用户名: 密码: 验证码:
磁控溅射Ni-Mn-Ga合金薄膜的相变行为与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用磁控溅射方法制备了Ni-Mn-Ga磁性形状记忆合金薄膜,研究了溅射工艺对薄膜表面形貌、化学成分的影响规律,揭示了影响薄膜化学成分的物理机制;采用示差扫描热分析、X射线衍射分析、透射电子显微观察、磁学和光学性能测试等手段研究了薄膜的马氏体相变行为、微观组织、磁致应变和光学反射率,确定了大光学反射率薄膜的马氏体晶体结构。
     研究表明,溅射工艺对Ni-Mn-Ga薄膜的表面粗糙度和化学成分有显著影响。薄膜表面粗糙度随Ar工作压强和溅射功率的增大以及衬底温度的升高而增大。薄膜中Ni含量随溅射功率的增大而减少,随衬底负偏压的增大而增加;Mn与Ga含量随溅射功率的增大而增加,随衬底负偏压的增大而减少。
     研究发现,沉积态薄膜存在残余压应力,且随膜厚的增大而减小,随衬底负偏压的增加而增大。沉积于未加热衬底的薄膜室温下处于部分结晶状态,晶化过程中残余压应力有助于减小薄膜体积,促进晶化,导致晶化激活能降低,经823K退火1小时后,薄膜完全晶化。
     Ni-Mn-Ga薄膜在冷却和加热过程中发生一步热弹性马氏体相变与逆相变。价电子浓度的增大导致母相稳定性降低,使薄膜马氏体相变温度升高。Ni56Mn27Ga17薄膜的Ms温度高达584K,可望成为有应用前景的高温形状记忆薄膜。采用纳米压痕测试发现Ni49.34Mn26.96Ga23.4、Ni48.82Mn27.14Ga24.04和Ni47.95Mn26.75Ga25.3薄膜具有超弹性行为。
     透射电镜观察证实,薄膜晶粒尺寸仅为200~500nm,低于Ni-Mn-Ga合金块材晶粒尺寸约两个数量级以上。Ni54Mn25.1Ga20.9薄膜室温下处于马氏体状态,为七层调制正交结构,马氏体亚结构为(011)I型孪晶,马氏体变体界面清晰、平直。非调制四方结构Ni56Mn27Ga17薄膜马氏体基体内存在立方结构γ相,其马氏体亚结构为(111)I型孪晶。
     磁学和光学性能测量表明,Ni-Mn-Ga薄膜的居里温度对成分不敏感。薄膜的饱和磁化强度、矫顽力和剩磁均随测试温度的降低而增大。Ni-Mn-Ga薄膜的磁致应变显著依赖于测试温度。当测试温度低于Af温度时,Ni49.34Mn26.96Ga23.4和Ni50.3Mn27.3Ga22.4薄膜的饱和磁致应变随测试温度的升高先增大后减小,在Ms温度附近达最大值。当测试温度低于Mf温度时,Ni49.33Mn30.1Ga20.57薄膜的饱和磁致应变随测试温度的降低而增大。处于马氏体状态的Ni-Mn-Ga薄膜的光学反射率显著依赖于表面粗糙度和晶体结构,随表面均方根粗糙度的增大而降低。在5M、7M和T型马氏体中,具有非调制四方结构的T型马氏体薄膜光学反射率最大。
Ni-Mn-Ga magnetic shape memory alloy thin films have been fabricated by usig magnetron sputtering technique. The results clarify the effect of sputtering parameters on surface morphology and chemical compositions of Ni-Mn-Ga thin films, revealing the physical mechanism of composition variations. At the same time, martensitic transformation, microstructure, magnetic-field-induced strain and optical reflectivity of the thin films have been systematically investigated by means of DSC, XRD, TEM, magnetic and optical properties measurements, respectively. The martensitic structure of Ni-Mn-Ga thin films with high reflectivity is determined.
     The experimental results show that process parameters have remarkable influence on surface roughness and chemical compositions of Ni-Mn-Ga thin films. The surface roughness of the thin films increases with increasing Ar working pressure, sputtering power and substrate temperature. It is shown that Ni content in Ni-Mn-Ga thin films decreases with increasing the sputtering power and increases with the substrate negative bias voltage increasing, whereas Mn and Ga content increase with increasing the sputtering power and decrease with the substrate negative bias voltage increasing.
     According to experimental results, residual compressive stress exists in Ni-Mn-Ga thin films. The residual compressive stress dramatically depends on film thickness and the substrate negative bias voltage, decreasing with increasing film thickness and increasing with the substrate negative bias voltage increasing. Based on XRD and DSC analysis, the as-deposited Ni-Mn-Ga thin films are in partially crystallized state when substrates are not heated. During crystallization the residual compressive stress is beneficial to reducing the volume of Ni-Mn-Ga thin films, consequently facilitating crystallization of the thin films. As a result, the crystallization activation energy decreases with increasing residual compressive stress. After annealing at 823K for 1 hour, the as-deposited Ni-Mn-Ga thin films are fully crystallized.
