用户名: 密码: 验证码:
二烷基脲型凝胶剂室温自组装及其在力场和受限空间下形成的超分子结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小分子凝胶剂(LMOGs)通过非共价键(例如分子间氢键、π-π堆砌、范德华力、配位作用等)在溶剂中自组装形成纤维状、棒状、管状、盘状、带状、螺旋状等形貌的超分子聚集体结构,进而相互缠绕形成三维网络结构禁锢溶剂分子形成稳定的超分子凝胶(也称为“物理凝胶”),这一研究领域近年来受到了广泛的关注。超分子凝胶因其特殊的热可逆性、环境敏感性和纳米结构的多样性,被广泛地应用于智能材料、药物载体、模板材料、凝胶电解液、手性分离和催化等领域。
     本文合成了三种不同烷基链长的二脲型凝胶剂,能够使某些有机溶剂在室温下即可发生凝胶化,研究了它们在有机溶剂中的凝胶化能力和自组装机理,探讨了所形成的超分子凝胶的热力学性质和流变学性质。以十八烷基链长的二脲型凝胶剂为模型分子,研究了离心力场和剪切力场作用对小分子凝胶剂在溶剂中组装形成的聚集体的形貌及热力学性能影响。开创性的将二脲型凝胶剂和酰胺类凝胶剂通过加热、超声的作用灌注到有机蒙脱土片层间,研究小分子凝胶剂在片层结构的纳米尺寸受限空间内的聚集组装。首次将凝胶超分子结构用于手性分离薄膜的制备,考察了制备的手性分离膜对D-和L-苯丙氨酸的吸附差别。
     本论文包括以下几方面内容:
     1、利用二异氰酸酯与烷基胺的高反应活性,以及产物所带的氢键作用位点和烷基疏水作用力,设计合成了能以极低浓度使多种有机溶剂在室温条件下凝胶化的三种二烷基脲型凝胶剂:1-甲基-2,4-二(N’-十八烷脲基)苯(简称MBB-18)、1-甲基-2,4-二(N’-十二烷脲基)苯(简称MBB-12)和1-甲基-2,4-二(N’-八烷脲基)苯(简称MBB-8)。研究了该类型的凝胶剂在有机溶剂中组装形成超分子凝胶的热力学性质和流变学性质。
     2、利用傅立叶红外吸收光谱(FT-IR)、核磁共振氢谱(1HNMR)和X射线衍射(XRD),结合Spartan、HyperChem等化学软件,研究了二烷基脲型凝胶剂在有机溶剂中的组装机理并模拟了分子聚集图,利用场发射扫描电镜(FE-SEM)和差示扫描量热仪(DSC)探讨了烷基链的不同对分子组装方式的影响和热力学性质的影响,简单讨论了溶剂作用对分子组装的影响。
     3、以MBB-18凝胶剂为模型分子,研究小分子凝胶剂在离心力场和剪切力场作用下的自组装。通过测定不同离心力大小作用下凝胶剂的最低凝胶化浓度研究外力作用对凝胶剂凝胶能力的影响;利用FE-SEM和XRD研究了外力作用对凝胶剂分子聚集过程的诱导作用,利用DSC研究了力场诱导下形成的聚集体的热力学性质。
     4、将不同烷基链长的二脲型凝胶剂MBB-18、MBB-12和酰胺类凝胶剂二(4’-硬脂酰胺苯基)甲烷(简称BSM-18)、二(4’-辛酰胺苯基)甲烷(BOM-8)通过加热、超声的作用灌注到层间距为2-3 nm的有机蒙脱土片层间,利用DSC研究小分子凝胶剂在片层结构的受限空间内形成的超分子凝胶的热力学性质,发现其相变温度远高于本体空间内形成超分子凝胶的相变温度,利用XRD结合分子模拟软件探讨了在片层结构的受限空间内凝胶剂可能采取的聚集方式。
     5、以Boc-L-苯丙氨酸为模板分子,利用MBB-18在丙烯酸酯类单体中形成的超分子凝胶结构制备手性分离薄膜,用于混旋苯丙氨酸的分离。通过紫外吸收光谱(UV)测定薄膜对D-和L-苯丙氨酸的吸附,利用正交表结合实验分析了凝胶剂浓度、模板分子浓度和单体配比对聚合物薄膜吸附效率的影响。
Supramolecular gels (physical gels), formed by the low molecular mass organic gelators (LMOGs) self-assemble in organic solvents through the non-covalent bonds such as intermolecular hydrogen bonding,π-πstacking, van der Waals interactions, donor-acceptor interactions, coordination, solvophobic forces (hydrophobic forces for gels in water) and so on to form the supramolecular structure aggregates with fiber-like, rod-like, tube-like, disk-like, tape-like and other morphology, have generated enormous interest rencently for scientific research and application. Organogelators and their organogels have been used for smart materials, drug delivery systems, templates for nanomaterial preparation, gel electrolytes, chiral separation, catalysis other fields as a result of their thermo-reversibility, chemical sensitivity and diversity of nanostructures.
