用户名: 密码: 验证码:
电极和结构过渡层对铁电薄膜介电及热释电性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介电性和热释电性作为铁电薄膜两个十分重要的基本性质,在制备储能电容器、波导、信息存贮器以热释电探测器等方面都有很重要的实际应用价值。近年来关于铁电薄膜和以铁电材料为组分的人工复合薄膜的飞速发展又掀起了新的研究热潮。但是随之而来的一些复杂问题也亟待解决,比如薄膜所使用电极的材料,铁电薄膜的表面效应以及人工复合薄膜内部的异质结构界面问题,都对铁电薄膜的性质有重要的影响。这些因素常常影响薄膜的行为,这些影响或是能够抑制铁电薄膜的性能,或是有可以被利用的价值。那么如何控制影响薄膜性能的因素以及如何能够更合理的利用某些因素,都涉及到制备和使用过程中的许多实际问题,但是关于这方面的理论研究报道并不多见。本论文正是在这样的应用背景下,针对电极和结构过渡层对铁电薄膜的介电性质和热释电性质的影响开展了细致深入的理论研究,以期为实际应用提供一定的理论参考依据。
     关于铁电相变的理论,近年来国际高端研究中所广泛采用的理论方法方法主要有以下三种: GLD唯象理论,软模理论以及第一性原理计算。其中软模理论在处理有序-无序系统中的主要模型为横场Ising模型。本论文中采用了宏观的GLD唯象理论并加以推广,研究了半导体电极以及金属电极间的铁电薄膜和人工复合铁电薄膜的性质,采用微观的横场Ising模型理论研究含有了表面过渡层的铁电薄膜的表面效应问题。论文将两种方法所研究的相应内容作以比较,取得了定性上相一致的结论,进一步证明了文中所建立的理论模型以及研究方法的合理性和可靠性。
     本论文重点研究了电极和薄膜内部结构过渡层对于体系介电及热释电性质的影响。研究表明半导体电极作为非理想导体电极,由于其内部没有足够的电荷能够屏蔽薄膜表面束缚电荷形成的退极化效应,将对体系的性质造成很大影响,它降低了体系的极化强度和相变温度,但提高了铁电薄膜的极化率和热释电系数。薄膜表面存在的结构过渡层以及人工复合薄膜内部的异质结构界面效应导致的结构过渡层,都属于铁电薄膜内部原生的结构过渡区,这种原生的结构过渡区可以导致薄膜的相变温度高于或低于体材料的相变温度,改善铁电薄膜的介电性质和热释电性质。非理想导体电极(本论文中为半导体电极)和结构过渡层这两个因素都是影响铁电薄膜的非理想因素,它们对于体系的性质有某些相似的影响。在用TIM模型研究中,我们发展了文献中经常采用的单阶梯式过渡层模型为渐变的多阶梯式过渡层模型,更加真实的反映了薄膜的实际结构,这也是本文重要的创新点之一。
     本论文采用宏观和微观两种理论方法,针对电极和结构过渡层对于铁电薄膜的介电和热释电性质的影响进行了深入的研究,其中取得的很多理论结果与实验数据基本吻合,很好地解释了实验现象,并提出了进一步的理论预测,对制备高比容电容器材料及高性能热释电材料的研究和应用提供了重要的理论依据,在理论上和实验上都具有重要的指导意义。
As two important basic properties of ferroelectric thin film, dielectricity and pyroelectricity have great applicable value on storage capacitor, waveguide, information storage unit and pyroelectric detector. Recent these years, development on ferroelectric thin film and artificial component composite ferroelectric thin film have arised new research upsurge. At the same time, some complex problems appeared to be solved, such as, electrode materials, surface effect and interface of the heterogengeity structure, which have great influence on film properties. These factors can depress the film properties or can be used. How to better control and use these factors has related to many practical problems, but there is little research about these problems. Under such background, research on the influence of electrode and structural transition layers on the dielectric and pyroelectric properties of ferroelectric thin film has been carried out, which can offer some theoretical reference for application.
     The GLD theory, soft mode theory and first principle calculation are three methods often used to investigate the ferroelectric phase transition at international research. Transverse Ising model is the main method to deal with ferroelectrics of order-disorder type. The developed GLD theory is used to investigate the films coated with metal or semiconducting electrodes and properties of component composite ferroelectric thin film. Transverse Ising model is used to investigate the surface effect of films with surface transition layers. The corresponding results calculated from the two methods can draw the same conclusions qualitatively, which can prove the rationality and reliability of our model and method used.
