用户名: 密码: 验证码:
含钪钛合金的制备及其相关基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及钛合金作为一种重要的结构材料,从上世纪50年代以来就已成为研究的热点。热点之一就是通过合金化不断开发新的合金体系以提高钛及钛合金室温和高温性能。论文作者采用真空电弧熔炼和真空自耗电极电弧熔炼技术制备了Ti-Sc、Ti-Al-Sc以及Ti-Al-V-Sc系的系列合金,借助光学显微镜、扫描电子显微镜、透射电子显微镜、差热分析仪、X射线衍射仪、显微硬度计以及热模拟实验机等手段,研究了合金化元素Sc对钛及钛合金相转变、相组成、组织演变、高温变形及其机制等物理冶金问题的影响,主要研究内容及结论如下:
     (1)研究了Sc元素的添加对Ti的α→β相转变过程中组织形态、显微硬度、晶格常数的影响,并从热力学角度分析了Sc对Ti的影响。结果表明:添加2wt%Sc显著细化了Ti的铸态显微组织并将显微硬度从190HV_(0.01)提高至308HV_(0.01);随Sc含量增加,合金组织组织形态由块状和针状α(Ti-2Sc和Ti-5Sc)变化为沿β晶界生长的α片层簇组织(Ti-25Sc)以及螺旋状组织(Ti-37Sc);合金的晶格常数a、c和c/a在αTi相区内(<7wt%Sc)随Sc含量的变化而呈线性变化,而在(α-Ti+α-Sc)两相区内(>25wt%Sc)变化不大;Sc降低了Ti的α→β相变温度,是Ti的β稳定化元素。
     (2)研究了Sc对Ti-Al二元合金和Ti-6Al-4V合金的组织形态、相组成和显微硬度的影响。结果表明:Sc显著细化了主要由αTi和Ti_3Al相组成的Ti-6Al和Ti-10Al合金的铸态组织,添加Sc后还有AlSc和Al_3Sc相生成。Sc降低了铸态Ti-6Al和Ti-10Al合金的显微硬度,后者显微硬度高于前者。经β相区、近α+β相区和α相区温度下真空退火后,Ti-6Al合金中Ti_3Al相消失,Ti-3Al-3Sc和Ti-8Al-2Sc合金中Al_3Sc相消失,Ti-10Al合金中有次生Ti_3Al相生成。退火态Ti-Al和Ti-Al-Sc合金的显微硬度均高于铸态时的显微硬度,并且随退火温度升高显微硬度有所增加。添加0.3wt%Sc显著细化了Ti-6Al-4V合金中的α片层组织,对原始β晶粒尺寸影响不大,添加0.5wt%Sc后α片层组织和原始β晶粒均得到细化,等轴状α相的体积分数减少,片层状α相的体积分数增加,Sc提高了片层α相的显微硬度,合金在锻造过程中因内氧化而生成弥散分布的Sc_2O_3颗粒。
     (3)研究了Ti-6Al-4V、Ti-6Al-4V-0.3wt%Sc和Ti-6Al-4V-0.5wt%Sc合金高温压缩变形的特点。合金的流变应力随变形温度升高和应变速率降低而减小,850℃下,合金的流变应力升至峰值后呈现动态软化特征。当温度升高至850℃以上时,合金的流变形应力升至峰值后呈现稳态流变特征,并且部分变形条件下呈现应变硬化特征。在(?)=1s~(-1)/850℃、(?)=0.1s~(-1)/850℃和(?)=1s~(-1)/1050℃变形条件下,Sc明显提高了合金的峰值应力。以Sellars和Tegart提出的包含变形激活能Q和温度T的双曲正弦形式本构模型为基础,求得了合金高温变形的材料常数,并建立了合金高温变形流变应力本构方程。Ti-6Al-4V、Ti-6Al-4V-0.3Sc和Ti-6Al-4V-0.5Sc合金的激活能在β相区分别为134.014kJ/mol、121.643kJ/mol和101.367kJ/mol,在α+β两相区分别为670.474kJ/mol、542.273kJ/mol和679.783kJ/mol。合金高温变形的局部化流变参数φ值受应变速率的影响较大,温度一定时,随应变速率增加而减小,β相区的φ值小于α+β两相区的φ值,Sc含量对φ值的影响不大。
     (4)基于热加工图的基本原理,采用Ti-6Al-4V、Ti-6Al-4V-0.3Sc和Ti-6Al-4V-0.5Sc合金的高温压缩实验数据分别绘制了合金在应变为0.05、0.2、0.4和0.6时的热加工图,讨论了合金的变形稳定性。在四种真应变条件下,合金在低温和高温下共有2~3个流变失稳区域出现,失稳区域的范围随真应变和Sc含量的增加而变大,主要是应变速率范围的增大。在部分失稳条件下的样品中观察到了绝热剪切带、局部化流变、压缩试样表面开裂等失稳现象。Ti-6Al-4V合金的峰值功率耗散效率随Sc含量的增加而降低,即在合金变形初始态显微组织由等轴状向针状变化时,峰值功率耗散效率降低。三合金在较宽的变形条件范围内均具备动态再结晶发生的条件。
     (5)利用光学金相和透射电子显微分析研究了Sc(0.3wt%,0.5wt%)对Ti-6Al-4V合金在β相区和α+β相区变形机制的影响。在β单相区变形时,合金在低应变速率下发生自扩散控制的大晶粒超塑性变形,原始β晶粒清晰可见,β相转变为针状α马氏体相;高应变速率下试样边部发生再结晶,内部晶粒由于变形被拉长,添加Sc使再结晶出现时的应变速率减小,此时再结晶为静态再结晶;添加Sc使低应变速率变形后原始β晶粒尺寸有所减小,对高应变速率变形后的晶粒尺寸没有太大影响。合金在α+β两相区变形时,不管在高应变速率还是在低应变速率下,α相均发生了动态再结晶;Ti-6Al-4V合金出现绝热剪切带,再结晶晶粒呈等轴状态,合金试样内部晶粒受变形被拉长;添加Sc后使动态再结晶更为明显,并且再结晶晶粒尺寸较大,没有明显的绝热剪切带出现,仅在合金试样内部有局部化流变带产生。合金变形组织的不均匀性随变形温度的升高而变小,变形过程中的绝热温升不是影响组织不均匀性的主要因素。在850℃/0.1s~(-1)变形条件下,添加Sc后Ti-6Al-4V合金的变形组织出现孪晶特征的层片状α相、晶界处的位错塞积、等轴α晶粒内部的位错消失以及细小弥散析出相等,这也正是在低温高应变速率变形条件下Sc提高合金峰值应力的原因。
As important structural materials,titanium and its alloys had attracted much attention and remained long time hot topics since 1950s.One way to solve problems such as low room temperature plasticity,poor high temperature strength and service temperature is to develop new alloying system with better properties.In this paper,the alloys of Ti-Sc,Ti-Al-Sc and Ti-Al-V-Sc systems were prepared by vacuum arc melting and vacuum self consumable arc melting techniques.The influence of Sc on phase transformation,phase component,microstructure evolution and high temperature plastic deformation and its mechanism of titanium and titanium alloys were investigated by optical microscope,scanning electron microscope,transmission electron microscope,differential scanning calorimeter,X-ray diffraction instrument, microhardness tester and thermal simulation machine.The main contents and conclusions are as followings:
     (1) The influence of Sc on phase transformation,microstructure,microhardness and lattice constant of pure Ti showed that,the addition of 2wt%Sc markedly refined the microstructure of as-cast pure Ti and improved its microhardness from about 190HV_(0.01) to 308 HV_(0.01).With the increase of Sc content,the microstructures of alloys changed from bulk and acicularαphase(Ti-2Sc and Ti-5Sc) toαcolony along priorβgrain boundary(Ti-25Sc) and spiral helicine grains(Ti-37Sc).The lattice constants ofα,c and c/a values change with Sc content inαTi(<7wt%Sc) phase region,but remain constant in(αTi+αSc)(>25wt%Sc) two-phase region with little difference.The addition of Sc lowered the temperature ofα→βphase transformation, T_(α/β),furthermore,based on thermodynamic analysis Sc was functioned as aβ-phase stabilizer.
     (2) The influence of Sc on phase component,microstructure evolution and mcirohardness of Ti-Al binary alloys and Ti-6Al-4V alloy were investigated.Sc helped to refine as-cast microstructure remarkably of Ti-6Al and Ti-10Al alloys,the phase component of as-cast Ti-Al binary alloys was mainlyαTi and Ti_3Al,AlSc and Al_3Sc phases appeared in the alloys after the addition of Sc.After vacuum annealing inβphase region,nearα+βphase region andαphase region,Ti_3Al phase disappeared in Ti-6Al alloy,Al_3Sc phase disappeared in Ti-3Al-3Sc and Ti-8Al-2Sc alloy, secondary Ti_3Al phase formed in Ti-10Al alloy.The microhardness of annealed Ti-Al and Ti-Al-Sc alloys were higher than that of as-cast alloys and increased with annealing temperature.The addition of 0.3wt%Sc refinedαcolony and had little effect on size of priorβgrain of Ti-6Al-4V alloy,however,the addition of 0.5wt%Sc not only refinedαcolony but also priorβgrain.Sc improved the microhardness of lamellarαphase and had little effect on the microhardness of bulkαphase.During the forging process of Ti-6Al-4V alloy,Sc formed oxide Sc_2O_3 due to the internal oxidation.After forging,the volume fraction of equiaxedαdecreased and lamellarαphase increased respectively with the increase of Sc content.
