J., Zhang, C.S., Liang, T., Li, G.S. (2001). Geochemical characteristics of rare earth elements in intertidalite of Tianjin. Journal of the Chinese Rare Earth Society 19(5): 456-460.
    86. Wang, Z.L., Liu, C.Q. (2008). Geochemistry of rare earth elements in the dissolved, acid-soluble and residual phases in surface waters of the Changjiang Estuary. Journal of Oceanography 64(3): 407-416.
    87. Wang, Z.L., Liu, C.Q. (2003). Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary, eastern China. Chemical Geology 202(3-4): 383-396.
    88. Yan, X.P., Kerrich, R., Hendry, M.J. (1999). Sequential leachates of multiple grain size fractions from a clay-rich till, Saskatchewan, Canada: implications for controls on the rare earth element geochemistry of porewaters in an aquitard. Chemical Geology 158(1-2): 53-79.
    89. Yang, S.Y., Lim, D.I., Jung, H.S., Oh, B.C. (2004). Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea. Marine Geology 206(1-4): 41-53.
    90. Yuan, C.G., Shi, J.B., He, B., Liu, J.F., Liang, L.N., Jiang, G.B. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International 30(6): 769-783.
    91. Zhang, C.S., Wang, L.J., Zhang, S., Li, X.X. (1998). Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Applied Geochemistry 13(4): 451-462.
    92. Zhang, C.S., Wang, L.J., Li, G.S., Dong, S.S., Yang, J.R., Wang, X.L. (2002). Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Applied Geochemistry 17(1): 59-68.
    93. Zhang, J., Huang, W.W., Liu, S.M., Liu, M.G., Yu, Q. (1992). Transport of particulate heavy metals towards the China Sea: a preliminary study and comparison. Marine Chemistry 40(3-4): 161-178.
    94. Zhang, J., Liu, C.Q. (2004). Major and rare earth elements in rainwaters from Japan and East China Sea: Natural and anthropogenic sources. Chemical Geology 209(3-4): 315-326.
    95. Zhang, L.B., Chan, L.H., Gieskes, J.M. (1998). Lithium isotope geochemistry of pore watersfrom Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochimica Et Cosmochimica Acta 62(14): 2437-2450.
    96. Zhang, X.C., Nearing, M.A., Polyakov, V.O., Friedrich, J.M. (2003). Using rare-earth oxide tracers for studying soil erosion dynamics. Soil Science Society of America Journal 67(1): 279-288.
    97. Zhu, J.G., Xing, G.X. (1992). Forms of rare earth elements in soils: differentiation of rare earth elements. Pedosphere 2(3): 193-200.
    98. .Rainbow, P.S (1992).海洋生物对重金属的积累及意义.海洋环境科学11(1): 44-52.
    99.王文雄,潘进芬(2004).重金属在海洋食物链中的传递.生态学报24(3): 600-605.
    100.王修林,李克强(2006).渤海主要化学污染物海洋环境容量.北京,科学出版社.
    101.王菊英,马德毅,鲍永思,刘广远,刘娟(2003).黄海和东海海域沉积物的环境质量评价.海洋环境科学22(4): 21-24.
    102.王新兰(2001).运用环境模糊系统理论对东、南海近岸海域水质污染状况的分析.大连轻工业学院学报20(1): 24-26.
    103.王继刚(2006).渤海典型海域沉积物重金属Cu2+、Pb2+释放的研究.青岛,中国海洋大学,博士学位论文.
    104.王贵,张丽洁(2002).海湾河口沉积物重金属分布特征及形态研究.海洋地质动态
    18(12): 1-5.
    105.田正隆,陈绍勇,龙爱民(2004).以Ba为指标反演海洋古生产力的研究进展热带海洋学报23(3): 78-86.
    106.申冠卿,张晓华,李勇,尚红霞,潘贤娣(2000). 1986年以来黄河下游水沙变化及河道演变分析人民黄河22(9): 10-11(16).
    107.申洪源,贾玉连,李徐生,吴敬禄,魏灵,王朋岭(2006).内蒙古黄旗海不同粒级湖泊沉积物Rb、Sr组成与环境变化.地理学报61(11): 1208-1217.
    108.同济大学海洋地质系(1980).海陆相地层辨认标志.北京,科学出版社.
    109.向梅华(2007).北京市东南郊原污灌区土壤重金属污染评价及生物有效性分析.中国地质大学硕士学位论文.
    110.朱兆洲(2006).长江上、下游湖泊中稀土元素地球化学及环境效应研究.广州,中国科学院地球化学研究所,博士学位论文.
    111.朱赖民,杜俊民,张远辉,许江(2006).南黄海中部E2柱状样沉积物来源的稀土元素及微量元素示踪.环境科学学报26(3): 495-500.
    112.何公理(1996).稀土元素与健康研究新进展.国外医学医疗地理分册17(2): 49-51(54).
    113.何起祥(2006).中国海洋沉积地质学.北京,海洋出版社.