     Influence of electrode and structural transition layers on the dielectric and pyroelectric properties of ferroelectric thin films is investigated. The results show that the semiconducting electrodes cannot screen the surface depolarization effect, which can decrese the polarization and phase transition temperature, but improve the dielectric susceptibility and pyroelectric coefficient. Structural transition layers in film surface and structural transition layers leading by interface effect are Proterozoic, which can make the film phase transition temperature higher or lower than the bulk value, and improve the dielectric and pyroelectric properties. Imperfect conducting electrodes and structural transition layers have some similar influence on film properties. In the research from TIM theory, the tranditional single step model is developed to a multi-step model, which reflects a more realistic situation of film structure, and it is an important innovation in this dissertation.
     Influence of electrodes and structural transition layers on dielectric and pyroelectric properties of ferroelectric thin films have been deeply investigated from both macrocopic and microscopic level. Many theoretical results in our dissertation have accordance with experimental data and can give a reasonable description of the experiment facts reported in the literature. Our work has laid the theoretical foundation for the preparing of capacitor and pyroelectric materials with good properties, which has great significance on both theory and practice.
引文
1 J. Valasek. Piezoelectric and applied phenomena in Rochelle Salt. Phys. Rev. 1920, 15: 537~538
    2 J. Valasek. Piezo-electric and allied phenomena in Rochelle Salt. Phys. Rev. 1921, 17: 475~481
    3 M.E.Lines, A.M.Glass. Principles and Applications of Ferro- electrics and Related Materials. Clarendon Press Oxford.《铁电体及有关材料的原理和应用》,钟维烈译.王华馥校.科学出版社, 1989
    4 J. Fousek. Ferroelectricity: remarks on historical aspects and present trends. Ferroelectric. 1991, 113: 3~20
    5 G. Busch and P. Scherrer. A new seignetto-electric substance. Naturwiss, 1935, 23: 737~38
    6 G. Busch. New seignetto electrics. Helv. Phys. Acta. 1939, 11:169~172
    7 B.M. Wul and I.M. Goldman. Dielectric constants of titanate of metals of the second group. Compt. Rend. Acad. Sci. USSR 1945, 46: 139~142
    8 B.M. Wul and I.M. Goldman. Dielectric hysteresis in barium titanate. Compt. Rend. Acad. Sci. USSR 1946, 51: 21~23
    9 G. A. Smolenski, V.A. Isupov, A.I. Agranovskaya and S.N. Popov. Ferroelectrics with diffuse phase transitions. Sov. Phys. Solid State, 1961, 2: 2584~2594
    10 V.A. Bokov and I.E. Myinikova, Ferroelectric properties of monocrystals of new perovskite compounds, Sov. Phys. Solid State, 1961, 2: 2428~243
    11 N. Sicron, B. Ravel, Y. Yacoby, E.A. Stern, F. Dogan and J.J. Rehr. Nature of the ferroelectric phase transition in PbTiO3. Phys. Rev. B. 1994, 50: 13168~13180
    12肖定全.铁电薄膜的物理性能和应用.物理. 1995,7: 433 ~ 438
    13干福熹.信息材料.天津大学出版社, 2000: 469~531
    14王悦辉,庄志强.铁电薄膜材料的研究进展.现代技术陶瓷, 2002, 4: 19~22
    15 D.J. Kim, J.P. Maria, A.I. Kingon and S.K. Streiffer. Evaluation of intrinsic and extrinsic contributions to the piezoelectric properties of Pb(Zr1-xTx)O3 thin films as a function of composition. J. Appl. Phys. 2003, 93: 5568~5575
    16 M. W. Gole, W.D. Nothwang, C. Hubbard, E. Ngo and M. Ervin. Low dielectric loss and enhanced tenability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods. J. Appl. Phys. 2003, 93: 9218~9225