     (3) The high temperature deformation characteristics of Ti-6Al-4V, Ti-6Al-4V-0.3wt%Sc and Ti-6Al-4V-0.5wt%Sc alloy were investigated.Flow stress of alloys decreased with the increase of deformation temperature and the decrease of strain rate.Deformed at 850℃,the flow stress showed soften feature after peak state. With the increase of deformation temperature,the flow stress rapidly arrive peak followed by a steady state,some cases appeared strain hardening.The addition of Sc improved the peak stress value of Ti-6Al-4V alloy under the deformation conditions of(?)=1s~(-1)/850℃,(?)=0.1~s~(-1)/850℃and(?)=1s~(-1)/1050℃.On the basis of hyperbolic sine constitutive model containing activation energy Q and temperature T proposed by Sellars and Tegart,the materials constant and flow stress constitutive equations of high temperature deformation were obtained.The deformation activation energy of Ti-6Al-4V,Ti-6Al-4V-0.3Sc and Ti-6Al-4V-0.5Sc alloys inβphase region were 134.014kJ/mol,121.643kJ/mol and 101.367kJ/mol respectively,inα+βphase region were 670.474kJ/mol,542.273kJ/mol and 679.783kJ/mol.When the deformation temperature was determined,the flow localization parameterφwhich depended on strain rate decreased with the strain rate.The parameterφvalues inβphase region were higher than that inα+βphase region,Sc content had little effect on parameterφ.
     (4) Based on the principle of thermal processing map,high temperature compressed deformation datas were used to obtain the processing map of Ti-6Al-4V, Ti-6Al-4V-0.3Sc and Ti-6Al-4V-0.5Sc alloys under the true stain of 0.05,0.2,0.4 and 0.6,depending on the maps the deformation stability of alloys was discussed.At four true strains,there were two or three instable regions in high and low temperature range.The range of instable regions enlarged with the increase of true strain and Sc content,especially of strain rate range.Under some instable conditions,adiabatic shear band.flow localization and cracks on the surface were observed in compressed samples.The peak power dissipation efficiency of alloys decreased with the Sc content.The peak power dissipation efficiency of equiaxed microstructure was higher than that of acicular microstructure.The alloys had dynamic recrystallization condition in a large range of deformation conditions.
     (5) The influence of Sc on deformation mechanism of Ti-6Al-4V alloy was studied by optical microscope and transmission electron microscope.Inβphase region,large grain superplasticity deformation controlled by self-diffusion happened at low strain rates,the priorβgrain boundary was clear andβphase transformed to acicular martensiteαphase;the static recrystallization appeared at edge part of deformed samples and prior grains were prolonged under the compressed pressure.The addition of Sc lowered the strain rate at which recrystallization can happen,and refined priorβgrain after low strain rate deformation,but had little effect on the size of priorβgrain after high strain rate deformation.Inα+βphase region,dynamic recrystallization happened inαphase under low and high strain rate deformation;adiabatic shear band appeared in Ti-6Al-4V alloy with equiaxed recrystallized and prolonged grains;after the addition of Sc to Ti-6Al-4V alloy,the dynamic recrystallization was more obvious and has larger grain size.There was no evident adiabatic shear band in alloy with Sc, only flow localization appeared.The deformation microstructure of alloy was more homogeneous at higher temperature,and the adiabatic temperature rise was not the main reason for inhomogeneous microstructure.Under the deformation conditions of low temperature and high strain rate,the addition of Sc improved the peak stress value of Ti-6Al-4V alloy,the transmission electron microscope observation show the mechanism,such as lamellarαphase showing twinning characteristic,dislocation pile up near the grain boundary,dislocation disappeared inside equiaxed grains and fine precipitations.
引文
[1]刘静安,吴煌良等.钛合金手册[M].重庆:科学技术文献出版社重庆分社,1982:3
    [2]赵永庆.高温钛合金研究.钛工业进展[J],2001(1):33-39
    [3]李成功,傅恒志,于翘.航空航天材料[M].北京:国防工业出版社,2002:41
    [4]张钧,李东.高温钛合金中的α2相[M].沈阳:东北大学出版社,2002:1
    [5]汪贻水,王志雄,沈建忠.六十四种有色金属[M].长沙:中南工业大学出版社,1988:207
    [6]王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社,1985
    [7]叶大伦,胡建华.实用无机物热力学数据手册[M].冶金工业出版社.第2版,北京,2002:1026
    [8]易宪武,黄春辉,王慰等.钪稀土元素[M].北京:科学出版社,1998:26
    [9]潘道皑,赵成大,郑载兴.物质结构[M].北京:高等教育出版社,1989:622
    [10]胡赓祥,钱苗根.金属学[M].上海:上海科学技术出版社,1980:32-33
    [11]V.G.Davydov,T.G.Rostova,V.V.Zakharov et al.Scientific principles of making an alloying addition of scandium to aluminium alloys[J].Materials Science and Engineering A,280(2000):30-36
    [12]C.B.Fuller,A.R.Krause,D.C.Dunand et al.Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions[J].Materials Science and Engineering A,338(2002):8-16
    [13]K.L.Kending,D.B.Miracle.Strengthening mechanisms of an Al-Mg-Sc-Zr alloy[J].Acta Materialia,50(2002):4165-4175
    [14]张德尧.Al-Zn-Mg-Sc系热强可焊铝合金[J].稀有金属快报,2001(1):11-14
    [15]余琨,李松瑞等.微量Sc和Zr对2618铝合金再结晶行为的影响[J].中国有色金属学报,1999,9(4):709-713
    [16]Z.M Yin,Q.L.Pan and Y.H.Zhang et al.Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys[J].Materials Science and Engineering A.280(2000):151-155
    [17]K.L.Kending,D.B.Miracle.Strengthening mechanisms of an Al-Mg-Sc-Zr alloy[J].Acta Materialia,50(2002):4165-4175
    [18] V.G. Davydov, T.D. Rostova and V.V. Zakharov et al. Scientific principles of making an alloying addition of scandium to aluminium alloys[J]. Materials Science and Engineering A, 280(2000): 30-36
    [19] V. Ocenasek, M. Slamova. Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys[J]. Materials Characterization, 47(2001): 157-162
    [20] D.W. Suh, S.Y. Lee and K.H. Lee et al. Microstructural evolution of Al-Zn-Mg-Cu-(Sc) alloy during hot extrusion and heat treatments [J]. Journal of Materials Processing Technology, 155-156(2004): 1330-1336
    [21] T. Aiura, N. Sugawara and Y. Miura. The effect of scandium on the as-homogenized microstructure of 5083 alloy for extrusion[J]. Materials Science and Engineering A, 280(2000): 139-145
    [22] P.N. Raju, K.S. Rao and G.M. Reddy et al. Microstructure and high temperature stability of age hardenable AA2219 aluminium alloy modified by Sc, Mg and Zr additions[J]. Materials Science and Engineering A, 464(2007): 192-201
    [23] M.J. Jones, F.J. Humphreys. Interaction of recrystallization and precipitation: The effect of Al_3 Sc on the recrystallization behaviour of deformed aluminium[J]. Acta Materialia, 51(2003): 2149-2159
    [24] Y.A. Filatov, V.I. Yelagin and V.V. Zakharov. New Al-Mg-Sc alloy[J]. Materials Science and Engineering A, 280(2000): 97-101
    [25] D.N. Seidman, E.A. Marquis and D.C. Dunand. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys[J]. Acta Materialia, 50(2002): 4021-4035
    [26] S. Lee, A. Utsunomiya and H. Akamatsu et al. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys[J]. Acta Materialia, 50(2002): 553-564
    [27] K.T. Park, D.Y. Hwang and Y.K. Lee et al. High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation[J]. Materials Science and Engineering A, 341(2003): 273-281
    [28] M.F. Savage, J. Tatalovich and M. Zupan et al. Deformation mechanisms and microtensile behavior of single colony Ti-6242Si[J]. Materials Science and Engineering A, 319-321(2001): 398-403
    [29] X.D. Zhang, D.J. Evans and W.A. Baeslack et al. Effect of long term aging on the microstructure on the microstructural stability and mechanical properties of Ti-6Al-2Cr-2Mo-2Sn-2Zr alloy[J]. Materials Science and Engineering A, 344(2003): 300-311