     It is shown that Ni-Mn-Ga thin films undergo one-step thermoelastic martensitic transformation during the process of cooling and heating. And martensitic transformation temperatures increase with increasing valence electron concentration due to the instability of parent phase with a larger valence electron concentration. It is found that the temperature Ms of Ni56Mn27Ga17 thin film can approach as high as 584K, which causes this thin film to be a potential high temperature shape memory alloy thin film. In addition, superelasticity in Ni-Mn-Ga thin films has been obtained during loading and unloading in Nanoindentation experiments.
     Based on TEM observations, it is found that the grain size of Ni-Mn-Ga thin films is in the range between 200 and 500nm, two orders of magnitude smaller than that of Ni-Mn-Ga bulk alloys. Ni54Mn25.1Ga20.9 thin film is in martensite state at room temperature, and the film is determined to be seven-layered modulated orthorhombic structure. For Ni56Mn27Ga17 thin film, the body-centered cubicγphase exists in the matrix of non-modulated tetragonal martensite. From TEM and HREM observations, the interfaces of martensite variants in Ni-Mn-Ga thin films are clear and straight. And the substructure of martensite variants in Ni54Mn25.1Ga20.9 and Ni56Mn27Ga17 thin film are type I (011) and (111) twin relationship, respectively.
     In terms of the analysis of magnetic properties, it is found that the Curie temperatures of Ni-Mn-Ga thin films are insensitive to film compositions, and the saturation magnetization, coercive force and residual magnetization of Ni-Mn-Ga thin films increase with decreasing operation temperature. It is also shown that the saturated magnetic-field-induced strains (MFIS) of Ni-Mn-Ga thin films remarkably depend on operation temperatures. The saturated MFIS of Ni49.34Mn26.96Ga23.4 and Ni50.3Mn27.3Ga22.4 thin films firstly increases and then decreases with increasing operation temperature below Af, and the maximum saturated MFIS can be obtained around Ms temperature. When the operation temperature is lower than Mf,the saturated MFIS of Ni49.33Mn30.1Ga20.57 thin film increases with decreasing operation temperature. It is found that reflectivity of Ni-Mn-Ga thin film through optical properties measurements is closely related to film surface roughness and crystallographic structure. The reflectivities of Ni-Mn-Ga thin films in martensite state have a remarkable dependence on crystal structure and surface roughness. The reflectivities of Ni-Mn-Ga thin films increase with increasing root-mean-square surface roughness of the thin films. Among Ni-Mn-Ga thin films with various martensitic structures (5M, 7M and T), the reflectivity of the non-modulated Ni-Mn-Ga thin film is larger than those of Ni-Mn-Ga thin films with 5M or 7M structure.
引文
1 K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin. Large Magnetic-field-induced Strains in Ni2MnGa Single Crystals. Appl. Phys. Lett. 1996, 69(13): 1966~1968
    2 V.A. Chernenko, V.A. L’vov, E. Cesari. Martensitic Transformation in Ferromagnets: Experiment and Theory. J. Magn. Magn. Mater. 1999, 196-197: 859~860
    3 K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida. Promising Ferromagnetic Ni-Co-Al Shape Memory Alloy System. Appl. Phys. Lett. 2001, 79: 3290~3292
    4 A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, K. Isshida. Magnetic Properties and Large Magnetic-field-induced Strains in off-stoichometric Ni-Mn-Al Heusler Alloys. Appl. Phys. Lett. 2001, 77: 3054~3056
    5 K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, K. Ishida. Magnetic and Martensitic Phase Transitions in Ferromagnetic Ni-Ga-Fe Shape Memory Alloys. Appl. Phys. Lett. 2002, 81: 5201~5203