    17 H.W. Wang, S.W. Nien and K.C. Lee. Enhanced tenability and electrical properties of barium strontium titanate thin films by gold doping in grains. Appl. Phys. Lett., 2004, 84(15): 2874~2876
    18黄龙波,李佐宜,卢德新等.溅射制备铁电薄膜及其性能测试德研究.人工晶体学报. 1994, 23(4): 291~295
    19 I. Kanno, S. Hayashi, R. Takayama et al. Processing and Characterization of Ferroelectric Thin Films by Muti-ion-beam Sputtering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1996, 112(1): 125~128
    20赵新伟,裴志斌,田长生.溶胶-凝胶法制备铁电薄膜.材料工程. 1994, 17: 24~31
    21 M. Algueró, M. L. Calzada. L. Pardo. The Effect of Film Thickness on the Ferroelectric Properties of Sol-gel Prepared Lanthanum Modified Lead Titanate Thin Films. Journal of the European Ceramic Society. 1999, 19(7): 1481~1484
    22陈逸清,郑元荣,林成鲁等.脉冲准分子激光PZT薄膜德制备.中国激光. 1994, 2(8): 631~634
    23 L. Goux, M. Gervais, F. Gervais, C. Champeaux, A. Catherinot. Pulsed Laser Deposition of Fferroelectric BST Thin Films on Perovskite Substrates: an Infrared Characterization. The International Journal of Inorganic Materials. 2001, 3(7): 839~842
    24钟维烈.第八章热释电效应.《铁电体物理学》.科学出版社.(2002):534
    25殷福星,谷南驹.铁电体陶瓷的晶体结构及介电特性.材料科学与工程. 1995, 50: 28 ~33
    26李杰,韦平,汪根林,江平开.高介电复合材料及其介电性能的研究.绝缘材料. 2003, 5: 3 ~ 6
    27方俊鑫,殷之文.第四章电介质的唯象理论.《电介质物理学》.科学出版社.(2000): 184~184,189~189
    28 A.V.Bune,Chuanxing Zhu and stephen Ducharme. Piezoelectric and pyroelectric properties of ferroelectric Langmuir- Langmuir- Blodgett polymer films. Journal of applied physics. 1 June 1999,85:7869~7873
    29 C.Wesley,Tipton,K.Kirchner,R.Godfrey, M.Cardenas, S.Aggarwal,H.Li, R.Ramesh. Enhanced-response pyroelectric heterostructures. Applied physics letters. 9 Octobers 2000:2388~2390
    30卢朝靖,邝安祥,王世敏,黄桂玉.PbTiO3薄膜的热释电特性研究.科学通报.1994.3,VOL.39 NO.6: 502~504
    31 A.Ignatiev, Y.Q.Xu, N.J.Wu, D.Liu. Pyroelectric,ferroelectric and dielectric properties of Mn and Sb-doped PZT thin films for uncooled IR detectors. Materials Science and Engeering. 1994, B56: 191~194
    32 M.A. Itskovskya. Pyroelectric hysteresis loop at ferroelectric phase transition. Journal of Applied Physics Communications. 15 April 1999,VOL.85 NO.8.:4256~4258
    33 Majed S.Mohammed, Gregory W.Auner, Ranta.Naik. Temperature dependence of conventional pyroelectric coefficients for compositionally graded BaxSr1-xTiO3 films Journal of Applied Physics 84.15 September 1998:3322~3325
    34 Kingon Angus I, Streiffer Stephen K. Ferroelectric Films and Devieces. Curruent Opinion in Solid State & Materials Science. 1999, 4(1): 39~44
    35 Briuker, C.Jeffrey/Scherer. Sol-Gel Science: The physics and chemistry of Sol-Gel processing. Academic Press. INC 1990,04,28
    36张柏顺,章天金.钛酸锶钡薄膜的制备及其光学特性的研究.电子元件与材料, 2004, 23(12): 1~3
    37朱冬生,赵朝晖.溶胶-凝胶法制备纳米薄膜的研究进展.材料导报, 2003, 17(专): 53~55
    38 C.H. Yang, Z. Wang. Preparation and main characteristics of lead-free K0.5Bi0.5TiO3 ferroelectric thin films. J. Cryst. Growth, 2004: 304~307
    39 W. Gong and J.F. Li. Effect of pyrolysis temperature on preferential orientation and electrical properties of sol-gel derived lead zironate titanate films. J. Euro. Geramic Society, 2004, 24: 2977~2982
    40 Z. J. Wei and S. Bo. Dielectric and ferroelectric properties of Ba(Sn0.15Ti0.85)O3 thin films grown by a sol-gel process. Materials Research Bulletin, 2004, 39: 1599~1606