     Three kinds of reactable gelators with different alkyl chains were synthesized by using the high activity of isocyanate and alkylamine, and supramolecular gels could be obtained at room temperature. The thermodynamic properties and rheological behavior of gels and the mechanism of self-assembly were investigated. The effect of the centrifugal force field and shear field on morphology and thermodynamic properties of the supramolecular structure aggregates formed by gelator in solvents was investigated. We reported herein new aggregates of low molecular mass organic gelators confined within the nano-scale interlayer space of the mineral organo-montmorillonite (OMMT), the thermodynamic properties and the possible mechanism of self-assembly were studied.
     This thesis is consisted of several sections as the following:
     1 Three kinds of reactable gelators 1-methyl-2,4-bis(N'-octadecylureido)benzene (MBB-18), 1-methyl-2,4-bis(N'-dodecaneureido)benzene (MBB-12) and 1-methyl-2,4- bis(N'-octanaureido)benzene (MBB-8) were synthesized, which could aggregate and self-assembly at room temperature, and forming thermal reversible gels with several organic solvents at very low concentrations. The thermodynamic and rheological properties of the supramolecular gels were investigated.
     2 Field emission electron microscopy (FE-SEM) revealed a three-dimensional (3D) network consisting of fiber-like aggregates. Moreover, various lengths of alkyls led to different morphology of fiber-like aggregates and different thermodynamic properties as Differential scanning calorimetry (DSC) showed. FT-IR and 1HNMR demonstrated that intermolecular hydrogen bonding was the main driving force for the self-assembly and formation of the gels. Finally, a self-assembly mode was proposed through the results of X-ray diffraction (XRD) and molecular stimulation by Spartan and HyperChem software.
     3 The aggregates of MBB-18 occur under the influence of centrifugal force and shearing force fields was investigated. The minimum gelation concentrations of MBB-18 in organic solvents under a centrifugal force field were significantly higher than those in the absence of a centrifugal force field, indicating a significant effect of the external field on the self-assembly of MBB-18. The oriented aggregation of MBB-18 in solvents induced by centrifugal and shearing forces, as well as the thermotropic behavior of oriented organogels has been investigated by FE-SEM, XRD and DSC respectively.
     4 Two bisurea gelators MBB-18, MBB-12 and tow acylamide gelators bis(4'- stearamidophbeyl)methane (BSM-18) and bis(4'-octanamidophenyl)methane (BOM-8) were affused into the interlayers of organo-montmorillonite (OMMT) by heating and ultrasonication to investigate the gelation of chlorobenzene and poropylene carbonate (PC) confined within the nano-scale interlayer space. Based on an analysis of the DSC and XRD data for the gels confined within the organo-montmorillonite and formed in the bulk space, we argued that the gelators self-assembled in an unusual manner when confined within the interlayer space of OMMT in comparison with that in bulk space. This novel route for self-assembling of gelators in confined space might offer new insights into the mechanism of natural self-assembling processes, which occured in nano-scale environments.
     5 Chiral separation films were prepared through the supramolecular structure aggetates formed by MBB-18 in acrylate monomer using Boc-L-phenylalanine as template molecule for the separation of racemic phenylalanine. Adsorption efficiency of D- or L-phenylalanine on the films with different concentration of gelator and template molecule, and with different monomer ratio was carried out by the UV spectra.
引文
[1]顾雪蓉,朱育平.凝胶化学.第一版.北京:化学工业出版社,2005.
    [2] Flory P. J. Introductory Lecture. Faraday Discuss. Chem. Soc. 1974, 57: 7~18.
    [3]何曼君,陈维孝,董西侠.高分子物理.第一版.上海:复旦大学出版社,1990.
    [4] Flory, P. J. Constitution of Three-dimensional Polymers and the Theory of Gelation. J. Phys. Chem. 1942, 46: 132~140.
    [5] Terech P., Weiss R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem. Rev. 1997, 97: 3133~3159.
    [6] Mukhopadhyay S., Maitra U. Chemistry and Biology of Bile Acids. Curr. Sci. 2004, 87: 1666~1683.
    [7] Sangeetha N. M., Maitra U. Supramolecular gels: Functions and uses. Chem. Soc. Rev. 2005, 34: 821~836.
    [8] Menger F. M. Supramolecular chemistry and self-assembly. PNAS 2002, 99: 4818~4822.
    [9] Gelbart W. M., Ben-Shaul A. The new science of complex fluids. J. Phys. Chem. 1996, 100: 13169~13189.
    [10] George M., Weiss R. G. Molecular Organogels. Soft Matter Comprised of Low-Molecular-Mass Organic Gelators and Organic Liquids. Acc. Chem. Res. 2006, 39: 489~497.
    [11] Gronwald O., Snip E., Shinkai S. Gelators for Organic Liquids Based on Self-assembly: A New Fact of Supramolecular and Combinatorial Chemistry. Curr. Opin. Colloid Interface Sci. 2002, 7: 148~156.
    [12] van Esch J. H., Feringa B. L. New Functional Materials Based on Self-assembling Organogels: From Serendipity towards Design. Angew. Chem. Int. Ed. 2000, 39: 2263~2266.