    6 Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainum, K. Ishida, K. Oikawa. Magnetic and Martensitic Transformations of NiMnX (X=In, Sn, Sb) Ferromagnetic Shape Memory Alloys. Appl. Phys. Lett. 2004, 85: 4358~4360
    7 Y. Liu, W. Zhou, B. Jiang, X. Qi, Y. Liu, J. Wang, C. Feng. Magnetic-field -induced Reversible Strain in Co-Ni Single Crystal. J. Phys. IV France. 2003, 112: 1013~1016
    8 E. Cesari, V. A. Chernenko, V.V. Kokorin, J. Pons, C. Segui. Physical Properties of Fe-Co-Ni-Ti Alloy in the Vicinity of Martensitic Transformation. Scripta Mater. 1999, 40: 341~345
    9 X. Lu, Z. Qin, X. Chen. Two-step Martensitic Transformation Characteristics of Polycrystalline NiMnGa Heusler Alloys. Mater. Sci. Forum. 2002, 394-395: 549~552
    10 R. Oshima, S. Muto, M. Takahashi. Precursors of Thermoelastic fcc-fctMartensite Transformation of Fe3Pt Alloys. Mater. Sci. Forum. 2000, 327-328: 445~448
    11 A. Sozinov, N. Lanska, K. Ullakko, V. K. Lindroos. Microstructure Changes in Ni-Mn-Ga Alloys Connected with MSM Effect. Metall. Nove. Tech. 2001, 23: 157~163
    12 J. Pons, V. A. Chernenko, R. Santamarta, E. Cesari. Crystal Structure of Martensitic Phases in Ni-Mn-Ga Shape Memory Alloys. Acta Mater. 2000, 48: 3027~3038
    13 S.J. Murray, M.A. Marioni, A.M. Kukla, J. Robinson, R.C. O’Handley, S.M. Allen. Large Field Induced Strain in Single Crystalline Ni-Mn-Ga Ferromagnetic Shape Memory Alloy. J. Appl. Phys. 2000, 87(9): 5774~5776
    14 S.J. Murray, M. Marioni, P.G. Tello, S.M. Allen, R.C. O’Handley. Giant Magnetic-field-induced Strain in Ni-Mn-Ga Crystals: Experimental Results and Modeling. J. Magn. Magn. Mater. 2001, 226-230: 945~947
    15 T. Castá, E. Vives, P.A. Lindgard. Modeling Premartensitic Effects in Ni2MnGa: A Mean-field and Monte Carlo Simulation Study. Phys. Rev. B. 1999, 60(10): 7071~7084
    16 O. Heczko, L. Straka. Magnetic Properties of Stress-induced Martensite and Martensitic Transformation in Ni-Mn-Ga Magnetic Shape Memory Alloy. Mater. Sci. Eng. A. 2004, 378: 394~398
    17 M. Matsumoto, M. Ohtsuka, H. Miki, V.V. Khovailo, T. Takagi. Ferromagnetic Shape Memory Alloy Ni2MnGa. Mater. Sci. Forum. 2002, 394-395: 545~548
    18 S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley. 6% Magnetic field-induced Strain by Twin-boundary Motion in Ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett. 2000, 77: 886~888
    19 A. Sozinov, A A. Likhachev, N. Lanska, K. Ullakko. Giant Magnetic-field-induced Strain in NiMnGa Seven-layered Martensitic Phase. Appl. Phys. Lett. 2002, 80: 1746~1748
    20 R. Tickle, R.D. James. Magnetic and Magnetomechanical Properties of Ni2MnGa. J. Magn. Magn. Mater. 1999, 195: 627~638
    21 R. Hayashi, S.J. Murray, S.M. Allen, R.C. O’Handley. Magnetic andMechanical Properties of FeNiCoTi Magnetic Shape Memory Alloy. Sens. Actuators A. 2000, 81: 219~223
    22 S.J. Murray, S.M. Allen, R.C. O'Handley. Magneto-mechanical Performance and Mechanical Properties of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys. SPIE. 2000, 3992: 387~395
    23 K. Kuribayashi, M. Yoshitake, S. Ogawa. Reversible SMA Actuator for Micron Sized Robot. IEEE Micro. Electro. Mech. Syst. MEMS. 1990: 217~221
    24 A. Ishida, A. Takei, S. Miyazaki. Shape Memory Thin Film of Ti-Ni Formed by Sputtering. Thin Solid Films. 1993, 228: 210~214
    25 S. Miyazaki, K. Nomura, A. Ishida. Effect of Plastic Strain on Shape Memory Characteristics in Sputter-deposited Ti-Ni Thin Films J. Phys. IV. France.1995, 5: 672~677
    26 D. Johnson. Vacuum-deposited TiNi Shape Memory Film: Characterization and Applications in Microdevices. J. Micromech. Microeng. 1990, 1: 34~41
    27 A. Ishida, M. Sato, A. Takei, S. Miyazaki. Shape Memory Characteristic of Sputter-deposited Ti-Ni Thin Films. Mater. Trans. JIM. 1995, 36: 1349~1355