    41 N.V. Gridharan, S. Madeswaran and S. Jayavel. Structural morphology and electrical studies on ferroelectric bismuth titanate thin films prepared by sol-gel technique. J. Cryst. Growth, 2004: 468~472
    42新野正之,平井教雄,渡边龙三.倾斜机能材料.日本复合材料学会志, 1987, 13: 257~264
    43 S. Suresh. Graded materials for resistence to contact deformation and damage. Science. 2001, 292: 2447~2451
    44林晨,林化春,王国元,陈东,杨光义.纳米材料及其前景展望.青岛建筑工程学院学报. 2001, 22(4): 92~95
    45黄旭涛,严密.功能梯度材料:回顾与展望.材料科学与工程. 1997, 15(4): 35~38
    46肖定全.集成铁电学与铁电集成薄膜.物理. 1994, 10: 577~581
    47 Yukio Watanabe. Theoretical Stability of the Polarization in Insulating Ferroelectric/Semiconductor Structures. J. Appl. Phys. 1998, 83(4): 2179~2193
    48 P. Wurfel and I.P. Batra. Depolarization-field-induced Instability in Thin Ferroelectric Films-Experiment and Theory. Phys. Rev. B. 1973, 8(11-1): 5126~5133
    49 M.D. Glinchuk, B.Y. Zaulychny, and V.A. Stephanovich. Influence of semiconducting electrodes on properties of thin ferroelectric films. Phys. Stat. Sol.(b), 2006, 243: 542~554
    50 W. L. Zhong, Y. G. Wang and P. L. Zhang. Size Effects on Phase Transitions in Ferroelectric Films. Phys. Lett. A. 1994, 189: 121~126
    51 T.Q. Lü, W.W Cao. Generalized Continuum Theory for Ferroelectric Thin Films. Phys. Rev. B. 2002, 66: 024102-1~024102-5:1~5
    52 D. Czekaj, A. Lisińska-Czekaj, M.F. Kuprianov and Yu.N. Zakharov. Pyroelectric properties of the multi-component ferroelectric ceramic materials. J.Euro.Cera.Soci. 1999, 19:1149~1152
    53 D.H. Bao, X. Yao and L.Y. Zhang. Dielectric enhancement and ferroelectric anomaly of compositionally graded (Pb, Ca)TiO3 thin films derived by amodified sol-gel technique. Appl.Phys.Lett. 2000, 76(19):2779~2781
    54 S.G. Ernesto, G.B. Rubén and C.R. Victor. Pyroelectric properties of Pb0.88Ln0.08Ti0.98Mn0.02O3(Ln=La, Sm, Eu) ferroelectric ceramic system. Mater. Chara. 2003, 50:349~352
    55 H. Achard, H. Macéand L. Peccoud. Device Processing and Integration on Ferroelectric Thin Films for Memory Applications. Microelectronic Engineering. 1995, 29(1-4): 19~28
    56 V. I. Petrovsky and A. S. Sigoy. Integrated Ferroelectric Structures for Informations Storage and CCD Microprocessor Devices. Microelectronic Engineering. 1995, 29(1): 11~18
    57 Y. G. Wang, P. L. Zhang, W. L. Zhong. Ferroelectric Films Described by Transverse Ising Model with Long-range Interactions. Solid State Commun.1997, 101(11): 807~810
    58 B. Jiang, J. L. Peng, L. A. Bursill et al. Size Effects on Ferroelectricity of Ultrafine Particles of PbTiO3. J. Appl. Phys. 2000, 87(7): 3462~3467
    59 M. D. Glinchuk, E. A. Eliseev, V. A. Stephanovich. The Depolarization Field Effect on the Thin Ferroelectric Films Properties. Physica B. 2002, 322(3): 356~370
    60 Y. Park. Surface Effect and Phase Transitions in Ferroelectric Thin Films. Solid State Commun. 1999, 112(3): 167~171
    61 R. Kretschmer, K. Binder. Surface Effects on Phase Transitions in Ferroelectrics and Dipolar Magnets. Phys. Rev. B. 1979, 20(3-1): 1065~1076
    62 H. Müller. Properties of Rochelle Salt. Phys. Rev. 1994, 57: 829~832
    63 M. Kiyotoshi, K. Eguchi. Ultrathin SrTiO3 Films Prepared by Chemical Vapor Deposition on Nb-doped SrTiO3 Substrates. Appl. Phys. Lett. 1995, 67(17): 2468~2470
    64 Y. Watanabe, Y. Matsumoto, H. Kuniomo et al. Crystallograhic and Electrical Properties of Epitaxial BaTiO3 Film Grown on Conductive and Insulating Perovskite Oxides. Jpn. Appl. Phys. 1994, 33(9B): 5182~5186