    [13] Tan H. M., Moe, A., Hiltner A., Baer E. Thermoreversible Gelation of Atactic Polystyrene Solutions. Macromolecules 1983, 16: 28~34.
    [14] Estroff L. A., Hamilton A. D. Water Gelation by Small Organic Molecules. Chem. Rev. 2004, 104: 1201~1218.
    [15] Weiss R. G., Terech P., Eds. Molecular Gels. Materials with Self-Assembled Fibrillar Networks. Dordrecht, The Netherlands: Springer, 2005.
    [16] Jeong Y., Hanabusa K., Masunaga H., Akiba I., Miyoshi K., Sakurai S., Sakurai K. Solvent/Gelator Interactions and Supramolecular Structure of Gel Fibers in Cyclic Bis-Urea/Primary Alcohol Organogels. Langmuir 2005, 21: 586~594.
    [17] Abdallah D. J., Weiss R. G. n-Alkanes Gel n-Alkanes (and Many Other Organic Liquids). Langmuir 2000, 16: 352~355.
    [18] Jang W.-D., Aida T. Dendritic Physical Gels: Structural Parameters for Gelation with Peptide-Core Dendrimers. Macromolecules 2003, 36: 8461~8469.
    [19] Huang B., Hirst A. R., Smith D. K., Castelletto V., Hamley I. W. A Direct Comparison of One- and Two-Component Dendritic Self-Assembled Materials: Elucidating Molecular Recognition Pathways. J. Am. Chem. Soc. 2005, 127: 7130~7139.
    [20] Abdallah D. J., Weiss R. G. Organogels and Low Molecular Mass Organic Gelators. Adv. Mater. 2000, 12: 1237~1247.
    [21] Hirst A. R., Smith D. K. Two-Component Gel-Phase Materials-Highly Tunable Self-Assembling Systems. Chem. Eur. J. 2005, 11: 5496~5508.
    [22] Jeong Y., Friggeri A., Akiba I., Masunaga H., Sakurai K., Sakurai S., Okamoto, S., Inoue K., Shinkai S. Small-angle X-ray Scattering from a Dual-component Organogel to Exhibit a Charge Transfer Interaction. J. Colloid Interface Sci. 2005, 283: 113~122.
    [23]王毓江,唐黎明,王琰.基于氢键作用由低分子量凝胶因子形成的超分子水凝胶.高等学校化学学报2006, 27: 1587~1589.
    [24]燕良,唐黎明,王毓江.氢键结合超分子水凝胶的形成与结构调控.高分子学报2006, (5): 736~739.
    [25] Lescanne M., Colin A., Mondain-Monval O., Fages F., Pozzo J.-L. Structural Aspects of the Gelation Process Observed with Low Molecular Mass Organogelators. Langmuir 2003, 19: 2013~2020.
    [26] Aoki K., Nakagawa M., Ichimura K. Self-Assembly of Amphoteric Azopyridine Carboxylic Acids: Organized Structures and Macroscopic Organized Morphology Influenced by Heat, pH Change, and Light. J. Am. Chem. Soc. 2000, 122: 10997~11004.
    [27] Trivedi D. R., Ballabh A., Dastidar P. An Easy To Prepare Organic Salt as a Low Molecular Mass Organic Gelator Capable of Selective Gelation of Oil from Oil/Water Mixtures. Chem. Mater 2003, 15: 3971~3973.
    [28] Bhattacharya S., Pal A. Physical Gelation of Binary Mixtures of Hydrocarbons Mediated by n-Lauroyl-L-Alanine and Characterization of Their Thermal and Mechanical Properties. J. Phys. Chem. B 2008, 112: 4918~4927.
    [29]孟亚斌.在溶液场中凝胶因子聚集组装的分子凝胶研究:[硕士学位论文]。武汉市:华中科技大学图书馆,2004.
    [30] Fu X. J., Wang N. X., Zhang S. Z., Wang H., Yang Y. J. Formation Mechanism of Supramolecular Hydrogels in the Presence of L-phenylalanine Derivative as a Hydrogelator. J. Colloid Interface Sci. 2007, 315: 376~385.
    [31] Ishi-I T., Iguchi R., Snip E., Ikeda M., Shinkai S. [60]Fullerene Can Reinforce the Organogel Structure of Porphyrin-Appended Cholesterol Derivatives: Novel Odd-Even Effect of the (CH2)n Spacer on the Organogel Stability. Langmuir 2001, 17: 5825~5833.
    [32] Hanabusa K., Hiratsuka K., Kimura M., Shirai H. Easy Preparation and Useful Character of Organogel Electrolytes Based on Low Molecular Weight Gelator. Chem. Mater 1999, 11: 649~655.
    [33] Ihara H., Sakurai T., Yamada T., Hashimoto T., Takafuji M., Sagawa T., Hachisako H. Chirality Control of Self-Assembling Organogels from a Lipophilic L-Glutamide Derivative with Metal Chlorides. Langmuir 2002, 18: 7120~7123.
    [34] Frkanec L., Joki? M., Makarevi? J., Wolsperger K., Zini? M. Bis (PheOH) Maleic Acid Amide-Fumaric Acid Amide Photoizomerization Induces Microsphere-to-Gel Fiber Morphological Transition: The Photoinduced Gelation System. J. Am. Chem. Soc. 2002, 124: 9716~9717.