    [30] X.D. Zhang, P. Bonniwell and H.L. Fraser et al. Effect of heat treatment and silicon addition on the microstructure development of Ti-6Al-2Cr-2Mo-2Sn-2Zr alloy[J]. Materials Science and Engineering A, 343(2003): 210-226
    [31] D.J. Evans, T.F. Broderick and J.B. Woodhouse et al. The role of intermetallic precipitates in Ti-62222S[J]. Materials Science and Engineering A, 213(1996): 37-44
    [32] A. Madsen and H. Ghonem. Effects of aging on the tensile and fatigue behavior of the near-alpha Ti-1100 at room temperature and 593°C[J]. Materials Science and Engineering A, 177(1994): 63-73
    [33] W.W. Cheng, J.H. Chern Lin and C.P. Ju. Bismuth effect on castability and mechanical properties of Ti-6A1-4V alloy cast in copper mold[J]. Materials Letters, 57(2003): 2591-2596
    [34] Y.L. Hao, S.J. Li and S.Y. Sun et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J]. Materials Science and Engineering A, 441(2006): 112-118
    [35] Y.H. Hon, J.Y. Wang and Y.N. Pan. Influence of hafnium content on mechanical behaviors of Ti-40Nb-χHf alloys[J]. Materials Letters, 58(2004): 3182-3186
    [36] H.Y. Kim, S. Hashimoto and J.I. Kim et al. Effect of Ta addition on shape memory behavior of Ti-22Nb alloy [J]. Materials Science and Engineering A, 417(2006): 120-128
    [37] X.H. Min, S. Emura and L. Zhang et al. Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys[J]. Materials Science and Engineering A, article in press, 2008
    [38] H. Mishra, D.V.V. Satyanarayana and T.K. Nandy et al. Effect of trace impurities on the creep behavior of a near a titanium alloy[J]. Scripta Materialia, 59(2008): 591-594
    [39] Y.G. Jin, J.N. Wang and Y. Wang et al. Effect of Mn on formation of lamellar structure in a γ-TiAl alloy[J]. Materials Letters, 58(2004): 3756-3760
    [40] E. Hamzah, M. Kanniah and M. Harun. Effect of chromium addition on microstructure and creep strength of as-cast Ti-48Al alloy[J]. Materials Science and Engineering A, 483-484(2008): 555-559
    [41] O.N. Senkov, F.H. Froes. Thermohydrogen processing of titanium alloys[J]. International Journal of Hydrogen Energy, 24(1999): 565-576
    [42] A.L. Suarez, J.Rickards and R.T. Luna. Mechanical and microstmctural changes of Ti and Ti-6Al-4V alloy induced by the absorption and desorption of hydrogen[J]. Journal of Alloys and Compounds, 457(2008): 216-220
    [43] D.B. Shan, Y.Y. Zong and T.F. Lu et al. Microstmctural evolution and formation mechanism of FCC titanium hydride in Ti-6Al-4V-xH alloys[J]. Journal of Alloys and Compounds, 427(2007): 229-234
    [44] A. Guitar, G. Vigna and M.I. Luppo. Microstmctural and tensile properties after thermohydrogen processing of Ti-6Al-4V[J]. Journal of the mechanical behavior of biomedical materials, article in press, 2008
    [45] E.J. Guo, D.R. Liu and L.P. Wang et al. Modeling of microstructure refinement in Ti-6Al-4V alloy by hydrogen treatment[J]. Materials Science and Engineering A, 472(2008): 281-292
    [46] D.B. Shan, Y.Y. Zong and Y. Lv et al. The effect of hydrogen on the strengthening and softening of Ti-6Al-4V alloy[J]. Scripta Materialia, 58(2008): 449-452
    [47] E.T. Gutelmacher, D. Eliezer and D. Eylon. The effects of low fugacity hydrogen in duplex- and beta-annealed Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 381(2004): 230-236
    [48] M.A. Murzinova, M.I. Mazurski and G.A. Salishchev et al. Application of reversible hydrogen alloying for formation of submicrocrystalline structure in α+β titanium alloys[J]. International Journal of Hydrogen Energy, 22(1997): 201-204
    [49] Y.Y. Zong, D.B. Shan and Y. Lv et al. Effect of 0.3wt%H addition on the high temperature deofrmation behaviors of Ti-6Al-4V alloys[J]. International Journal of Hydrogen Energy, 32(2007): 3969-3940
    [50] D. Hardie, S. Ouyang. Effect of hydrogen and strain rate upon the ductility of mill-annealed Ti6Al4V[J]. Corrosion Science, 41(1999): 155-177
    [51] S.Q. Zhang, L.R. Zhao. Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, 218(1995): 233-236
    [52] M.Q. Li, W.F. Zhang. Effect of hydrogenation content on high temperature deformation behavior of Ti-6Al-4V alloy in isothermal compression[J]. International Journal of Hydrogen Energy, 33(2008): 2714-2720
    [53] C.T. Liu, T.I. Wu and J.K. Wu. Formation of nanocrystalline structure of Ti-6Al-4V alloy by cyclic hydrogenation-dehydrogenation treatment[J]. Materials Chemistry and Physics, 110(2008): 440-444
    [54] M.Q. Li, Y.Y. Lin. Grain refinement in near alpha Ti60 titanium alloy by the thermohydrogenation treatment[J]. International Journal of Hydrogen Energy, 32(2007): 626-629
    [55] Y.X. Chen, X.J. Wan and F. Li et al. The behavior of hydrogen in high temperature titanium alloy Ti-60[J]. Materials Science and Engineering A, 466(2007): 156-159
    [56] Y.Z. Liu, S.Y. Qiu and P. Kang et al. Effects of hydrogen on the mechanical properties of Ti-Al-Zr alloy[J]. Journal of Alloys and Compounds, 384(2004): 145-151
    [57] S.J. Gao and L.J. Huang. Hydrogen absorption and desorption by Ti, Ti-5Cr and Ti-5Ni alloys[J]. Journal of Alloys and Compounds, 293-295(1999): 412-416
    [58] A.M. Alvarez, I.M. Robertson and H.K. Birnbaum. Hydrogen embrittlement of a metastable P-titanium alloy[J]. Acta Materialia, 52(2004): 4161-4175
    [59] D. Eliezer, E.T. Gutelmacher and C.E. Cross et al. Hydrogen trapping in β-21S titanium alloy [J]. Materials Science and Engineering A, 421(2006): 200-207
    [60] G. Itoh, M. Kanno and N. Niwa. Mechanical properties of a Ti-15V-3Cr-3Sn-3Al alloy affected by the impurity hydrogen[J]. Materials Science and Engineering A, 213(1996): 93-97
    [61] R.H. Rusli. Role of hydrogen environment induced hydrogen embrittlement of Ti-8Al-1Mo-2V alloy[J]. Materials Science and Engineering A, 494(2008): 143-146
    [62] K.R. Morasch and D.F. Bahr. The effects of hydrogen on deformation and cross slip in a BCC tianium alloy[J]. Scripta Materialia, 45(2001): 839-845
    [63] D.F. Teter, I.M. Robertson and H.K. Birnbaum. The effects of hydrogen on the deformation and fracture of p-titanium[J]. Acta mater, 49(2001): 4313-4323
    [64] S. Tamirisakandala, R.B. Bhat and D.B. Miracle et al. Effect of boron on the beta transus of Ti-6A1-4V alloy[J]. Scripta Materialia, 53(2005): 217-222
    [65] I. Sen, S. Tamirisakandala and D.B. Miracle et al. Microstructural effects on the mechanical behavior of B-modified Ti-6A1-4V alloys[J]. Acta Materialia, 55(2007): 4983-4993
    [66] S. Tamirisakandala, R.B. Bhat and J.S. Tiley et al. Grain refinement of cast titanium alloys via trace boron addition[J]. Scripta Materialia, 53(2005): 1421-1426
    [67] J. Zhu, A. Kamiya and T. Yamada et al. Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys [J]. Materials Science and Engineering A, 339(2003): 53-62
    [68] R. Srinivasan, D. Miracle and S. Tamirisakandala. Direct rolling of as-cast Ti-6Al-4V modified with trace additions of boron[J]. Materials Science and Engineering A, 487(2008): 541-551
    [69] W. Chen and C.J. Boehlert. The elevated-temperature fatigue behavior of boron-modified Ti-6Al-4V(wt.%) castings[J]. Materials Science and Engineering A, 494(2008): 132-138
    [70] L.V.L. Luzgina, D.V.L. Luzgin and A. Inoue. Effect of B addition to hypereutectic Ti-based alloys[J]. Journal of Alloys and Compounds, article in press, 2008
    [71] F. Tang, S. Nakazawa and M. Hagiwara. Effect of boron microalloying on microstructure, tensile properties and creep behavior of Ti-22Al-20Nb-2W alloy[J]. Materials Science and Engineering A, 315(2001): 147-152
    [72] T. Ando, K. Nakashima and T. Tsuchiyama et al. Microstructure and mechanical properties of a high nitrogen titanium alloy[J]. Materials Science and Engineering A, 486(2008): 228-234