    65 E. K. Tan, J. Osman, D. R. Tilley. Calculation of Intrinsic Hysteresis Loops of Ferroelectric Loops of Ferroelectric Thin Films. Solid State Commum. 2001, 117(2): 59~64
    66 Lye-Hock Ong, Junaidah Osman, D.R.Tilley. Landau Theory of Second-order Phase Transitions in Ferroelectric Films. Phys. Rev. B. 2001, 63: 144109-1~ 144109-10
    67 H.K. Sy. Localized magnetism in a superlattice. Phys. Rev. B. 1992, 46: 9220~9223
    68 C.L. Wang, W.L. Zhong and P.L. Zhang.The Curie temperature of ultra-thin ferroelectric films. J. Phys.: Condens. Matter. 1992, 3: 4743~4749
    69 B.D. Qu, W.L. Zhong, and P.L. Zhang. Phase-transition behavior of the spontaneous polarization and susceptibility of ferroelectric thin films. Phys. Rev. B. 1995, 52(2): 766~770
    70 C.L. Wang, Y. Xin, X.S. Wang, W.L. Zhong and P.L. Zhang. Phase transition properties of ferroelectric superlattices with three laternative layers. Phys. Lett. A. 2000, 268: 117~122
    71 X.G. Wang, S.H. Pan and G.Z. Yang. Phase transitions in Ising magnetic films and superlattices. Solid State Commun. 1999, 113: 59~62
    72 D.L. Yao, Y.Z. Wu and Z.Y. Li. Long-range effect on the Curie temperature of ferroelectric films. Phys. Stat. Sol.(b). 2002, 231: 3~10
    73 T. Kaneyoshi. Phase diagrams of ferroelectric thin films described by the transverse Ising model. Physica A. 2003, 319: 355~361
    74 J.M. Wesselinowa. On the theory of thin ferroelectric films. Phys. Stat. Sol.(b). 2001, 223: 737~743
    75 J.M. Wesselinowa. Dynamical properties of thin ferroelectric films described by the transverse Ising model. Phys. Stat. Sol.(b). 2002, 231: 187~191
    76 J.M. Wesselinowa and S. Trimper. Thickness dependence of the dielectric function of ferroelectric thin films. Phys. Stat. Sol.(b). 2004, 241: 1141~1148
    77 T. Kaneyoshi. Surface phase diagrams of a semi-infinite ferroelectric system described by the transverse Ising model. J. Magn. Magn. Mater. 2003, 264: 30~35
    78 T. Kaneyoshi. The effects of bulk and surface field on the phase diagram of a transverse Ising thin film. Phys. Stat. Sol.(b). 2003, 237: 592~598
    79 T. Kaneyoshi. New aspects of magnetic properties in a transverse Ising thinfilm. Physica A. 2003, 328: 174~184
    80 B.H. Teng and H.K. Sy. Phase diagrams of the transverse Ising model with a four-spin interaction.Europhys. Lett. 2006, 73: 601~606
    81 J. Qing and M.T. Yong. Critical line between the first-order and the second-order phase transition for ferroelectric thin films described by TIM. Phys. Lett. A. 2005, 336: 216~222
    82 J. M. Wesselinowa. Dielectric Susceptibility of Ferroelectric Thin Films. Solid State Commun. 2002, 121(9-10): 489~492
    83 P.F. Nie, Jian Zhang, Zhen Yin et al. Theoretical Study of Dielectric Susceptibility in Ferroelectric Thin Films. Phys. Lett. A. 2001, 290(3-4): 176~181
    84 H. Muller. Properties of Rochelle Salt. Physical Review, 1940, 57: 829~839
    85 H. Muller. Properties of Rochelle Salt.Ⅲ. Physical Reviwe, 1940, 58: 565~73
    86钟维烈.铁电体物理学.科学出版社, 2000: 8~9, 130~150
    87 D.R. Tilley and B. Zeks. Landau theory of phase transitions in thick films. Solid State Commun. 1984, 49, 823~827
    88 W.L. Zhong, B.D. Qu, P.L. Zhang, and Y.G. wang. Thickness dependence of the dielectric suseceptibility of ferroelectric thin films. Phys.Rev.B. 1994, 50(17): 12375~12379
    89 J.C. Slater. Theory of the transition in KH2PO4. J.Chem. Phys. 1941, 9, 16~33