    [35] Shumburo A., Biewer M. C. Stabilization of an Organic Photochromic Material by Incorporation in an Organogel. Chem. Mater. 2002, 14: 3745~3750.
    [36] Tamaoki N., Shimada S., Okada Y., Belaissaoui A., Kruk G., Yase K., Matsuda H. Polymerization of a Diacetylene Dicholesteryl Ester Having Two Urethanes in Organic Gel States. Langmuir 2000, 16: 7545~7547.
    [37] Lescanne M., Colin A., Mondain-Monval O., HeuzéK., Fages F., Pozzo J.-L. Flow-Induced Alignment of Fiberlike Supramolecular Self-Assemblies during Organogel Formation with Various Low Molecular Mass Organogelator-Solvent Systems. Langmuir 2002, 18: 7151~7153.
    [38] Kato T., Kutsuna T., Yabuuchi K., Mizoshita N. Anisotropic Self-Aggregation of an Anthracene Derivative: Formation of Liquid-Crystalline Physical Gels in Oriented States. Langmuir 2002, 18: 7086~7088.
    [39] Naota T., Koori H. Molecules That Assemble by Sound: An Application to the Instant Gelation of Stable Organic Fluids. J. Am. Chem. Soc. 2005, 127, 9324~9325.
    [40] Li Y. G., Wang T. Y., Liu M. H. Ultrasound induced formation of organogel from a glutamic dendron. Tetrahedron 2007, 63: 7468~7473.
    [41] Shklyarevskiy I. O., Jonkheijm P., Christianen P. C. M., Schenning A. P. H. J., Guerzo A. D., Desvergne J.-P., Meijer E. W., Maan J. C. Magnetic Alignment of Self-Assembled Anthracene Organogel Fibers. Langmuir 2005, 21: 2108~2112.
    [42] Yasuda Y., Takebe Y., Fukumoto M., Inada H., Shirota Y.4,4’,4’’-Tris(stearoylamino)triphenylamine as a Novel Material for Functional Molecular Gels. Adv. Mater. 1996, 8: 740~741.
    [43] Kamiyama T., Yasuda Y., Shirota Y. A Novel Family of Low Molecular-Weight Organic Gels. 1,3,5-Tris(N-phenyl-N-4-stearoyl-aminophenylamino)benzene and 4,4’,4”-Tris(N-phenyl-N-4-stearoylaminophenyl-amino)triphenylamine / Organic Solvent Systems. Polym. J. 1999, 31: 1165~1170.
    [44] Yasuda Y., Kamiyama T., Shirota Y. Ionic Conductivities of Low Molecular-Weight Organic Gels and their Application as Electrochromic Materials. Electrochim Acta 2000, 45: 1537~1541.
    [45] Liu P., Shirota Y., Osada Y. A Novel Class of Low-Molecular-Weight Organic Gels based on Terthiophene. Polym. Adv. Technol. 2000, 11: 512~517.
    [46]刘平,童真,邓文基.新型低聚噻吩衍生物的合成及其凝胶化性能研究.高等学校化学学报2002, 23: 1632~1637.
    [47] Kunitake T., Okahata Y., Shimomura M., Yasunami S., Takarabe K. Formation of Stable Bilayer Assemblies in Water from Single-chain Amphiphiles. Relationship between the Amphiphile Structure and the Aggregate Morphology. J. Am. Chem. Soc. 1981, 103: 5401~5413.
    [48] Imae T., Takahashi Y., Muramatsu H. Formation of Fibrous Molecular Assemblies by Amino Acid Surfactants in Water. J. Am. Chem. Soc. 1992, 114: 3414~3419.
    [49] Bhattacharya S., Acharya S. N. G. Pronounced Hydrogel Formation by the Self-Assembled Aggregates of N-Alkyl Disaccharide Amphiphiles. Chem. Mater. 1999, 11: 3504~3511.
    [50] Hanabusa K., Hirata T., Inoue D., Kimura I., Shirai H. Formation of Physical Hydrogels with Terpyridine-Containing Carboxylic Acids. Colloid Surf. A 2000, 169: 307~316.
    [51] Menger F. M., Caran K. L. Anatomy of a Gel. Amino Acid Derivatives That Rigidify Water at Submillimolar Concentrations. J. Am. Chem. Soc. 2000, 122: 11679~11691.
    [52] Terech P., Rossat C., Volino F. J. On the Measurement of Phase Transition Temperatures in Physical Molecular Organogels. J. Colloid Interface Sci. 2000, 227: 363~370.
    [53] Makarevic J., Jokic M., Peric B., Tomisic V., Kojic-Prodic B., Zinic M. Bis(Amino Acid) Oxalyl Amides as Ambidextrous Gelators of Water and Organic Solvents: Supramolecular Gels with Temperature Dependent Assembly/Dissolution Equilibrium. Chem. Eur. J. 2001, 7: 3328~3341.