    [73] T. Furuhara, S. Annaka and Y. Tomio et al. Superelasticity in Ti-10V-2Fe-3Al alloys with nitrogen addition [J]. Materials Science and Engineering A, 438-440(2006): 825-829
    [74] C. Ouchi, H. Iizumi and S. Mitao. Effects of ultra-high purification and addition of interstitial elements on properties of pure titanium and titanium alloy [J]. Materials Science and Engineering A, 243(1998): 186-195
    [75] Y.G. Li, P.A. Blenkinsop and M.H. Loretto et al. Effect of carbon and oxygen on microstructure and mechanical properties of Ti-25V-15Cr-2Al (WT%) alloys[J]. Acta mater., 47(1999): 2889-2905
    [76] I. Gurrappa, D. Manova and J.W." Gerlach et al. Influence of nitrogen implantation on the high temperature oxidation of titanium-based alloys[J]. Surface and Coatings Technology, 201(2006): 3536-3546
    [77] P. Perez. Influence of nitriding on the oxidation behaviour of titanium alloys at 700°C[J]. Surface and Coatings Technology, 191(2005): 293-302
    [78]T.S.Kim,Y.G.Park and M.Y.Wey.Characterization of Ti-6Al-4V alloy modified by plasma carburizing process[J].Materials Science and Engineering A,361(2003):275-280
    [79]N.Tsuji,S.Tanaka and T.Takasugi.Evaluation of surface-modified Ti-6Al-4V alloy by combination of plasma-carburizing and deep-rolling[J].Materials Science and Engineering A,488(2008):139-145
    [80]Y.Itoh,A.Itoh and H.Azuma et al.Improving the tribological properties of Ti-6Al-4V alloy by nitrogen-ion implantation[J].Surface and Coatings Technology,111(1999):172-176
    [81]D.Rodriguez,F.J.Gil and J.A.Planell.Wear Resistance of the nitrogen diffusion hardening of the Ti-6Al-4V alloy[J].11~(th) conference of the ESB,July 8-11,1998,Toulouse,France
    [82]A.F.Yetim,A.Alsaran and I.Efeoglu et al.A comparative study:The effect of surface treatments on the tribological properties of Ti-6Al-4V alloy[J].Surface and Coatings Technology,202(2008):2428-2432
    [83]S.M.L.Sastry,P.J.Meschter,and J.E.O'NEAL.Structure and properties of rapidly solidified dispersion-strengthened titanium alloys:Part Ⅰ.Characterization of dispersoid distribution,structure,and chemistry[J].Metallurgical Transaction A,15(1984):1451 - 1463
    [84]S.M.L.Sastry,T.C.Peng,and L.P.Beckerman.Structure and properties of rapidly solidified dispersion strengthened titanium alloys:Part Ⅱ.Tensile and creep properties[J].Metallurgical Transactions A,15(1984):1465-1474
    [85]M.F.X.GiGliotti and A.P.Woodfield.The roles of rare earth dispersoids and process route on the low cycle fatigue behavior of a rapidly solidified powder metallurgy titanium alloy[J].Metallurgical Transaction A,24(1993):1761-1771
    [86]孙福生,曹春晓.一种含Nd耐热钛合金强化机制的研究[J].金属学报,1994年1月第30卷第1期:11-19
    [87]A.Gil,B.Rajchel and N.Zheng.The influence of implanted chromium and yttrium on the oxidation behavior of TiAl-based intermetallics[J].Journal of Materials Science,30(1995):5793-5798
    [88]刘羽寅,李阁平,李东等.高温钛合金中稀土相的热稳定性[J].中国稀土学报,1998年6月第16卷第2期:162-165
    [89]崔文芳,周廉,罗国珍等.钇对Ti-1100高温钛合金热稳定性和蠕变行为的影响[J].中国稀土学报,1998年9月第16卷第3期:237-241
    [90]W.F.Cui,C.M.Liu and L.Zhou et al.Characteristics of microstructure and second-phase particles in Y-bearing Ti-1100 alloy[J].Materials Science and Engineering A,323(2002):192-197
    [91]张振祺,洪权,杨冠军等.Ti600高温钛合金蠕变前后的组织变化[J].材料工程,2000年10期:18-21
    [92]李阁平,李东,刘羽寅等.稀土相对Ti-5.6Al-4.8Sn-2Zr-1Mo-0.32Si-1Nd钛合金晶粒长大的阻碍作用[J].中国稀土学报,2000年12月第18卷第4期:341-343
    [93]李阁平,李东,胡壮麒.Ti-5.3Al-4.2Sn-2Zr-1Mo-0.25Si-1Nd高温钛合金的稀土相析出[J].科学能报,1995年4月第40卷第7期:664-665
    [94]刘会群,易丹青,肖来荣等.铸态Ti-Sc二元合金的组织特征、相结构和显微硬度[J].中国有色金属学报,2005年3月第15卷第3期:404-409
    [95]刘会群,易丹青,卢斌等.Sc对Ti-Al二元合金组织与显微硬度的影响[J].金属热处理,2004年第29卷第8期:16-21
    [96]刘会群,易丹青,魏鎏英等.金属Sc对Ti-6Al-4V合金组织演变与性能的影响[J].中南大学学报(自然科学版),2005年3月第36卷第3期:380-385
    [97]H.Q.Liu,D.Q.Yi and F.Zheng.The influence of Sc on α/β transformation of Ti[J].Materials Science and Engineering A,487(2008):58-63
    [98]LIU Hui-qun(刘会群),YI Dan-qing(易丹青),WANG Wei-qi(王韦琪)et al.Influence of Sc on high temperature strengthening behavior of Ti-6Al-4V alloy[J].Transactions of Nonferrous Metals Society of China,Vol.17,No.6,2007:1212-1219
    [99]M.Bulanova,Y.Podrezov and Y.Fartushnaya.Structure and properties of As-cast Ti-Dy alloys[J].Journal of Alloys and Compounds,370(2004):L10-L13
    [100]朱知寿,马济民,高扬等.含Nd稀土相对高温钛合金低周疲劳裂纹萌生与扩展行为的影响[J].航空材料学报,1996年6月第16卷第2期:12-17
    [101]李阁平,王青江,关少轩.快冷态与铸念Ti-55合金稀土相的研究[J].航空材料学报,1994年9月第14卷第3期:19-26
    [102]Y.Wu and S.K.Hwang.The effect of yttrium on microstructure and dislocation behavior of elemental powder metallurgy processed TiAl-based intermetallics[J].Materials Letters,58(2004):2067-2072
    [103]金头男,尹志民,李斗星.微量Sc对TiAl基合金显微组织和力学性能的影响[J].航空材料学报,2000年12月第20卷第4期:8-13
    [104]金头男,尹志民,李斗星.一种新的Ti-Al-Sc化合物晶体结构测定[J].金属 学报,2001年3月第37卷第3期:225-229
    [105]尹松波,黄伯云,贺跃辉等.微量钪对TiAl基合金高温力学性能的影响[J].中国有色金属学报,1999年6月第9卷第2期:253-258
    [106]S.B.Yin,B.Y.Huang and Z.M.Yin.Effect of minor Sc on high temperature mechanical properties of Ti-Al based alloys[J].Materials Science and Engineering A,280(2000):204-207
    [107]F.J.Gil and J.A.Planell.Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys[J].Materials Science and Engineering A,283(2000):17-24
    [108]C.H.Johnson,S.K.Richter and C.H.Hamilton et al.Static grain growth in a microduplex Ti-6Al-4V alloy[J].Acta mater.,47(1999):23-29
    [109]S.L.Semiatin,P.N.Fagin and M.G.Glavicic et al.Influence on texture on beta grain growth during continuous annealing of Ti-6Al-4V[J].Materials Science and Engineering A,299(2001):225-234
    [110]S.L.Semiatin,J.C.Soper and I.M.Sukonnik.Short-time beta grain growth kinetics for a conventional titanium alloy[J].Acta mater.,44(1996):1979-1986
    [111]S.Mishra and T.DebRoy.Measurements and Monte Carlo simulation of grain growth in the heat-affected zone of Ti-6Al-4V welds[J].Acta Materialia,52(2004):1183-1192
    [112]D.Bhattacharyya,G.B.Viswanathan and S.C.Vogel et al.A study of the mechanism of α to β phase transformation by tracking texture evolution with temperature in Ti-6Al-4V using neutron diffraction[J].Scripta Materialia,54(2006):231-236
    [113]N.Gey,M.Humbert and H.Moustahfid.Study of the α→β phase transformation of a Ti-6Al-4V sheet by means of texture change[J].Scripta Materialia,42(2000):525-530
    [114]S.Malinov,P.Markovsky and W.Sha et al.Resistivity study and computer modelling of the isothermal transformation kinetics of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si alloys[J].Journal of Alloys and Compounds,314(2001):181-192
    [115]T.Ahmed and H.J.Rack.Phase transformations during cooling in α+β titanium alloys[J].Materials Science and Engineering A,243(1998):206-211
    [116]J.I.Qazi,O.N.Senkov and J.Rahim et al.Kinetics of martensite decomposition in Ti-6Al-4V-xH alloys[J].Materials Science and Engineering A,359(2003): 137-149
    [117] F.X. Gil Mur, D. Rodr(?)guez and J.A. Planell. Influence of tempering temperature and time on the α'-Ti-6Al-4V martensite[J]. Journal of Alloys and Compounds, 234(1996): 287-289
    [118] T. Seshacharyulu and B. Dutta. Influence of prior deformation rate on the mechanism of β→α+β transformation in Ti-6Al-4V[J]. Scripta Materialia, 46(2002): 673-678
    [119] W. Zhang, B. Wu and W.S. Zhao et al. Formation of novel P-Ti martensites in Ti-6Al-4V under an electric-cureent-pulse heat treatment[J]. Materials Science and Engineering A, 438-440(2006): 320-323
    [120] S.V. Divinski, V.N. Dnieprenko and O.M. Ivasishin. Effect of phase transformation on texture formation in Ti-base alloys[J]. Materials Science and Engineering A, 243(1998): 201-205
    [121] W. Szkliniarz and G. Smolka. Analysis of volume effects of phase transformation in titanium alloys[J]. Journal of Materials Processing Technology, 53(1995): 413-422