    90 J.C. Slater. The Lorentz correction in Barium Titanate. Phys. Rev. 1950, 78: 748~761
    91 W. Cochran. Crystal stability and theory of ferroelectricity. Phys. Rev. Lett. 1959, 3: 412~414
    92 W. Cochran. Crystal stability and the theory of ferroelectricity. Adv. Phys. 1960, 9: 387~423
    93钟维烈.铁电体物理学.科学出版社, 2000: 155~156, 164~169
    94 W. Cochran. Crystal stability and the theory of ferroelectricity partⅡ. Piezoelectric crystals. Rep. Adv. Phys. 1961, 10: 401~420
    95 W. Cochran. Lattice vibrations. Rep. Prog, Phys. 1963, 26: 1~45
    96 P.G. de Gennes. Collective motion of hydrogen bonds. Solid State Commun.1963: 1, 132~137
    97 R. Brout, K. Muller, A, and H. Thomas. Tunnelling and collective excitations in a microscopic model of ferroelectricity. Solid State Commun. 1966, 4: 507~510
    98 C.L. Wang, W.L. Zhong, and P.L. Zhang. The Curie temperature of ultra-thin ferroelectric films. J. Phys: Condens. Matter 1992, 4: 4743~4749
    99 C.L. Wang, S.R.P. Smith, and D.R. Tilley. Ferroelectric thin films described by an Ising model in a transverse field. J. Phys: Condens. Matter 1994, 6: 9633~9646
    100 C.L. Wang, Y.Xin, X.S. Wang, and W.L. Zhong. Size effects of ferroelectric particles described by the transverse Ising model. Phys. Rev. B. 2000, 62: 11423~11427
    101 M. Born and K. Huang. Dynamical Theory of Crystal Lattices. Oxford University Press, Oxford, 1954.
    102 I.P. Batra, B.D. Silverman. Thermodynamic stability of thin ferroelectric films. Solid State Commun. 1972, 11: 291~294
    103 I.P. Batra, P. Wurfel and B.D. Silverman. Phase transition, stability and depolarization field in ferroelectric thin films. Phys. Rev. B. 1973, 8: 3257~3265
    104 I.P. Batra, P. Wurfel and B.D. Silverman. New type of first-order phase transition in ferroelectric thin films. Phys. Rev. Lett. 1973, 30: 384~387
    105 T.Q. Lü, Z.R. Zheng and P.N. Sun. Influence of interface between two ferroelectrics in a film on polarization distribution. Phys. Status. Solidi B. 2003, 240: 255~258
    106 A.M. Glass, K. Nassau, and J.W. Shiever. Evolution of ferroelectricity in ultrafine-grained Pb5Ge3O11 crystallized from the glass. J. Appl. Phys. 1977, 48: 5213~5216
    107 K. Ishikawa, K. Yoshikawa, and N. Okada. Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B. 1988, 37: 5852~5855
    108 W. Zhong, B. Jiang, P. Zhang, and J.M. Ma, H.M. Cheng and Z.H. Yang. Phase transition in PbTiO3 ultrafine particles of different sizes. J. Phys. Condens. Matter. 1993, 5: 2619~2624
    109 W.L. Zhong, B. D. Qu, P.L. Zhang, and Y.G. Wang. Thickness dependence of the dielectric susceptibility of ferroelectric thin films. Phys. Rev. B. 1994, 50: 12375~12380
    110 A.A. Burk and L.B. Rowland. Reduction of unintentional aluminum spikes at SiC vapor phase epitaxial layer/substrate interfaces. Appl. Phys. Lett. 1996, 68: 382~384
    111 A. Erbil, Y. Kim and R.A. Gerhardt. Giant permittivity in epitaxial ferroelectric heterostructures. Phys. Rev. Lett. 1996, 77: 1628~1631
    112 H. Tabata and T. Kawai. Dielectric properties of strained (Sr,Ca)TiO3/(Ba,Sr)TiO3 artificial lattices. Appl. Phys. Lett. 1997, 70: 321~323
    113 Y. Yoneda, T. Okabe, K. Sakaue, H. Terauchi, H. Kasatani and K. Deguchi. Structural characterization of BaTiO3 thin films grown by molecular beam epitaxy. J. Appl. Phys. 1998, 83: 2458~2461
    114 B. Jiang, J.L. Peng, L.A. Bursill, and W.L. Zhong. Size effects on ferroelectricity of ultrafine particles of PbTiO3. J. Appl. Phys. 2000, 87: 3462~3467