    28 S. Kajiwara, T. Kikuchi, K. Ogawa, T. Matsunaga, S. Miyazaki. Stress-strain Curves of Sputtered Thin Film of Ti-Ni. Philos. Mag. Lett. 1996, 74: 137~144
    29 A. Ishida, M. Sato, A. Takei, K. Nomura, S. Miyazaki. Effect of Ageing on Shape Memory Behavior of Ti-51at.%Ni Thin Film. Metal. Mater. Trans. A .1996, 45(5): 3753~3755
    30 A. Ishida, K. Ogawa, M. Sato, S. Miyazaki. Microstructure of Ti-48.2%Ni Shape Memory Thin Films. Metal. Mater. Trans. 1997, 28: 1985~1991
    31 M. Sato, A. Ishida, S. Miyazaki. Two-way Shape Memory Effect of Sputter-deposited Thin Films of Ti-51.3%Ni. Thin Solid Films. 1998, 315: 305~309
    32 A.N. Vasil’ev, A. Kaykper, V.V. Kokorin, V.A. Chernenko, T. Takagi, J. Tani. Structural Phase Transitions Induced in Ni2MnGa by Low-Temperature Uniaxial Compression. JETP Lett. 1993, 58: 306~308
    33 V.A. Chernenko, E. Cesari, J. Pons, C. Segui. Phase Transformation in Rapidly Quenched Ni-Mn-Ga Alloys. J. Mater. Res. 2000, 15(7):1496~1504
    34 V.A. Chernenko, J. Pons, C. Segui, E. Cesari. Premartensitic Phenomena and Other Phase Transformations in Ni-Mn-Ga Alloys Studied by Dynamical Mechanical Analysis and Electron Diffraction. Acta Mater. 2002, 50: 53~60
    35 L.Y. Dai, J. Cullen, M. Wuttig. Intermartensitic Transformations in Ni-Mn-Ga Alloy. J. Appl. Phys. 2004, 95(11): 6957~6959
    36 O. S?derberg, A. Sozinov, N. Lanska, Y. Ge, V.K. Lindroos, S.P. Hannula. Effect of Intermartensitc Reaction on the Co-occurrence of the Magnetic and Structural Transition in Ni-Mn-Ga Alloys. Mater. Sci. Eng. A. 2006, 438-440: 957~960
    37 N.Glavatska, G. Mogylny, I.Glavatskiy, V.Gavriljuk. Temperature Stability of Martensite and Magnetic-field-induced Strain in Ni-Mn-Ga. Scripta Mater. 2002, 46: 605~610
    38 A. Zheludev, S.M. Shapiro, P. Wochner, L.E. Tanner. Precursor Effects and Premartensitic Transformation in Ni2MnGa. Phys. Rev. B. 1996, 54: 15045~15050
    39 V.A. Chernenko, C. Segui, E. Cesari, J. Pons. Sequence of Martensitic Transformations in Ni-Mn-Ga Alloys. Phys. Rev. B. 1998, 57: 2659~2662
    40 B. Wedel, M. Suzuki, Y. Murakami, C .Wedel, T. Suzuki, D. Shindo, K. Itagaki. Low Temperature Crystal Structure of Ni-Mn-Ga Alloys. J. Alloy. Compound. 1999, 290: 137~143
    41 P. J. Webster, K.R.A. Ziebeck, S.L. Town, M. S. Peak. Magnetic Order and Phase Transformation in Ni2MnGa. Philos. Mag. B. 1984, 49(3): 295~310
    42 I.K. Zasimchuk, V.V. Kokorin, V.V. Martynov, A.V. Tkachenko, V.A. Chernenko. Martensite Crystal Structure in Ni2MnGa Alloy. Fiz. Met. Metall. 1990: 110~114
    43 I. Glavatskyy, N. Glavatska, O. S?derberg, S.P. Hannula, J.U. Hoffmann. Transformation Temperature and Magnetoplasticity of Ni-Mn-Ga Alloys with Si, In, Co or Fe. Scripta Mater. 2006, 54: 1891~1895
    44 V.V. Martynov. X-ray Diffraction Study of Thermally and Stress-induced Phase Transformations in Single-crystalline Ni-Mn-Ga Alloys. J. Phys. IV. France. 1995, 5(12): 91~100
    45 J. Pons, R. Santamarta, V.A. Chernenko, E. Cesari. Long-period Martensitic Structures of Ni-Mn-Ga Alloys Studied by High-resolution Transmission Electron Microscopy. J. Appl. Phys. 2005, 97: 0835161~0835167
    46 E. Cesari, V.A. Chernenko, V.V. Kokorin, J. Pons, C. Segui. Internal Friction Associated with the Structural Phase Transformations in Ni-Mn-Ga Alloys. Acta Mater. 1997, 45(3): 999~1004
    47 V.V. Martynov, V.V. Kokorin. The Crystal Structure of Thermally and Stress Induced Martensites in Nickel-Manganese-Gallium (Ni2MnGa) Single Crystals. J. Phys. III. 1992, 2: 739~749
    48 W.H. Wang, G.H. Wu, J.L. Chen, S.X. Gao, W.S. Zhan, G.H. Wen, X.X. Zhang. Intermartensitic Transformation and Magnetic-field-induced Strain in Ni52Mn24.5Ga23.5 Single Crystals. Appl. Phys. Lett. 2001, 79: 1148~1150