    [54] Shimizu T., Masuda M. Stereochemical Effect of Even-Odd Connecting Links on Supramolecular Assemblies Made of 1-Glucosamide Bolaamphiphiles. J. Am. Chem. Soc. 1997, 119: 2812~2818.
    [55] Kogiso M., Ohnishi S., Yase K., Masuda M., Shimizu T. Dicarboxylic Oligopeptide Bolaamphiphiles: Proton-Triggered Self-Assembly of Microtubes with Loose Solid Surfaces. Langmuir 1998, 14: 4978~1986.
    [56] Suzuki M., Yumoto M., Kimura M., Shirai H., Hanabusa K. A Family of Low-Molecular-Weight Hydrogelators Based on L-Lysine Derivatives with a Positively Charged Terminal Group. Chem. Eur. J. 2003, 9: 348~354.
    [57] Iwaura R., Yoshida K., Masuda M., Ohnishi-Kameyama M., Yoshida M., Shimizu T. Oligonucleotide-Templated Self-Assembly of Nucleotide Bolaamphiphiles: DNA-Like Nanofibers Edged by a Double-Helical Arrangement of A-T Base Pairs. Angew. Chem., Int. Ed. Engl. 2003, 42: 1009~1012.
    [58] Jung J. H., John G., Masuda M., Yoshida K., Shinkai S., Shimizu T. Self-Assembly of a Sugar-Based Gelator in Water: Its Remarkable Diversity in Gelation Ability and Aggregate Structure. Langmuir 2001, 17: 7229~7232.
    [59] Jung J. H., Shinkai S., Shimizu T. Spectral Characterization of Self-Assemblies of Aldopyranoside Amphiphilic Gelators: What is the Essential Structural Difference Between Simple Amphiphiles and Bolaamphiphiles? Chem. Eur. J. 2002, 8: 2684~2690.
    [60] Frkanec L., Jokic M., Makarevic J., Wolsperger K., Zinic M. Bis(PheOH) Maleic Acid Amide-Fumaric Acid Amide Photoizomerization Induces Microsphere-to-Gel Fiber Morphological Transition: The Photoinduced Gelation System. J. Am. Chem. Soc. 2002, 124: 9716~9717.
    [61] Fuhrhop J. H., Svenson S., Boettcher C., Rossler E., Vieth H. M. Long-Lived Micellar N-alkylaldonamide Fiber Gels. Solid-state NMR and Electron Microscopic Studies. J. Am. Chem. Soc. 1990, 112: 4307~4312.
    [62] Nakazawa I., Masuda M., Okada Y., Hanada T., Yase K., Asai M., Shimizu T. Spontaneous Formation of Helically Twisted Fibers from 2-Glucosamide Bolaamphiphiles: Energy-Filtering Transmission Electron Microscopic Observation and Even-Odd Effect of Connecting Bridge. Langmuir 1999, 15: 4757~4764.
    [63] Maitra U., Mukhopadhyay S., Sarkar A., Rao P., Indi S. S. Hydrophobic Pockets in a Nonpolymeric Aqueous Gel: Observation of such a Gelation Process by Color Change. Angew. Chem., Int. Ed. Engl. 2001, 40: 2281~2283.
    [64] Estroff L. A., Hamilton A. D. Effective Gelation of Water Using a Series of Bis-urea Dicarboxylic Acids. Angew. Chem., Int. Ed. Engl. 2000, 39: 3447~3450.
    [65] Newkome G. R., Baker G. R., Arai S., Saunders M. J., Russo P. S., Theriot K. J., Moorefield C. N., Rogers L. E., Miller J. E., Lieux T. R., Murray M. E., Phillips B., Pascal L. Cascade Molecules. Part 6. Synthesis and Characterization of Two-directional Cascade Molecules and Formation of Aqueous Gels. J. Am. Chem. Soc. 1990, 112: 8458~8465.
    [66] Nakashima T., Kimizuka N. Light-Harvesting Supramolecular Hydrogels Assembled from Short-Legged Cationic L-Glutamate Derivatives and Anionic Fluorophores. Adv. Mater. 2002, 14: 1113~1116.
    [67] Iwaura R., Yoshida K., Masuda M., Yase K., Shimizu T. Spontaneous Fiber Formation and Hydrogelation of Nucleotide Bolaamphiphiles. Chem. Mater. 2002,14: 3047~3053.
    [68] Wang R., Geiger C., Chen L., Swanson B., Whitten D. G. Direct Observation of Sol-Gel Conversion: The Role of the Solvent in Organogel Formation. J. Am. Chem. Soc. 2000, 122: 2399~2400.
    [69] Song J., Cheng Q., Kopta S., Stevens R. C. Modulating Artificial Membrane Morphology: pH-Induced Chromatic Transition and Nanostructural Transformation of a Bolaamphiphilic Conjugated Polymer from Blue Helical Ribbons to Red Nanofibers. J. Am. Chem. Soc. 2001, 123: 3205~3213.
    [70] Kogiso M., Ohnishi S., Yase K., Masuda M., Shimizu T. Dicarboxylic Oligopeptide Bolaamphiphiles: Proton-Triggered Self-Assembly of Microtubes with Loose Solid Surfaces. Langmuir 1998, 14: 4978~4986.