    115 H. Chaib, L.M. Eng, F. Schlaphof, and T. Otto. Surface effect on the electrical and optical peroperties of barium titanate at room temperature. Phys. Rev. B. 2005, 71: 085418-1~085418~13
    116 A.R. Chaudhuri, and S.B. Krupanidhi. Dc leakage behavior in vanadium-doped bismuth titanate thin films. J. Appl. Phys. 2005, 98: 094112-1~094112-6
    117 N. Ortega, P. Bhattacharya, R.S. Katiyar, P. Dutta, A. Manivannan and M.S. Seehra. Multiferroic properties of Pb(Zr,Ti)O3/CoFe2O4 composite thin films. J. Appl. Phys. 2006, 100: 126105-1~125105-3
    118 R. Ranjith, A.R. Chaudhuri, S.B. Krupanidhi, and P. Victor. Role of template layer on microstructure, phase formation and polarization behavior of ferroelectric relaxor thin films. J. Appl. Phys. 2007, 101: 104111-1~104111-9
    119 D.H. Bao, N. Mizutani, L.Y. Zhang and X. Yao. Comosition gradient optimization and electrical characterization of (Pb,Ca)TiO3 thin films. J. Appl. Phys. 2001, 89(1):801~803
    120 Y. Watanabe. Theoretical stability of the polarization in a thin semiconducting ferroelectric. Phys. Rev. B. 1998, 57: 789~804
    121 E. V. Charnaya, O.S. Pogorelova, and C. Tien. Phenomenological model for the antiferroelectric phase transition in thin films and small particles. Physica B. 2001, 305: 97~104
    122 E.-K. Tan, J. Osman, and D.R. Tilley. Calculation of intrinsic hysteresis loops of ferroelectric thin films. Solid State Commun. 2001, 117: 59~64
    123 P. Wurfel, I.P. Batra and J.T. Jacobs. Polarization instability in thin ferroelectric films. Phys. Rev. Lett. 1973, 30: 1218~1221
    124 P. Wurfel and I.P. Batra. Depolarization-field-induced instability in thin ferroelectric films-experiment and theory. Phys. Rev. B. 1973, 8: 5126~5133
    125 P. Werfel and I.P. Batra. Using Fermi-Dirac statistics in the depolarization-field calculations. Phys. Rev. B. 1974, 10: 1118~1121
    126 S. Lin, T.Q. Lüand W.W. Cao.Theoretical study on the influence of surface imperfections on the properties of ferroelectric thin films in first-order ferroelectric systems. Phys. Stat. Sol.(b). 2006, 243(12): 2952~2961
    127 T.R. Taylor and P.J. Hansen, Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films, Appl. Phys. Lett. 2002, 80: 1978~1980
    128 C.L. Wang, P.L. Zhang, Y.G. Wang, B.D. Qu and W.L. Zhong. Ultra-thin ferroelectric films described by the transverse Ising model. Ferroelectrics. 1994, 152:213~218
    129 Z.R. Zheng and T.Q. Lü. Influence of imperfect surface on properties of ferroelectric thin film. Phys. B. 2003, 334:456~460
    130 K. Ishikawa, K. Yoshikawa and N. Okada. Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B. 1988, 37: 5852~5855
    131 S. Chattopadhyay, P. Ayyub, V.R. Palkar and M. Multani. Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3. Phys. Rev. B. 1995, 52: 13177~13183
    132 T. Kanata, T. Yoshikawa and K.Kubota. Grain-size effects on dielectric phase transition of BaTiO3 ceramics. Sol. Stat. Commun. 1987, 62:765~767
    133 A. Hadni and R. Thomas. High electric fileds and surface layers in very thinsingle crystal plates of triglycine sulfate. 1984, 59(3-4): 221~232
    134 J.M. Wesselinowa and Al.B. Dimitrov. Influence of substrates on the statical and dynamical properties of ferroelectric thin films. Phys. Stat. Sol.(b). 2007, 244(6): 2242~2253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700