    [122] R. Ding, Z.X. Guo and A. Wilson. Microstructural evolution of a Ti-6A1-4V alloy during thermomechanical processing[J]. Materials Science and Engineering A, 327(2002): 233-245
    [123] T. Seshacharyulu. S.C. Medeiros and W.G. Frazier et al. Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure[J]. Materials Science and Engineering A, 325(2002): 112-125
    [124] M.N. Gungor, I. Ucok and L.S. Dramer et al. Microstructural and mechanical properties of highly deformed Ti-6Al-4V[J]. Materials Science and Engineering A, 410-411(2005): 369-374
    [125] M. Vanderhasten, L. Rabet and B. Verlinden. Ti-6Al-4V: Deformation map and modelisation of tensile behaviour[J]. Materials and Design, 29(2008): 1090-1098
    [126] D.G. Lee, S.H. Lee and Y.T. Lee. Effect of precipitates on damping capacity and mechanical properties of Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 486(2008): 19-26
    [127] C.Y. Yu, C.C. Shen and T.P. Perng. Microstructure of Ti-6Al-4V processed by hydrogenation[J]. Scripta Materialia, 55(2006): 1023-1026
    [128] L. Zeng and T.R. Bieler. Effects of working, heat treatment, and aging on microstructural evolution and crystal lographic texture of α, α', α" and β phases in Ti-6Al-4V wire[J]. Materials Science and Engineering A, 392(2005): 403-414
    [129] M.G. Glavicic, P.A. Kobryn and T.R. Bieler et al. A method to determine the orientation of the high-temperature beta phase from measured EBSD data for the low-temperature alpha phase in Ti-6Al-4V[J]. Materials Science and Engineering A, 346(2003): 50-59
    [130] O.M. Ivasishin, S.V. Shevchenko and S.L. Semiatin. Effect of crystallographic texture on the isothermal beta grain-growth kinetics of Ti-6Al-4V[J]. Materials Science and Engineering A, 332(2002): 343-350
    [131] P.A. Kobryn and S.L. Semiatin. Microstructure and texture evolution during solidification processing of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 135(2003): 330-339
    [132] M.G. Glavicic, P.A. Kobryn and F. Spadafora et al. Texture evolution in vacuum arc remelted ingots of Ti-6Al-4V[J]. Materials Science and Engineering A, 346(2003): 8-18
    [133] M.J.R. Barboza, E.A.C. Perez and M.M. Medeiros et al. Creep behavior of Ti-6Al-4V and a comparison with titanium matrix composites[J]. Materials Science and Engineering A, 428(2006): 319-326
    [134] M.J.R. Barboza, CM. Neto and C.R.M. Silva. Creep mechanisms and physical modeling for Ti-6Al-4V[J]. Materials Science and Engineering A, 369(2004): 201-209
    [135] Z.Y. Ma, R.S. Mishra and S.C. Tjong. High-temperature creep behavior of TiC particulate reinforced Ti-6Al-4V alloy composite[J]. Acta Materialia, 50(2002): 4293-4302
    [136] S.J. Zhu, D. Mukherji and W. Chen et al. Steady state creep behaviour of TiC particulate reinforced Ti-6Al-4V composite[J]. Materials Science and Engineering A, 256(1998): 301-307
    [137] S. Shademan, A.B.O. Soboyejo and J.F. Knott et al. A physically-based model for the prediction of long fatigue crack growth in Ti-6Al-4V[J]. Materials Science and Engineering A, 315(2001): 1-10
    [138] S. Shademan, V. Sinha and A.B.O. Soboyejo et al. An investigation-of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures[J]. Mechnics of Materials, 36(2004): 161-175
    [139] D.B. Lanning, T. Nicholas and G.K. Haritos. Effect of plastic prestrain on high cycle fatigue of Ti-6Al-4V[J]. Mechanics of Materials, 34(2002): 127-134
    [140] I. Bantounas, T.C. Lindley and D. Rugg et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V[J]. Acta Materialia, 55(2007): 5655-5665
    [141] J.H. Zuo, Z.G. Wang and E.H. Han. Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V[J]. Materials Science and Engineering A, 473(2008): 147-152
    [142] X.P. Jiang, C.S. Man and M.J. Shepard et al. Effects of shot-peening and re-shot-peening on four-point bend fatigue behavior of Ti-6Al-4V[J]. Materials Science and Engineering A, 468-470(2007): 137-143
    [143] A.F. Yetim, A. Alsaran and I. Efeoglu et al. A comparative study: The effect of surface treatments on the tribological properties of Ti-6Al-4V alloy[J]. Surface and Coatings Technology, 202(2008): 2428-2432
    [144] G. Straffelini and A. Molinari. Dry sliding wear of Ti-6Al-4V alloy as influenced by the counterface and sliding conditions [J]. Wear, 236(1999): 328-338
    [145] Y. Itoh, A. Itoh and H. Azuma et al. Improving the tribological properties of Ti-6Al-4V alloy by nitrogen-ion implantation[J]. Surface and Coating Technology, 111(1999): 172-176
    [146] Y. Liu, D.Z. Yang and S.Y. He et al. Microstructure developed in the surface layer of Ti-6Al-4V alloy after sliding wear in vacuum[J]. Materials Characterization, 50(2003): 275-279
    [147] J.L. Blackburn, P.A. Parilla and T. Gennett et al. Measurement of the reversible hydrogen storage capacity of milligram Ti-6Al-4V alloy samples with temperature programmed desorption and volumetric techniques[J]. Journal of Alloys and Compounds, 454(2008): 483-490
    [148] W.F. Ho. A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys[J]. Journal of Alloys and Compounds, 464(2008): 580-583
    [149] E.N. Codaro, R.Z. Nakazato and A.L. Horovistiz et al. An image analysis study of pit formation on Ti-6Al-4V[J]. Materials Science and Engineering A, 341(2003): 202-210
    [150] J.R. Zhou and S. Bahadur. Erosion-corrosion of Ti-6A1-4V in elevated temperature air environment[J]. Wear, 186-187(1995): 332-339
    [151] M. Heidarbeigy, F. Karimzadeh and A. Saatchi. Corrosion and galvanic coupling of heat treated Ti-6Al-4V alloy seldment[J]. Materials Letters, 62(2008): 1575-1578
    [152] J.H. Li and R.Y. Lin. Active joining of Ti-6Al-4V with electroplated Cu thin film[J]. Materials Science and Engineering A, 381(2004): 39-50
    [153] T.S. Kim, Y.G. Park and M.Y. Wey. Characterization of Ti-6Al-4V alloy modified by plasma carburizing process[J]. Materials Science and Engineering A, 361(2003): 275-280
    [154] N. Tsuji, S. Tanaka and T. Takasugi. Evalution of surface-modified Ti-6Al-4V alloy by combination of plasma-carburizing and deep-rolling[J]. Materials Science and Engineering A, 488(2008): 139-145
    [155] H. Guleryuz and H. Cimenoglu. Oxidation of Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, article in press, 2008
    [156] W. Zhou, Y.G. Zhao and W. Li et al. Effect of Al-Si coating fusing time on the oxidation resistance of Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 460-461(2007): 579-586
    [157] P. P(?)rez. Influence of nitriding on the oxidation behaviour of titanium alloys at 700°C[J]. Surface and Coatings Technology, 191(2005): 293-302
    [158] R.K. Shiue, S.K. Wu and YT. Chen et al. Infrared brazing of Ti_(50)Al_(50) and Ti-6A1-4V using two Ti-based filler metals[J]. Intermetallics, 16(2008): 1083-1089
    [159] S.H. Wang, M.D. Wei and L.W. Tsay. Tensile properties of LBW welds in Ti-6A1-4V alloy at evaluated temperatures below 450°C[J]. Materials Letters, 57(2003): 1815-1823
    [160] S. Mironov, Y. Zhang and Y.S. Sato et al. Development of grain structure in β-phase field during friction stir welding of Ti-6A1-4V alloy [J]. Scripta Materialia, 59(2008): 27-30
    [161] S. Kuriakose and M.S. Shunmugam. Characteristics of wire-electro discharge machined Ti6A14V surface[J]. Materials Letters, 58(2004): 2231-2237
    [162] M. Cotterell and G. Byrne. Dynamics of chip formation during orthogonal cutting of titanium alloy Ti-6A1-4V[J]. CIRP Annals - Manufacturing Technology, 57(2008): 93-96
    [163] L. Reissig, R. V(?)lkl and M.J. Mills et al. Investigation of near surface structure in order to determine process-temperatures during different machining processes[J]. Scripta Materialia, 50(2004): 121-126