    [71] Imae T., Hayashi N., Matsumoto T., Tada T., Furusaka M. Structures of Fibrous Supramolecular Assemblies Constructed by Amino Acid Surfactants: Investigation by AFM, SANS, and SAXS. J. Colloid Interface Sci. 2000, 225: 285~290.
    [72] Fuhrhop J. H., Schnieder P., Rosenberg J., Boekema E. The Chiral Bilayer Effect Stabilizes Micellar Fibers. J. Am. Chem. Soc. 1987, 109: 3387~3390.
    [73] Boettcher C., Schade B., Fuhrhop J. H. Comparative Cryo-Electron Microscopy of Noncovalent N-Dodecanoyl- (D- and L-) serine Assemblies in Vitreous Toluene and Water. Langmuir 2001, 17: 873~877.
    [74] Hartgerink J. D., Beniash E., Stupp S. I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. Science 2001, 294: 1684~1688.
    [75] Estroff L. A., Leiserowitz L., Addadi L., Weiner S., Hamilton A. D. Characterization of an Organic Hydrogel: A Cryo-Transmission Electron Microscopy and X-ray Diffraction Study. Adv. Mater. 2003, 15: 38~42.
    [76] Konig J., Boettcher C., Winkler H., Zeitler E., Talmon Y., Fuhrhop J. Magic Angle (54.7°) Gradient and Minimal Surfaces in Quadruple Micellar Helices. J. Am. Chem. Soc. 1993, 115: 693~700.
    [77] Terech P., de Geyer A., Struth B., Talmon Y. Self-Assembled Monodisperse Steroid Nanotubes in Water. Adv. Mater. 2002, 14: 495~498.
    [78] Pochan D. J., Pakstis L., Ozbas B., Nowak A. P., Deming T. J. SANS and Cryo-TEM Study of Self-Assembled Diblock Copolypeptide Hydrogels with Rich Nano- through Microscale Morphology. Macromolecules 2002, 35: 5358~5360.
    [79] von Berlepsch H., Bottcher C., Ouart A., Regenbrecht M., Akari S., Keiderling U., Schnablegger H., Dahne S., Kirstein S. Surfactant-Induced Changes of Morphology of J-Aggregates: Superhelix-to-Tubule Transformation. Langmuir 2000, 16: 5908~5916.
    [80] Oda R., Huc I., Homo J. C., Heinrich B., Schmutz M., Candau S. Elongated Aggregates Formed by Cationic Gemini Surfactants. Langmuir 1999, 15: 2384~2390.
    [81] Imae T., Funayama K., Krafft M. P., Giulieri F., Tada T., Matsumoto T. Small-Angle Scattering and Electron Microscopy Investigation of Nanotubules Made from a Perfluoroalkylated Glucophospholipid. J. Colloid Interface Sci. 1999, 212: 330~337.
    [82] Menger F. M., Zhang H., Caran K. L., Seredyuk V. A., Apkarian R. P. Gemini-Induced Columnar Jointing in Vitreous Ice. Cryo-HRSEM as a Tool for Discovering New Colloidal Morphologie. J. Am. Chem. Soc. 2002, 124: 1140~1141.
    [83] Menger F. M., Seredyuk V. A., Apkarian R. P., Wright E. R. Colloidal Assemblies of Branched Geminis Studied by Cryo-etch-HRSEM. J. Am. Chem. Soc. 2002, 124: 12408~12409.
    [84] Pang S. F., Zhu D. B. Pronounced Hydrogel Formation by the Self-assembled Aggregate of Semifluorinated Fatty Acid. Chem. Phys. Lett. 2002, 358: 479~483.
    [85] Shimizu T., Iwaura R., Masuda M., Hanada T., Yase K. Internucleobase- Interaction-Directed Self-Assembly of Nanofibers from Homo- and Heteroditopic 1,-Nucleobase Bolaamphiphiles. J. Am. Chem. Soc. 2001, 123: 5947~5955.
    [86] Wang X. F., Shen Y. Z., Pan Y., Liang Y. Q. Bolaamphiphilic Single-Chain Bis-Schiff Base Derivatives: Aggregation and Thermal Behavior in Aqueous Solution. Langmuir 2001, 17: 3162~3167.
    [87] David W. I. F., Shankland K., McCusker L. B., Baerlocher C., Eds. Structure Determination from Powder Diffraction Data, Vol. 13. New York: Oxford University Press, 2002.
    [88] Mikami M., Matsuzaki T., Masuda M., Shimizu T., Tanabe K. Molecular dynamics simulation for the crystal structure of synthetic sugar-based bolaamphiphiles. Comput. Mater. Sci. 1999, 14: 267~276.
    [89] van Esch J., Schoonbeek F., de Loos M., Kooijman H., Spek A. L., Kellogg R. M., Feringa B. L. Cyclic Bis-Urea Compounds as Gelators for Organic Solvents. Chem. Eur. J. 1999, 5: 937~950.