    49 V.V. Godlevsky, K.M. Rabe. Soft Tetragonal Distortion in Ferromagnetic Ni2MnGa and Related Materials from First Principles. Phys. Rev. B. 2001, 63: 1344071~1344075
    50 K. Inoue, K. Enami, M. Igawa, Y. Yamaguchi, Y. Morii, Y. Matsuoka. Neutron Diffraction Study on Shape Memory Effect of Ni2MnGa-based Alloys. JAERI. Rev. 2001, 5: 70~71
    51 K. Otsuka, T. Ohba, M. Tokonami, C.M. Wayman. New Description of Long Period Stacking Order Structures of Martensites inβ-phase Alloys. Scripta Metall. Mater. 1993, 29: 1359~1364
    52 A. Gonzalez, E. Obrado, L. Manosa, A. Planes, V.A. Chernenko, B.J. Hattink, A. Labarta. Premartensitic and Martensitic Phase Transitions in Ferromagnetic Ni2MnGa. Phys. Rev. B. 1999, 60: 7085~7090
    53 K. Tsuchiya, H. Nakamura, D. Ohtoyo, H. Nakayama, H. Ohtsuka, M. Umemoto. Composition Dependence of Phase Transformations and Microstructures in Ni-Mn-Ga Ferromagnetic Shape Memory Alloys. Adv. Mater. Eng. Tech. 2001, 1: 409~414
    54 V.A. Chernenko. E. Cesari, V.V. Kokorin, I.N. Vitenko. The Development of New Ferromagnetic Shape Memory Alloys in NiMnGa System. Scripta Metall. Mater. 1995, 33: 1239~1244
    55 V.A. Chernenko. Compositional Instability ofβ-phase in Ni-Mn-Ga Alloys. Scripta Mater. 1999, 40(5): 523~527
    56 V.V. Kokorin, V.V. Martynov, V.A. Chernenko. Stress Induced Martensitic Transformations in Ni2MnGa. Scripta Metall. Mater. 1992, 26: 175~177
    57 H.E. Karaca, I. Karaman, B. Basaran, Y.I. Chumlyakov, H.J. Maier. Magnetic Field and Stress Induced Martensite Reorientation in NiMnGa Ferromagnetic Shape Memory Alloy Single Crystals. Acta Mater. 2006, 54: 233~245
    58 V.V. Kokorin, V.A. Chernenko. The Martensitic Transformation in a Ferromagnetic Heusler Alloy. Phys. Met. Metall. 1989, 68: 111~115
    59 I. K. Zasimchuk, V.V. Kokorin, V.V. Martynov, A.V. Tkachenko, V.A. Chernenko. Crystal Structure of Martensite in the Heusler Alloy Ni2MnGa. Phys. Met. Metall. 1990, 69: 104~108
    60 V.A. Chernenko, V. L’vov, J. Pons, E. Cesari. Superelasticity in High-temperature Ni-Mn-Ga Alloys. J. Appl. Phys. 2003, 93(5): 2394~2399
    61 R. D. James, R. Tickle, M. Wuttig. Large Field-induced Strains in Ferromagnetic Shape Memory. Mater. Sci. Eng. A. 1999, 273-275: 320~325
    62 K. Ullakko. Magnetic Properties and Martensitic Transformation in Ni2MnGa Single Crystal. SPIE. 1996, 2779: 505~510
    63 K. Ullakko, J. K. Huang, V. V. Kokorin, R. C. O’Handley. Magnetically Controlled Shape Memory Effect in Ni2MnGa Intermetallics. Scripta Mater. 1997, 36: 1133~1138
    64 K. Ullakko. New Aspect of FSMA Ni-Mn-Ga. J. Mater. Eng. Perform. 1996, 5(3): 405~409
    65 M. Wuttig, L. Liu, K. Tsuchiya, R.D. James. Occurrence of Ferromagnetic Shape Memory Alloys. J. Appl. Phys. 2000, 87(9): 4707~4711
    66 A. Vassiliev. Magnetically Driven Shape Memory Alloys. J. Magn.Magn. Mater. 2002, 242-245(1): 66~67
    67 A. Planes, E. Obrado, L. Manosa, A. Gonzalez, A. Labarta. Magnetoelasticity in the Heusler Ni2MnGa Alloy. J. Magn.Magn. Mater. 1999, 196-197: 637~638
    68 X. Jin, D. Bono, R.C. O’Handley, S.M. Allen, T.Y. Hsu. Magnetic Field Effects on Strain and Resistivity during the Martensitic Transformation in Ni-Mn-Ga Single Crystals. J. Appl. Phys. 2003, 93(10): 8630~8632
    69 T. Kakeshita, T. Takeuchi, T. Fukada, M. Tsujiguchi, T. Saburi, R. Oshima.Giant Magnetostriction in an Ordered Fe3Pt Single Crystal Exhibiting a Martensitic Transformation. Appl. Phys. Lett. 2000, 77(10): 1502~1504
    70 W.H. Wang, G.H. Wu, J.L. Chen, C.H. Yu, S.X. Gao, W.S. Zhan, Z. Wang, Z.Y. Gao, Y.F. Zheng, L.C. Zhao. Stress-free Two-way Thermoelastic Shape Memory and Field Enhanced Strain in Ni52Mn24Ga24 Single Crystal. Appl. Phys. Lett. 2000, 77(20): 3245~3247