    [164] P. Heinl. L. Muller and C. K(?)rner et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta Biomaterialia, 4(2008): 1536-1544
    [165] M. Niinomi. Mechanical properties of biomedical titanium alloys[J]. Materials Science and Engineering A, 243(1998): 231-236
    [166] L.E. Murr, E.V. Esquivel and S.A. Quinones et al. Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6A1-4V biomedical prototypes compared to wrought Ti-6A1-4V[J]. Materials Characterization, article in press, 2008
    [167] W. (?)sterle, D. Klaffke and M. Griepentrog et al. Potential of wear resistant coatings on Ti-6Al-4V for artificial hip joint bearing surfaces[J]. Wear, 264(2008): 505-517
    [168] M.M. Dewidar and J.K. Lim. Properties of solid core and porous surface Ti-6A1-4V implants manufactured by powder metallurgy[J]. Journal of Alloys and Compounds, 454(2008): 442-446
    [169] K.T. Kim and H.C. Yang. Densification behavior of titanium alloy powder during hot pressing[J]. Materials Science and Engineering A, 313(2001): 46-52
    [170] R. Lapovok, D. Tomus and B.C. Muddle. Low-temperature compaction of Ti-6A1-4V powder using equal channel angular extrusion with back pressure[J]. Materials Science and Engineering A, 490(2008): 171-180
    [171] D.P. Delo, R.E. Dutton and S.L. Semiatin et al. Modeling of hot isostatic pressing and hot triaxial compaction of Ti-6A1-4V powder[J]. Acta mater., 47(1999): 3159-3167
    [172] S.B. Guo, X.H. Qu and X.B. He et al. Powder injection molding of Ti-6Al-4V alloy [J]. Journal of Materials Processing Technology, 173(2006): 310-314
    [173] C.R.F. Azevedo, D. Rodrigues and F.B. Neto. Ti-Al-V powder metallurgy (PM) via the hydrogenation-dehydrogenation (HDH) process[J]. Journal of Alloys and Compounds, 353(2003): 217-227
    [174] V.F. Nesterenko, W. Goldsmith and S.S. Indrakanti et al. Response of hot isostatically pressed Ti-6A1-4V targets to normal impact by conical and blunt projectiles[J]. International Journal of Impact Engineering, 28(2003): 137-160
    [175] B. Huang, Y.Q. Yang and H.J. Luo et al. Effect of the interfacial reaction layer thickness on the thermal residual stresses in SiCf/Ti-6Al-4V composites[J]. Materials Science and Engineering A, 489(2008): 178-186
    [176] D.J. Liu, Y.B. Chen and L.Q. Li et al. In situ investigation of fracture behavior in monocrystalline WCp-reinforced Ti-6Al-4V metal matrix composites produced by laser melt injection[J].Scripta Materialia,59(2008):91-94
    [177]M.Kobayashi,K.Funami and S.Suzuki et al.Manufacturing process and mechanical properties of fine TiB dispersed Ti-6Al-4V alloy composites obtained by reaction sintering[J].Materials Science and Engineering A,243(1998):279-284
    [178]C.Gonz(?)lez and J.Llorca.Micromechanical modelling of deformation and failure in Ti-6Al-4V/SiC composites[J].Acta mater.,49(2001):3505-3519
    [179]M.Frary,S.Abkowitz and S.M.Abkowitz et al.Microstructure and mechanical properties of Ti/W and Ti-6Al-4V/W composites fabricated by powder-metallurgy[J].Materials Science and Engineering A,344(2003):103-112
    [180]J.P Poirier,Plasticit6 a haute temperature des solides cristallins.晶体的高温塑性变形[M].关德林译,张俊善校.大连理工大学出版社,1989年:92
    [182]J.A.Wert and N.E.Paton.Enhanced superplasticity and strength in modified Ti-6Al-4V alloys[J].Metallurgical Transactions A,14(1983):2535-2544
    [183]C.H.Hamilton,A.K.Ghosh and M.M.Mahoney,in:C.H.Hamilton,D.F.Hasson(EDs.).Advanced Processing Methods for Titanium[M].TMS-AIME,Warrendale,PA,1982:129-144
    [184]J.R.Leader,D.F.Neal and C.Hammond.The effect of alloying additions on the superplastic properties of Ti-6 Pct Al-4 Pct Ⅴ[J].Metallurgical Transactions A,17(1986):93-106
    [185]M.L.Meier,D.R.Eesuer and A.K.Mukherjee.α Grain size and β volume fraction aspects of the superplasticity of Ti-6Al-4V[J].Materials Science and Engineering A,136(1991):71-78
    [186]J.S.Kim,J.H.Kim and Y.T.Lee et al.Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti-6Al-4V alloy[J].Materials Science and Engineering A,263(1999):272-280
    [187]P.G.Partridge,D.S.McDarmaid and A.W.Bowen.A deformation model for anisotropic superplasticity in two phase alloys[J].Acta Metallurgy,33(1985):571-577
    [188]N.K.Park,J.T.Yeom and Y.S.Na.Characterization of deformation stability in hot forging of conventional Ti-6Al-4V using processing maps[J].Journal of Materials Processing Technology,130-131(2002):540-545
    [189]T.Seshacharyulu,S.C.Medeiros and W.G.Frazier et al.Hot working of commercial Ti-6Al-4V with an equiazed α-β microstructure:materials modeling considerations[J].Materials Science and Engineering A,284(2000):184-194
    [190]T.Seshacharyulu,S.C.Medeiros and W.G.Frazier et al.Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure[J].Materials Science and Engineering A,325(2002):112-125
    [191]T.Seshacharyulu,S.C.Medeiros and J.T.Morgan et al.Hot deformation and microstructural damage mechanisms in extra-low interstitial(ELI) grade Ti-6Al-4V[J].Materials Science and Engineering A,279(2000):289-299
    [192]S.C.Liao and J.Duffy.Adiabatic shear bands in a Ti-6Al-4V titanium alloy[J].J.Mech.Phys.Solids,46(1998):2201-2231
    [193]O.Sivakesavam and Y.V.R.K.Prasad.Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg-11.5Li-1.5Al alloy[J].Materials Science and Engineering A,323(2002):270-277
    [194]D.Y.Cai,L.Y.Xiong and W.C.Liu et al.Development of processing maps for a Ni-based superalloy[J].Materials Characterization,58(2007):941-946
    [195]P.Cavaliere,E.Cerri and P.Leo et al.Hot deformation and processing maps of a particulate reinforced 2618/Al_2O_3/20p metal matrix composite[J].Composite Science and Technology,64(2004):1287-1291
    [196]R.Lyszkowski and J.Bystrzycki.Hot deformation and processing maps of an Fe_3Al intermetallic alloy[J].Intermetallics,14(2006):1231-1237
    [197]S.V.S.N.Murty,B.N.Rao and B.P.Kashyap.Identification of flow instabilities in the processing maps of AISI 304 stainless steel[J].Journal of Materials Processing Technology,166(2005):268-278
    [198]Y.V.R.K.Prasad and K.P.Rao.Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950℃[J].Materials Science and Engineering A,391(2005):141-150
    [199]Y.V.R.K.Prasad,H.L.Gegel,and S.M.Doraivelu et al.Modelling of dynamic material behavior in hot deformation:forging of Ti-6242[J].Metallurgical Transactions A,15(1984):1883-1891
    [200]曾卫东,周义刚,周军等.加工图理论研究进展[J].稀有金属材料与工程,2006年第35卷第5期:673-677
    [201]Y.V.R.K.Prasad and T.Seshacharyulu.Processing maps for hot working of titanium alloys[J].Materials Science and Engineering A,243(1998):82-88
    [202] V. Seetharaman, L. Boothe and CM. Lombard in: Y.W. Kim, R.R. Boyer (Eds.). Microstructure/Property Relationships in Titanium Aluminides and Alloys[M]. TMS, Warrendale, PA, 1991: 605-622
    [203] Y.G. Ko, C.S. Lee and D.H. Shin. Deformation characteristics of submicrocrystalline Ti-6Al-4V[J]. Scripta Materialia, 58(2008): 1094-1097
    [204] T. Seshacharyulu, S.C. Medeiros and J.T. Morgan et al. Hot deformation mechanisms in ELI grade Ti-6A1-4V[J]. Scripta Materialia, 41(1999): 283-288
    [205] Y.V.R.K. Prasad, T. Seshacharyulu and S.C. Medeiros et al. Influence of oxygen content on the forging response of equiaxed (a+P) perform of Ti-6A1-4V: commercial vs. ELI grade[J]. Journal of Materials Processing Technology, 108(2001): 320-327
    [206] C.H. Park, Y.G. Ko and J.W. Park et al. Enhanced superplasticity utilizing dynamic globularization of Ti-6A1-4V alloy[J]. Materials Science and Engineering A, article in press, 2008
    [207] V.V. Balasubrahmanyam and Y.V.R.K. Prasad. Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1l.5Al in hot upset forging[J]. Materials Science and Engineering A, 336(2002): 150-158