    114.何雪琴,温伟英,张观希,郑庆华,杜完成(2001).大亚湾底栖生物重金属现状与评价.河海大学学报29(3): 103-106.
    115.何蔓(2004).等离子体质谱(ICP-MS)痕量稀土成份及形态分析研究.武汉,武汉大学,博士学位论文.
    116.宋金明(1990).天然环境中元素的存在形式和形态海洋环境科学9(2): 46-55.
    117.宋金明,郭建波(1997).东海沉积物间隙水中K, Na, Ca,Mg硅酸盐的热力学平衡.海洋科学1: 48-52.
    118.李玉,俞志明,宋秀贤(2006).运用主成分分析(PCA)评价海洋沉积物中重金属污染来源.环境科学27(1): 137-141.
    119.李俊云,李红春,刘子琦,袁道先,何潇,王若梅(2006).贵州中西部洞穴水系与碳酸钙沉积物的Mg/Sr比值和地球化学特征.中国岩溶25(3): 177-186.
    120.李桂海(2007).厦门海域现代沉积环境及重金属元素的环境地球化学研究.厦门,厦门大学,博士学位论文.
    121.李桂海,曹志敏,蓝东兆,许江,王珊珊(2006).厦门海域现代沉积环境与重金属环境地球化学特征.沉积学报24(6): 870-877.
    122.李康(2009).东太平洋海隆13°N附近沉积物中的热液活动记录青岛,中国科学院海洋研究所,硕士学位论文.
    123.李彬,袁道先,林玉石,李红春,覃嘉铭(2000).洞穴次生化学沉积物中Mg、Sr、Ca及其比值的环境指代意义.中国岩溶19(2): 115-122.
    124.李淑媛,刘国贤,杜瑞芝,郝静(1990).渤海湾重金属污染历史.海洋环境科学9(3): 6-16.
    125.沈敏,于红霞,陈校辉(2006).长江江苏段沉积物中重金属与底栖动物调查及生态风险评价.农业环境科学学报25(6): 1616-1619.
    126.阮金山,吴立峰,罗冬莲,许翠娅(2004).泉州大港湾海水、沉积物及水产生物体内重金属的含量分布.海洋通报23(3): 41-45.
    127.周秀艳,王恩德,刘秀云,王武名(2004).辽东湾河口底质重金属环境地球化学.地球化学33(3): 286-290.
    128.孟翊,刘苍字,程江(2003).长江口沉积物重金属元素地球化学特征及其底质环境评价.海洋地质与第四纪地质23(3): 37-43.
    129.季宏兵,王立军,董云社(2004).稀土元素的环境生物地球化学循环研究现状.地理科学进展23(1): 51-61.
    130.屈明剑(2007).东、黄海柱状沉积物和长江口悬浮颗粒物中稀土元素的HR-ICP-MS测定及特征分析.上海,华东师范大学,硕士学位论文.
    131.金章东,张恩楼(2002).湖泊沉积物Rb/Sr比值的古气候含义.科学技术与工程2: 20-22.
    132.南京大学地质学系(1979).地球化学.北京,科学出版社.
    133.段丽萍,许延辉(2003).稀土在环境保护中替代有毒重金属元素的应用.内蒙古石油化工30: 31-32.
    134.胡勤海(2004).外源性稀土对水生态系统的影响研究.环境与资源学院.杭州,浙江大学.博士学位论文.
    135.倪建宇,姚旭莹(2004).古海洋生产力的研究方法.海洋地质动态20(3): 30-39.
    136.倪建宇,潘建明,扈传昱(2006).南海表层沉积物中生物Ba的分布特征及其与初级生产力的关系.地球化学35(6): 615-622.
    137.倪建宇,潘建明,扈传昱,刘小涯(2006).南海表层沉积物中生物钡的分布特征及其与初级生产力的关系.地球化学25(6).
    138.徐仲均,李德成,杨剑虹(2001).磷酸盐对土壤中外源钕交换态及生物有效性的影响.环境科学22(3): 66-69.
    139.海洋地质研究室(1985).渤海地址.北京,科学出版社.
    140.曹红英,梁涛,王立军,丁士明,丁立强,阎欣(2006).近海潮间带水体及沉积物中重金属的含量及分布特征.环境科学27(1): 126-131.
    141.曹维鹏,罗明标,丁建桦,王毛兰(2006).鄱阳湖主要支流底泥中重金属形态研究.华东理工学院学报29(1): 66-73.
    142.郭明新,林玉环(1998).利用微生态系统研究底泥重金属的生物有效性.环境科学学报18(3): 325-330.
    143.彭立才,韩德馨,濮人龙,高嵩(1999).陆相咸化湖泊沉积中锶/钡比值及其地质意义.中国矿业大学学报28(1): 50-52.
    144.雷坤,孟伟,郑丙辉,侯小珉,孙贻超(2007).渤海湾西岸入海径流量和输沙量的变化及其环境效应.环境科学学报27(12): 2052-2059.