    71 A. Sozinov, A.A. Likhachev, K. Ullakko. Magnetic and Magnetomechanical Properties of Ni-Mn-Ga Alloys with Easy Axis and Easy Plane of Magnetization. SPIE. 2001, 4333: 189~196
    72 K. Tsuchiya, A. Ohashi, M. Umemoto. Martensitic Transformation and Magnetic Properties of Ni-base Heusler Alloys. Japan. Inst. Met. 1999, 12: 1108~1111
    73 O. Heczko, L. Straka. Compositional Dependence of Structure, Magnetization and Magnetic Anisotropy in Ni-Mn-Ga Magnetic Shape Memory Alloys. J. Magn. Magn. Mater. 2004, 272-276: 2045~2046
    74 L. Straka, O. Heczko, K. Ullakko. Investigation of Magnetic Anisotropy of Ni-Mn-Ga Seven-layered Orthorhombic Martensite. J. Magn. Magn. Mater. 2004, 272-276: 2049~2050
    75 A.B. Pakhomov, C.Y. Wong, X.X. Zhang, G.H. Wen, G.H. Wu. Magnetization and Magnetocaloric Effect in Magnetic Shape Memory Alloys Ni-Mn-Ga. IEEE Trans. Magn. 2001, 37(4): 2718~2720
    76 F.Q. Zhu, F.Y. Yang, C.L. Chien, L. Ritchie, G. Xiao, G.H. Wu. Magnetic and Thermal Properties of Ni-Mn-Ga Shape Memory Alloy with Martensitic Transition near Room Temperature. J. Magn. Magn. Mater. 2005, 288: 79~83
    77 L. Manosa, A. Planes, M. Acet, E. Duman, E.F. Wassermann. Magnetic Shape Memory in Ni-Mn-Ga and Ni-Mn-Al. J. Magn. Magn. Mater. 2004, 272-276: 2090~2092
    78 F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P.A. Algarabel, L. Righi. Composition and Temperature Dependence of the Magnetocrystalline Anisotropy in Ni2+xMn1+yGa1+z (x+y+z=0) Heusler Alloys. Appl. Phys. Lett. 2002, 81(21): 4032~403
    79 O. Heczko, L. Straka, N. Lanska, K. Ullakko, J. Enkovaara. TemperatureDependence of Magnetic Anisotropy in Ni-Mn-Ga Alloys Exhibiting Giant Field-induced Strain. J. Appl. Phys. 2002, 91(10): 8228~8230
    80 G.H. Wu, C.H. Yu, L.Q. Meng. Giant Magnetic-field-induced Strains in Heusler Alloy NiMnGa with Modified Composition. Appl. Phys. Lett. 1999, 75 (19): 2990~2992
    81 R.D. James, M. Wuttig. Magnetostriction of Martensite. Philos. Mag. A. 1998, 77(5): 1273~1299
    82 R.D. James, R. Tickle, M. Wuttig. Large Field-induced Strain in Ferromagnetic Shape Memory Materials. Mater. Sci. Eng. A. 1999, 273-275: 320~325
    83 O. Heczko, A. Sozinov, K. Ullakko. Giant Field-induced Reversible Strain in Magnetic Shape Memory NiMnGa Alloy. IEEE Trans. Magn. 2000, 36(5): 3266~3268
    84 M. Suzuki, M. Ohtsuka, T. Suzuki, M. Matsumoto, H. Miki. Fabrication and Characterization of Sputtered Ni2MnGa Thin Films. Mater. Trans. JIM. 1999, 40(10): 1174~1177
    85 M. Wuttig, C. Craciunescu, J. Li. Phase Transformations in Ferromagnetic NiMnGa Shape Memory Films. Mater. Trans. JIM. 2000, 41: 933~937
    86 M. Ohtsuka, K. Itagaki. Effect of Heat Treatment on Properties of Ni-Mn-Ga Films Prepared by a Sputtering Method. Int. J. Appl. Electromagn. Mech. 2000, 12: 49~59
    87 K. Ohi, S. Isokawa, M. Ohtsuka, M. Matsumoto, K. Itagaki. Phase Transformation of Sputtered Ni-rich Ni2MnGa Films. Trans. Mater. Res. Soc. Japan. 2001, 26: 291~294
    88 M. Kohl, V.A. Chernenko, M. Ohtsuka, H. Reuter, T. Takagi. Magnetic Properties of Submicron Ni-Mn-Ga Martensitic Thin Films. Mater. Res. Soc. Symp. Proc. 2005, 855: W.2.8.1~W.2.8.6
    89 H. Rumpf, J. Feydt, D. Lewandowski, A. Ludwig, B. Winzek, E. Quandt, P. Zhao, M. Wuttig. Shape Memory Effect and Magnetostriction of Sputtered NiMnGa Thin Films. SPIE. 2003, 5053: 191~199
    90 M. Ohtsuka, M. Matsumoto, K. Itagaki. Mechanical and Shape Memory Properties of Ferromagnetic Ni2MnGa Thin Films. J. Phys. IV. France. 2003, 12: 893~899
    91 M. Kohl, D. Brugger, M. Ohtsuka, T. Takagi. Shape Memory Effect and Magnetostriction in Polycrystalline Ni-Mn-Ga Thin Film Microactuators. Sens. Actuators A. 2004, 114: 445~450