    [208] Y. Niu, H.L. Hou and M.Q. Li et al. High temperature deformation behavior of a near alpha Ti600 titanium alloy[J]. Materials Science and Engineering A, 492(2008): 24-28
    [209] M.Q. Li, H.S. Pan and YY. Lin et al. High temperature deformation behavior of near alpha Ti-5.6Al-4.8Sn-2.0Zr alloy[J]. Journal of Materials Processing Technology, 183(2007): 71-76
    [210] I. Philippart and H.J. Rack. High temperature dynamic yielding in metastable Ti-6.8Mo-4.5Fe-1.5Al[J]. Materials Science and Engineering A, 243(1998): 196-200
    [211] I. Philippart and H.J. Rack. High temperature, high strain deformation behavior of Ti-6.8Mo-4.5Fe-1.5Al[J]. Materials Science and Engineering A, 254(1998): 253-267
    [212] A.B. Li, L.J. Huang and Q.Y. Meng et al Hot working - of Ti-6Al-3Mo-2Zr-0.3Si alloy with lamellar α+β starting structure using processing map[J]. Materials and Design, accepted manuscript
    [213] T. Rajagopalachary and V.V. Kutumbarao. Intrinsic hot workability map for a titanium alloy IMI685[J]. Scripta Materialia, 35(1996): 311-316
    [214]S.V.S.N.Murty and B.N.Rao.On the flow localization concepts in the processing maps of titanium alloy Ti-24Al-20Nb[J].Journal of Materials Processing Technology,104(2000):103-109
    [215]V.G.Krishna,Y.V.R.K.Prasad and N.C.Birla et al.Processing map for the hot working of near-α titanium alloy 685[J].Journal of Materials Processing Technology,71(1997):377-383
    [216]C.Poletti,H.P.Degischer and S.Kremmer et al.Processing maps of Ti662unreinforced and reinforced with TiC particles according to dynamic models[J].Materials Science and Engineering A,486(2008):127-137
    [217]T.Rajagopalachary and V.V.Kutumbarao.Superplastic behaviour of a titanium alloy IMI685 under uniaxial compression[J].Scripta Materialia,35(1996):305-309
    [218]R.R.Boyer.An overview on the use of titanium in the aerospace industry[J].Materials Science and Engineering A,213(1996):103-114
    [219]C.Leyens and M.Peters.Tianium and Tianium Alloys[M].WILEY-VCH Verlag GmbH & Co.KgaA,Weinheim,Germany,2003
    [220]I.Massalski and B.Thaddeus.Binary Alloy Phase Diagrams[M].AMS,Metals Park,1986
    [221]郝士明.材料热力学[M].化学工业出版社,2004,北京:56
    [222]C.Sauer,G.L(u|¨)tjering.Influence of α layers at βgrain boundaries on mechanical properties of Ti-alloys[J].Materials Science and Engineering A,319-321(2001):393-397
    [223]G.L(u|¨)tjering.Influence of processing on microstructure and mechanical properties of(α+β) titanium alloys[J].Materials Science and Engineering A,243(1998):32-45
    [224]郝士明.材料热力学[M].化学工业出版社,2004,北京:100
    [225]S.L.Semiatin and T.R.Bieler.The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure[J].Acta mater.,49(2001):3565-3573
    [226]F.J.Gil,M.P.Ginebra and J.M.Manero et al.Formation of α-Widmanst(a|¨)tten structure:effects of grain size and cooling rate on the Widmanst(a|¨)tten morphologies and on the mechanical properties in Ti6Al4V alloy[J].Journal of Alloys and Compounds,329(2001):142-152
    [227]尹志民,潘清林,姜锋,李汉广.钪和含钪合会[M].中南大学出版社,长 沙,2007
    [228]M.Bulanova,Y.Podrezov and Y.Fartushnaya et al.Structure and properties of as-cast Ti-Dy alloys[J].Journal of Alloys and Compounds,370(2004):L10-L13
    [229]肖纪美,朱逢吾.材料能量学[M].1999年,上海:上海科学技术出版社:270
    [230]师昌绪,李恒德,周廉.材料科学与工程手册(上卷)[M].2004,北京:化学工业出版社
    [231]G.Cacciamani,P.Riani and G.Borzone et al.Thermodynamic measurements and assessment of the Al-Sc system[J].Intermetallics,7(1999):101 - 108
    [232]H.Okamoto.Al-Sc(Aluminum-Scandium)[J].Journal of Phase Equilibria and Diffusion,12(1991):612
    [233]F.Zhang,S.L.Chen and Y.A.Chang et al.A thermodynamic description of the Ti-Al system[J].Intermetallics,5(1997):471-482
    [234]艾桃桃,王芬.Al-Ti-TiO_2-Nb_2O_5系的热扩散法合成及热力学计算[J].特种铸造及有色合金,2006年第26卷第12期:822-824
    [235]A.J.Huang,G.P.Li and Y.L.Hao et al.Acicular α_2 precipitation induced by capillarity at α/β phase boundaries in Ti-14Al-2Zr-3Sn-3Mo-0.5Si titanium alloy[J].Acta Materialia,51(2003):4939-4952
    [236]Y.G.Li,P.A.Blenkinsop and M.H.Loretto et al.Structure and stability of precipitates in 500℃ exposed Ti-25V-15Cr-xAl alloys[J].Acta Materialia,46(1998):5777-5794
    [237]惠松骁,张翥,萧今声等.高温钛合金热稳定性研究进展----Ⅰ.组织稳定性[J].稀有金属,1999年第23卷第2期:125-130
    [238]周义刚,曾卫东,李晓芹等.钛合金高温形变强韧化机理[J].金属学报,1999年第35卷第1期:45-48
    [239]S.Diplas,P.Tsakiropoulos and G.Shao et al.A study of alloying behaviour in the Ti-Al-V system[J].Acta Materialia,50(2002):1951-1960
    [240]C.R.F.Azevedo,D.Rodrigues and F.B.Neto.Ti-Al-V powder metallurgy(PM)via the hydrogenation-dehydrogenation(HDH) process[J].Journal of Alloys and Compounds,353(2003):217-227
    [241]G.Shao,P.Tsakiropoulos and A.P.Miodownik.Phase transformations in Ti-40Al-10V[J].Intermetallics,3(1995):315-325
    [242]W.F.Ho,C.P.Ju and J.H.C.Lin.Structure and properties of cast binary Ti-Mo alloys[J].Biomaterials,20(1999):2115-2122
    [243]赵林若,张少卿,颜鸣臬.氢对Al和V在β纯Ti中扩散的影响[J].材料科学进展,1990年第4卷第3期:237-240
    [244]C.T.Yang,C.H.Koo.Improving the microstructure and high temperature properties of the Ti-40Al-16Nb alloy by the addition of a minor Sc or La-rich Misch metal[J].Intermetallics,12(2004):235-251
    [245]B.Verlinden,A.Suhadi and L.Delaey.A generalized constitutive equation for an AA6060 aluminium alloy[J].Scripta Metallurgica et Materialia,28(1993):1441-1446
    [246]H.C.Braga,R.Barbosa and J.Breme.Hot strength of Ti and Ti6Al4V deformed in axial compression[J].Scripta Metallurgica et Materialia,28(1993):979-983
    [247]Z.J.Gronostajski.Model describing the characteristic values of flow stress and strain of brass M63 and sluminium bronze BA93[J].Journal of Materials Processing Technology,78(1998):84-89
    [248]T.Sheppard and J.Norley.Deformation characteristics of Ti-6Al-4V[J].Materials Science and Technology,4(1988):903-908
    [249]H.M.Flower.Microstructural development in relation to hot working of titanium alloys[J].Materials Science and Technology,6(1990):1082-1092
    [250]C.M.Sellars and W.J.Mcg.Tegart.La relation entre la resistance et la structure dans la deformation a chaud[J].Mem.Sci.Rev.Metal.,63(1966):731-746
    [251]K.P.Rao,S.M.Duraivelu and V.Gopinathan.Flow curves and deformation of metals at different temperatures and strain-rates[J].Journal of Mechanical Working Technology,6(1982):63-88
    [252]K.P(o|¨)hlandt.Material Testing for the Metal Forming Industry[M].Trans.By R.Kuehl,Spring-Verlag,Germany,1989:21
    [253]P.Dadras and J.F.Thomas Jr.In:R.Chair and R.Papirno(Eds.).Compression Testing of Homogenous Materials and Composites[M],ASTM,1987:2
    [254]G..R.Canova,S.Shrivastava,J.J.Jonas and C.G.Shell.In:J.R.Newby and Niemeier(Eds.).Formability of Metallic Materials-2000 A.D[M].,ASTM,1982:189
    [255]E.W.Hart.A phenomenological theory for plastic deformation of polycrystalline metals[J].Acta Metall.,18(1970):599-610
    [256]J.R.Klepaczko.A practical stress-strain-strain rate-temperature constitutive relation of the power form[J].Journal of Mechanical Working Technology,15(1987):143-165
    [257] E.A. Davis and A. Nadai. J. Appl. Mech.. 3(1965): A25
    [258] Z. Marciniak, K. Kuczynski and T. Pokora. Limit strains in the process of stretch-forming sheet metal[J]. Int. J. Mech. Sci., 15(1973): 789-795
    [259] S.L. Semiatin and J.J. Jonas. Formability and Workability of Metals[M]. ASM, Metals Park, Ohio, 1984:48
    [260] R.J. Clifton, J. Duffy and K.A. Hartley et al. On critical conditions for shear bands formation at high strain rates[J]. Scr. Metall., 18(1984): 443-448
    [261] W.I. Zuzin, M.Y. Browman and A.F. Melikov. Metallurgy[M]. Moscow, 1964(in Russian)
    [262] T. Vinh and T. Khalil. In: J. Harding (Eds.), Mechanical Properties at High Rate of Strain[M]. The Institute of Physics, Bristol, 1984: 37