    145.魏俊峰,吴大清,彭金莲,刁桂仪(1998).广州城市水体沉积物中重金属形态分布研究.土壤与环境8(1): 10-14.
    146.刘宗平(2005).环境重金属污染物的生物有效性.生态学报25(2): 243-248.
    147.刘英俊等(1984).元素地球化学.北京,科学出版社.
    148.刘峰,王海亭,王德利(2004).莱州湾滨海湿地沉积物重金属的空间分布.海洋科学进展22(4): 486-492.
    149.刘海洋,城志军. (2001).中国近海污染现状分析及对策.环境保护科学106(8): 11-15.
    150.刘素美,张经(1998).沉积物中重金属的归一化问题—以Al为例.东海海洋16(3): 48-55.
    151.刘清,王子键,汤鸿霄(1996).重金属形态与生物毒性及生物有效性关系的研究进展.环境科学17(1): 89-92.
    152.刘普灵,张梅花(1997).外源Ree对生态环境影响研究.水土保持研究4(2): 92-95.
    153.刘锦明(1987).控制污染物入海量问题初探.海洋环境科学(2).
    154.吴丰昌,万国江,蔡玉蓉(1996).沉积物-水界面的生物地球化学作用.地球科学进展11(2): 191-197.
    155.孙立广,谢周清,赵俊琳(2000).南极阿德雷岛湖泊沉积物Sr/Ba与B/Ga比值特征.海洋地质与第四纪地质20(4): 43-46.
    156.张戈,于大涛,袁仲杰,郭丽丽(2009).海水水质评价方法比较分析海洋开发与管理26(10): 102-105.
    157.张俊,孟宪伟,夏鹏(2009).深海沉积物早期成岩过程中的Ba循环及其古海洋环境意义.海洋科学进展27(2): 275-280.
    158.张富元,张霄宇,杨群慧(2005).南海东部海域的沉积作用和物质来源研究.海洋学报27(2): 79-90.
    159.张经(1994).中国河口地球化学的一些研究进展.海洋与湖沼25(4): 438-445.
    160.张辉,马东升(1997).南京地区土壤沉积物中重金属形态研究.环境科学学报17(3): 346-352.
    161.蒋煜峰,袁建梅,卢子扬,王爱萍,陈慧(2005).腐殖酸对污灌土壤中Cu、Cd、Pb、Zn形态影响的研究.西北师范大学学报(自然科学版)41(6): 42-46.
    162.谢先全,晏路明(2002).福建沿岸主要港湾水质的综合评价.台湾海峡21(2): 147-153.
    163.贺志鹏(2008).南黄海重金属的演变特征及控制因素.青岛,中国科学院海洋研究所.博士.
    164.贺志鹏,宋金明,张乃星,徐亚岩,郑国侠,张蓬(2008).南黄海表层海水重金属的变化特征及影响因素.环境科学29(5): 1153-1162.
    165.贺广凯(1996).黄渤海沿岸经济贝类体中重金属残留量水平.中国环境科学16(2): 96-100.
    166.赵一阳,鄢明才(1994).中国浅海沉积物地球化学.北京,科学出版社.
    167.赵振华,熊小林,王强,乔玉楼(2008).铌与钽的某些地球化学问题.地球化学37(4): 304-320.
    168.钱华(2001).厦门湾沉积物元素地球化学的研究.厦门,厦门大学.硕士学位论文.
    169.陈志华,石学法,王相芹(2000).南黄海表层沉积物碳酸盐及Ca、Sr、Ba分布特征.海洋地质与第四纪地质20(4): 9-16.
    170.陈诗越,王苏民,金章东,沈吉(2003).青藏高原中部湖泊沉积物中Zr/Rb值及其环境意义.海洋地质与第四纪地质23(4): 35-37.
    171.陈静生(1987).铜在沉积物各相中分配的实验模拟与数值模拟研究—以鄱阳湖为例.环境科学学报7(2): 140-145.
    172.陈骏,安芷生,汪永进(1998).最近800ka洛川黄土剖面中Rb/Sr分布和古季风变迁.中国科学(D辑) 28(6): 498-504.
    173.韩桂荣,刘玉海(1993).黄河口海区沉积物柱样中碳酸盐组分海洋与湖沼24(5): 456-466.
    174.顾尚义,毛健全,张启厚(2002).广西龙塘蚀变流纹岩风化过程中Ti、Nb、Ta、Zr、Hf、Th的活动性研究.贵州工业大学学报(自然科学版) 31(1): 14-18.
    175.马嘉蕊,邵秘华(1994).锦州湾沉积物芯样中重金属污染及变化动态.中国环境科学14(1): 22-27.
    176.马红波,宋金明,吕晓霞,袁华茂(2003).渤海沉积物中氮的形态及其在循环中的作用.地球化学32(1): 48-54.
    177.黄艺,陈有键,陶澍(2000).菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响.应用生态学报11(3): 431-434.
    178.齐君(2005).胶州湾现代沉积速率与沉积物中重金属的累积分析.青岛,中国科学院海洋研究所,硕士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700