    92 M. Ohtsuka, M. Sanada, M. Matsumoto, K. Itagaki. Magnetic Field-induced Shape Memory Effect in Ni2MnGa Sputtered Films. Mater. Sci. Eng. A. 2004, 378: 377~383
    93 V.A. Chernenko, M. Ohtsuka, M. Kohl, V.V. Khovailo, T. Takagi. Transformation Behavior of Ni-Mn-Ga Thin Films. Smart Mater. Struct. 2005, 14: 245~252
    94 P. G. Tello, F. J. Castano, R. C. O’Handley, S. M. Allen, M. Esteve, F. Castano, A. Labarta, X. Batlle. Ni-Mn-Ga Thin Films Produced by Pulsed Laser Deposition. J. Appl. Phys. 2002, 91(10): 8234~8236
    95 S.I. Patil, D. Tan, S.E. Lofland, S.M. Bhagat, I. Takeuchi, O. Famodu, J.C. Read, K.S. Chang, C. Craciunescu, M. Wuttig. Ferromagnetic Resonance in Ni-Mn-Ga Films. Appl. Phys. Lett. 2002, 81(7): 1279~1281
    96 J. Castan?, N.B. Cheseman, R.C. O’Handley, F. Castan. Structure and Thermomagnetic Properties of Polycrystalline Ni–Mn–Ga Thin Films. J. Appl. Phys. 2003, 93: 8492~8494
    97 A. Hakola, O. Heczko, A. Jaakkola, T. Kajava, K. Ullakko. Pulsed Laser Deposition of Ni-Mn-Ga Thin Films on Silicon. Appl. Phys. A. 2004, 79: 1505~1508
    98 C.Y. Chung, V.A. Chernenko, V.V. Khovailo, J. Pons, E. Cesari, T. Takagi. Thin Films of Ferromagnetic Shape Memory Alloys Processed by Laser Beam Ablation. Mater. Sci. Eng. A. 2004, 378: 443~447
    99 A. Vovk, L. Malkinski, V. Golub, C. O’Connor, Z.J. Wang, J.K. Tang. Magnetotransport in NiMnGa Thin Films. J. Appl. Phys. 2005, 97: 10C503-1~10C503-3
    100 J. W. Dong, L. C. Chen, C. J. Palmstr?m, R. D. James, S. Mckernan. Molecular Beam Epitaxy Growth of Ferromagnetic Single Crystal (001) Ni2MnGa on (001) GaAs. Appl. Phys. Lett. 1999, 75(10): 1443~1445
    101 J.W. Dong, L.C. Chen, J.Q. Xie, T.A.R. Müller, D.M. Carr, C. J. Palmstr?m, S. Mckernan, Q. Pan, R.D. James. Epitaxial Growth of Ferromagnetic Ni2MnGa on GaAs(001) Using NiGa Interlayers. J. Appl. Phys. 2000,88(12): 7357~7359
    102 Q. Pan, J.W. Dong, C.J. Palmstr?m, J. Cui, R.D. James. Magnetic Domain Observations of Free-standing Single Crystal Patterned Ni2MnGa Films. J. Appl. Phys. 2002, 91(10): 7812~7814
    103 M. S. Lund, J. W. Dong, J. Lu, X. Y. Dong, C. J. Palmstr?m, C. Leighton. Anomalous Magnetotransport Properties of Epitaxial Full Heusler Alloys. Appl. Phys. Lett. 2002, 80(25): 4798~4800
    104 J.W. Dong, J.Q. Xie, J. Lu, C. Adelmann, C.J. Palmstr?m. Shape Memory and Ferromagnetic Shape Memory Effects in Single-crystal Ni2MnGa Thin Films. J. Appl. Phys. 2004, 95(5): 2593~2600
    105 M. Kohl, D. Brugger, M. Ohtsuka, T. Takagi. A Novel Actuation Mechanism on the Basis of Ferromagnetic SMA Thin Films. Sens. Actuators A. 2004, 114/2-3: 445~450
    106 M. Kohl, D. Brugger, M. Ohtsuka, B. Krevet. A Ferromagnetic Shape Memory Actuator Designed for Large 2D Optical Scanning. Sens. Actuators A. 2007, 135: 92~98
    107 S. Miyazaki, A. Ishida. Martensitic Transformation and Shape Memory Behavior in Sputter-deposited TiNi-base Thin Films. Mater. Sci. Eng. A. 1999, 273-275: 106~133
    108 P.U. Karunasiri, R. Bruinsma, K. Rudnick. Thin-film Growth and the Shadow Instability. Phys. Rev. Lett. 1989, 62: 788~791
    109 D.A. Ruggles, E. Gans, K.P. Mohanchandra. G.P. Carman, E. Ngo, W. Nothwang, M.W. Cole. Damping of Polycrystalline Ni-Mn-Ga, Bulk, PLD, and Sputtered Thin Film. SPIE. 2004, 5387: 156~163
    110 K. Ikuta, M. Hayashi, T. Matsuura. Shape Memory Alloy Thin Film Fabricated by Laser Ablation. IEEE Micro. Electro. Mech. Syst. 1994: 355~360
    111 V.O. Golub, A.Y. Vovk, L. Malkinski, C.J. O’Connor, Z.J. Wang, J.K. Tang. Anomalous Magnetoresistance in NiMnGa Thin Films. 2004, 96(7): 3865~3869
    112 J. Z. Chen, S. K. Wu. Crystallization Behavior of R.F.-sputtered TiNi Thin Films. Thin Solid Films. 1999, 339: 194~199