    [90] Schoonbeek F. S., van Esch J. H., Hulst R., Kellogg R. M., Feringa B. L. Geminal Bis-ureas as Gelators for Organic Solvents: Gelation Properties and Structural Studies in Solution and in the Gel State. Chem. Eur. J. 2000, 6: 2633~2643.
    [91] van Esch J., DeFeyter S., Kellogg R. M., DeSchryver F., Feringa B. L. Self-Assembly of Bisurea Compounds in Organic Solvents and on Solid Substrates. Chem. Eur. J. 1997, 3: 1238~1243.
    [92] Bhattacharya S., Acharya S. N. G. Impressive Gelation in Organic Solvents by Synthetic, Low Molecular Mass, Self-Organizing Urethane Amides of L-Phenylalanine. Chem. Mater. 1999, 11: 3121~3122.
    [93] Tiller J. C. Increasing the Local Concentration of Drugs by Hydrogel Formation. Angew. Chem. Int. Ed. 2003, 42: 3072~3075.
    [94] Friggeri A., Feringa B. L., Esch J. Entrapment and Release of Quinoline Derivatives Using a Hydrogel of a Low Molecular Weight Gelator. J. Control Release 2004, 97: 241~248.
    [95] Heeres A., van der Pol C., Stuart M., Friggeri A., Feringa B. L., van Esch J.Orthogonal Self-assembly of Low Molecular Weight Hydrogelators and Surfactants. J. Am. Chem. Soc. 2003, 125: 14252~14253.
    [96] van Bommel K. J. C., van der Pol C., Muizebelt I., Friggeri A., Heeres A., Meetsma A., Feringa B. L., van Esch J. Responsive Cyclohexane-based Low-Molecular- Weight Hydrogelators with Modular Architecture. Angew. Chem. Int. Ed. 2004, 43: 1663~1667.
    [97] Yang Z., Gu H., Zhang Y., Wang L., Xu B. Small Molecule Hydrogels based on a Class of anti-Inflammatory Agents. Chem. Commun. 2004, 2: 208~209.
    [98] Yang Z., Gu H., Fu D., Gao P., Lam J. K., Xu B. Enzymatic Formation of Supramolecular Hydrogels. Adv. Mater. 2004, 16: 1440~1444.
    [99] Cao S. Q., Fu X. J., Wang N. X., Wang H., Yang Y. J. Release Behavior of Salicylic Acid in Supramolecular Hydrogels formed by L-phenylalanine Derivatives as Hydrogelator. International Journal of Pharmaceutics 2008, 357: 95~99.
    [100] Pozzo J. L., Clavier G. M., Desvergne J. P. Rational Design of New Acid-Sensitive Organogelators. J. Mater. Chem. 1998, 8: 2575~2577.
    [101] Li S., John V. T., Irvin G. C., Rachakonda S. H., McPherson G. L., O'Connor C. J. Synthesis and Magnetic Properties of a Novel Ferrite Organogel. J. Appl. Phys. 1999, 85: 5965~5967.
    [102] Kawano S. I., Fujita N., Shinkai S. A Coordination Gelator that Shows a Reversible Chromatic Change and Sol-gel Phase-Transition Behavior upon Oxidative/Reductive Stimuli. J. Am. Chem. Soc. 2004, 126: 8592~8593.
    [103] Ono Y., Nakashima K., Sano M., Hojo J., Shirai S. Template Effect of Cholesterol-based Organogels on Sol-Gel Polymerization Creates Novel Silica with a Helical Structure. Chem. Lett. 1999, 334: 1119~1120.
    [104] Chang X. L., Wang L., Yang Y. J., Yang X. L., Xu H. B. Bis-(4-stearoylaminophenyl)methane Assembles in Organic Solvents and Used as Templates for Preparation of SiO2 Nanowires. Mater. Chem. Phys. 2006, 99: 61~65.
    [105]常雪灵.有机凝胶模板法制备纳米二氧化硅及其形成机理:[博士学位论文]。武汉市:华中科技大学图书馆,2007.
    [106] Jung J. H., Kobayashi H., van Bommel J. C. K., Shinkai S., Shimizu T. Creation of Novel Helical Ribbon and Double-layered Nanotube TiO2 Structures Using an Organogel Template. Chem. Mater. 2002, 14: 1445~1447.
    [107] Zhan C. L., Wang J. B., Yuan J., Gong H. F., Liu Y. H., Liu M. H. Synthesis of Right- and Left-handed Silver Nanohelices with a Racemic Gelator. Langmuir 2003, 19: 9440~9445.
    [108] Xue P. C., Lu R., Huang Y., Jin M., Tan C. H., Bao C. Y., Wang Z. M., Zhao Y. Y. Novel Pearl-necklace Porous CdS Nanofiber Templated by Organogel. Langmuir 2004, 20: 6470~6475.
    [109]谭昌会,苏丽红,卢然,薛鹏冲,包春燕,刘新立,赵英英.水凝胶体系中CuS纳米纤维的模板合成.吉林大学学报(理学版) 2006, 44: 126~129.
    [110]薛鹏冲,卢然,金明,张铁锐,苏丽红,赵英英.手性模板合成CdS纳米棒.高等学校化学学报2003, 24, 1172~1174.