    [263] J. Litonski. Plastic flow of a tube under adiabatic torsion[J]. Bull. Acad. Pol. Sci, 2(1977): 7-14
    [264] J.R. Klepaczko and C.Y. Chiem. On rate sensitivity of f.c.c. metals, instantaneous rate sensitivity and rate sensitivity of strain hardening[J]. J. Mech. Phys. So., 34(1986): 29-54
    [265] H.B. McShane and T. Sheppard. On the elevated-temperature constitutive relationship and structure of an austenitic stainless steel[J]. Journal of Mechanical Working Technology, 9(1984): 147-160
    [266] J.J. Jonas and CM. Sellars. Strength and structure under hot-working conditions[J]. Int. Metallurgical Reviews, 1969(14): 1-24
    [267] H.J. McQueen and S. Yue. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology, 53(1995): 293-310
    [268] H. Shi, J. McLaren and CM. Sellars. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Technology, 13(1997): 210-216
    [269] C. Zener and J.H. Hollomon. Effect of strain rate upon the plastic flow of steel[J]. J. Appl. Phys., 15(1944): 22-32
    [270] C.C. Chen and J.E. Coyne. Deformation characteristics of Ti-6A1-4V alloy under isothermal- forging conditins[J]. Metallurgical Transactions A, 7(1976): 1931-1941
    [271] S.M.L. Sastry. In Proc 4th Int. Conf. on "Titanium", Kyoto, Japan, May 1980. Japan Institute of Metals, Vol.1, p873
    [272] A. Majorell, S. Srivatsa and R.C. Picu. Mechanical behavior of Ti-6A1-4V at high and moderate temperatures --- Part Ⅰ:Experimental results[J].Materials Science and Engineering A,326(2002):297-305
    [273]L.X.Li and D.S.Peng.Development of constitute equations for Ti-6Al-4V alloy under hot-working condition[J].Acta metallurgica sinica(English Letters),13(2000):263-269
    [274]李落星。钛合金挤压变形模拟研究[D]。中南工业大学博士学位论文,2000。
    [275]J.J.Jonas,R.A.Holt and C.E.Coleman.Plastic stability in tension and compression[J].Acta Metallurgica,24(1976):911-918
    [276]S.L.Semiatin,J.F.Thomas and P.Dadras.Processing-microstructure relationships for Ti-6Al-2Sn-4Zr-2Mo-0.1Si[J].Metallurgical Transaction A,14(1983):2363-2374
    [277]Y.V.R.K.Prasad and S.Sasidhara.Hot working Guide:A Compendium of Processing Maps[M].ASM International,Materials Park,OH,1997
    [278]S.L.Semiatin(Ed.).Metals Handbook,Forming and Forging[M],Vol.14.9~(th) ed.,1988:417-438
    [279]Y.V.R.K.Prasad and T.Seshacharyulu.Modelling of hot deformation for microstructural control[J].International Materials Reviews,43(1998):243-258
    [280]S.V.S.Narayana Murty and B.Nageswara Rao.On the Gegel's stability criterion in processing maps[J].Metallurgical and Materials Transactions A,28(1997):2170-2173
    [281]S.V.S.Narayana Murty and B.Nageswara Rao.On the development of instability Criteria during hot working with reference to IN 718[J].Materials Science and Engineering A,254(1998):76-82
    [282]S.V.S.Narayana Murty and B.Nageswara Rao.Ziegler's criterion on the instability regions in processing maps[J].Journal of Materials Science Letters,17(1998):1203-1205
    [283]S.V.S.Narayana Murty and B.Nageswara Rao.On the polar reciprocity model for hot deformation characteristics of materials[J].Bulletin of Material Science,22(1999):9-10
    [284]S.V.S.Narayana Murty and B.Nageswara Rao.On the dynamic material model for the hot deformation of materials[J].Journal of Materials Science Letters,18(1999):1757-1758
    [285]H.Zeigler,in:I.N.Sneddon,R.Hill(Eds.).Progress in Solid Mechanics[M],Wiley,New York,1965:91-193
    [286] G. L(?)tjering and J.C. Williams. Titanium[M]. Springer-Verlag, Berlin Heidelberg, 2003
    [287] R.W. Schutz and H.B. Watkins. Recent developments in titanium alloy application in the energy industry[J]. Materials Science and Engineering A, 243(1998): 305-315
    [288] R.C. Picu and A. Majorell. Mechanical behavior of Ti-6A1-4V at high and moderate temperatures-Part Ⅱ: constitutive modeling [J]. Materials Science and Engineering A, 326(2002):306-316
    [289] Woei-Shyan Lee, Chi-Feng Lin. High-temperature deformation behavior of Ti6A14V alloy evaluated by high strain-rate compression tests[J]. Journal of Materials Processing Technology, 75 (1998): 127-136
    [290] A. Tasdemirci, A. Hizal and M. Altindis et al. The effect of strain rate on the compressive deformation behavior of a sintered Ti6A14V powder compact[J]. Materials Science and Engineering A, 474 (2008): 335-341
    [291] Q. Xue, M.A. Meyers and V.F. Nesterenko. Self-organization of shear bands in titanium and Ti-6A1-4V alloy[J]. Acta Materialia, 50 (2002): 575-596
    [292] A.V. Sergueeva, V.V. Stolyarov and R.Z. Valiev et al. Superplastic behaviour of ultrafine-grained Ti-6A1-4V alloys[J]. Materials Science and Engineering A, 323(2002): 318-325
    [293] S.L. Semiatin, V. Seetharaman and I. Weiss. Flow behavior and globularization kinetics during hot working of Ti-6A1-4V with a colony alpha mcirostructure[J]. Materials Science and Engineering A, 263 (1999): 257-271
    [294] S. Bruschi, S. Poggio and F. Quadrini et al. Workability of Ti-6A1-4V alloy at high temperatures and strain rates[J]. Materials Letters, 58 (2004): 3622-2629
    [295] T.M.T. Godfrey, A. Wisbey and P.S. Goodwin et al. Microstructure and tensile properties of mechanically alloyed Ti-6A1-4V with boron additions[J]. Materials Science and Engineering A, 282 (2000): 240-250
    [296] C. Kwietniewski, J.F. dos Santos and A.A.M. da Silva et al. Effect of plastic deformation on the toughness behaviour of radial friction welds in Ti-6A1-4V-0.1 Ru titanium alloy[J]. Materials Science and Engineering A, 417- (2006): 49-55
    [297] R. Filip, K. Kubiak and W. Ziaja et al. The effect of microstructure on the mechanical properties of two-phase titanium alloys[J]. Journal of Materials Processing Technology, 133(2003): 84-89
    [298] T.G. Nieh, J. Wadsworth and O.D. Sherby. Superplasticity in Metals and Ceramics[M]. Cambridge University Press, UK, 1997
    [299] S.N. Patankar, J.P. Escobedo and D.P. Field et al. Superior superplastic behavior in fine-grained Ti-6A1-4V sheet[J]. Journal of Alloys and Compounds, 345(2002): 221-227
    [300] W.S. Lee, C.F. Lin and T.H. Chen et al. Correlation of dynamic impact properties with adiabatic shear banding behaviour in Ti-15Mo-5Zr-3Al alloy[J]. Materials Science and Engineering A, 475(2008): 172-184
    [301] F. Martinez, L.E. Murr and A. Ramirez et al. Dynamic deformation and adiabatic shear microstructures associated with ballistic plug formation and fracture in Ti-6A1-4V targets[J]. Materials Science and Engineering A, 454-455(2007): 581-589
    [302] S.I. Oh, S.L. Semiatin and J.J. Jonas. An analysis of the isothermal hot compression test[J]. Metallurgical Transaction A, 23(1992): 963-975
    [303] D. Kuhlmann-Wilsdorf. Overview No.131 "Regular" deformation bands (DBs) and the LEDS hypothesis[J]. Acta Mater., 47(1999): 1697-1712
    [304] D. Kuhlmann-Wilsdorf. Energy minimization of dislocations in low-energy dislocation structures[J]. Physica Status Solidi (a), 104(1987): 121-144
    [305] D. Kuhlmann-Wilsdorf. Questions you always wanted (or should have wanted) to ask about workhardening[J]. Mater. Res. Innov., 1(1998): 265-297
    [306] I. Karaman, G.G. Yapici and Y.I. Chumlyakov et al. Deformation twinning in difficult-to-work alloys during severe plastic deformation[J]. Materials Science and Engineering A, 410-411(2005): 243-247
    [307] G.G. Yapici, I. Karaman and Z.P. Luo. Mechanical twinning and texture evolution in severely deformed Ti-6A1-4V at high temperatures[J]. Acta Materialia, 54(2006): 3755-3771
    [308] I. Kim, J. Kim and D.H. Shin et al. Deformation twins in pure titanium processed by equal channel angular pressing[J]. Scripta Materialia, 48(2003): 813-817

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700