    113 J.P. Ahn, N. Cheng, T. Lograsso, K.M. Krishnan. Magnetic Properties,Structure and Shape Memory Transitions in Ni-Mn-Ga Thin Films Grown by Ion Beam Sputtering. IEEE Trans. Magn. 2001, 37 (4): 2141~2143
    114 M. Suzuki, M. Ohtsuka, M. Matsumoto, Y. Murakami, D. Shindo, K. Itagaki. Effect of Aging Time on Shape Memory Properties of Sputtered Ni-rich Ni2MnGa Alloy Films. Mater. Trans. JIM. 2002, 43: 861~867
    115 Y.V. Kudryavtsev, J. Dubowik, Y.P. Lee. Effect of Structure Disordering on Magnetic Properties of Stoichiometric Ni2MnGa Alloy Films. Phys. Stat. Sol. 2003, 196: 49~52
    116 M. Kohl, A. Agarwal, V.A. Chernenko, M. Ohtsuka, K. Seemann. Shape Memory Effect and Magnetostriction in Polycrystalline Ni-Mn-Ga Thin Film Microactuators. Mater. Sci. Eng. A. 2006, 438-440: 940~943
    117 V.A. Chernenko, R.L. Anton, M. Kohl, J.M. Barandiaran, M. Ohtsuka, I. Orue, S. Besseghini. Structural and Magnetic Characterization of Martensitic Ni-Mn-Ga Thin Films Deposited on Mo Foil. Acta Mater. 2006, 54: 5461~5467
    118 W.L. Li, Y. Sun, W.D. Fei. Residual Stress and Curie Temperature of Fe-N Thin Films Prepared by DC Magnetron Sputtering at Elevated Temperature. Appl. Surf. Sci. 2006, 252: 4995~5001
    119唐伟忠著.薄膜材料制备原理、技术及应用(第2版).冶金工业出版社. 2003: 86~218
    120 Q. Luo, D.B. Lewis, P.E. Hovsepian, W.D. Münz. Transmission Electron Microscopy and High-resolution Transmission Electron Microscopy Study of Nanostructure and Metastable Phase Evolution in Pulsed Laser Ablation Deposited Ti-Si Thin Film. J. Mater. Res. 2004, 19(4): 1093~1104
    121 S.M. Spearing. Materials Issue in Microelectromechanical Systems (MEMS). Acta Mater. 2000, 48: 179~196
    122 H.E. Kissinger. Reaction Kinetics in Differential Thermal Analysis. Anal Chem. 1957, 29: 1702~1706
    123 C.B. Jiang, Y. Muhammad, L.F. Deng, W. Wu, H.B.Xu. Composition Dependence on the Martensitic Structures of the Mn-rich NiMnGa Alloys. Acta Mater. 2004, 52: 2779~2785
    124 H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H. J. Maier, Y. Chumlyakov. Compressive Response of NiTi Single Crystals. Acta Mater.2000, 48: 3311~3326
    125 Y.Q. Ma, C.B. Jiang, G. Feng, H.B. Xu. Thermal Stability of the Ni54Mn25Ga21 Heusler Alloy with High Temperature Transformation. Scripta Mater. 2003, 48: 365~369
    126 R.F. Hamilton, H. Sehitoglu, C. Efstathiou, H.J. Maier. Mechanical Response of NiFeGa Alloys Containing Second-phase Particles. Scripta Mater. 2007, 57: 497~499
    127 Y. Li, C.B. Jiang, T. Liang, Y.Q. Ma, H.B. Xu. Martensitic Transformation and Magnetization of Ni-Fe-Ga Ferromagnetic Shape Memory Alloys. Scripta Mater. 2003, 48: 1255~1258
    128宛德福,马兴隆.磁性物理学.电子科技大学出版社. 1994: 135~140
    129徐祖耀.马氏体相变与马氏体.科学出版社. 1999: 774~779
    130 V.A. Chernenko, O. Babii, V. L'vov, P.G. McCormick. Martensitic Transformations in Ni-Mn-Ga System Affected by External Fields. Mater. Sci. Forum. 2000, 327-328: 485~488
    131 V.A. Chernenko, V.A. L’Vov. Thermodynamics of Martensitic Transformations Affected by Hydrostatic Pressure. Philos. Mag. A. 1996, 73: 999~1008
    132 V.V. Kokorin, M. Wuttig. Magnetostriction in Ferromagnetic Shape Memory Alloys. J. Magn. Magn. Mater. 2001, 234: 25~30
    133 Z.Y. Gao, W. Cai, L.C. Zhao, G.H. Wu, J.L. Chen, W.S. Zhan. Effect of External Stress and Bias Magnetic Field on the Transformation Strain of the Heusler Alloy Ni-Mn-Ga. Trans. Nonferrous Met. Soci. China. 2003, 13: 42~45
    134高智勇. Ni-Mn-Ga磁性形状记忆合金的马氏体相变与磁感生应变.哈尔滨业大学工学博士学位论文. 2003: 89~92
    135 M. Tabib-Azar, B. Sutapun, M. Huff. Application of TiNi Thin Film Shape Memory Alloys in Micro-opto-electro-mechanical Systems. Sens. Actuators A. 1999, 77: 34~38
    136 P. Beckmann, A. Spizzichino. The Scattering of Electromagnetic Waves from Rough Surface. New York, Pergamon. 1963: 17~97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700