    [111] Gao P., Zhan C. L., Liu M. H. Controlled Synthesis of Double- and Multiwall Silver Nanotubes with Template Organogel from a Bolaamphiphile. Langmuir 2006, 22: 775~779.
    [112] Hanabusa K., Numazawa T., Kobayashi S., Suzuki M., Shirai H. Preparation of Metal Oxide Nanotubes Using Gelators as Structure-Directing Agents. Macromol. Symp. 2006, 235: 52~56.
    [113]王宁霞. L-苯丙氨酸衍生物水性凝胶因子的合成及其超分子水凝胶研究:[硕士学位论文]。武汉市:华中科技大学图书馆,2007.
    [114]付新建,王宁霞,张圣祖,王宏,杨亚江.超分子水凝胶模板法制备项链状TiO2纳米颗粒.无机材料学报2008, 23: 393~397.
    [115] Hanabusa K., Hiratsuka K., Kimura M., Shirai H. Easy Preparation and Useful Character of Organogel Electrolytes Based on Low Molecular Weight Gelator. Chem.Mater. 1999, 11: 649~655.
    [116] Placin F., Desvergne J.-P., Lassègues J.-C. Organogel Electrolytes Based on a Low Molecular Weight Gelator: 2,3-Bis(n-decyloxy)anthracene. Chem. Mater. 2001, 13: 117~121.
    [117] Sakaguchi S., Ueki H., Kato T. Quasi-Solid Dye Sensitized Solar Cells Solidified with Chemically Cross-linked Gelators Control of TiO2/gel Electrolytes and Counter Pt/gel Electro-lytes Interfaces. Photochem. Photobio. A: Chem. 2004, 164: 117~122.
    [118] Mohmeyer N., Wang P., Schmidt H. W., Zakeeruddin S. M., Gr?tzel M. Quasi-solid-state Dye Sensitized Solar Cells with 1,3:2,4-di-O-benzylidene-D-sorbitol Derivatives as Low Molecular Weight Organic Gelators. J. Mater. Chem. 2004, 14: 1905~1909.
    [119] Meng Y. B., Yang Y. J. Gelation of the Organic Liquid Electrolytes and the Conductivities as Gel Electrolytes. Electrochemistry Communication 2007, 9: 1428~1433.
    [120] Kubo W., Murakoshi K., Kitamura T., Yoshida S., Haruki M., Hanabusa K., Shirai H., Wada Y., Yanagida S. Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine. J. Phys. Chem. B 2001, 105: 12809~12815.
    [121] Wang P., Zakeeruddin S. M., Comte P., Exnar I., Gr?tzel M. Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2003, 125: 1166~1167.
    [122] Hafkamp R. J. H., Kokke B. P. A., Danke I. M., Geurts H. P. M., Rowan A. E., Feitersa M. C., Nolte R. J. M. Organogel Formation and Molecular Imprinting by Functionalized Gluconamides and their Metal Complexes. Chem. Commun. 1997, 545~546.
    [123] Gu W. Q., Lu L. D., Chapmanb G. B., Weiss R. G. Polymerized Gels and "Reverse Aerogels" from Methyl Methacrylate or Styrene and Tetraoctadecylammonium Bromide as Gelator. Chem. Commun. 1997, 543~544.
    [124] Tan G., Singh M., He J., John V. T., McPherso G. L. Use of a Self-assembling Organogel as a Reverse Template in the Preparation of Imprinted Porous Polymer Films. Langmuir 2005, 21: 9322~9326.
    [125] Fu X. J., Yang Y., Wang N. X., Wang H., Yang Y. J. A Novel Chiral Separation Material: Polymerized Organogel formed by Chiral Gelators for the Separation of D- and L-phenylalanine. J. Mol. Recognit. 2007, 20: 238~244.
    [126]杨亚江,崔文瑾.能使有机溶剂凝胶化的凝胶因子研究进展.有机化学2001, 21: 632~639.
    [127] Yamaguchi S., Yoshimura I., Kohira T., Tamaru S., Hamachi I. Cooperation between Artificial Receptors and Supramolecular Hydrogels for Sensing and Discriminating Phosphate Derivatives. J. Am. Chem. Soc. 2005, 127: 11835~11841.
    [128] Jung J. H., Ono Y., Hanabusa K., Shinkai S. Creation of Both Right-Handed and Left-Handed Silica Structures by Sol-Gel Transcription of Organogel Fibers Comprised of Chiral Diaminocyclohexane Derivatives. J. Am. Chem. Soc. 2000, 122: 5008~5009.
    [129]林丽华,张雪勤,杨亚江,杨祥良,徐辉碧,十四酸异丙酯分子凝胶及其促进透皮性能研究.药学学报2005, 40: 470~474.
    [130] Motulsky A., Lafleur M., Couffin-Hoarau A. C., Dider H., Franck B. Characterization and Biocompatibility of Organogels Based on L-alanine for Parenteral Drug Delivery Implants. Biomaterials 2005, 26: 6242~6253.
    [131]孟亚斌,杨亚江,碳酸丙烯酯分子凝胶电解质的电化学行为.分析化学2004, 32: 998~1001.
    [132]孟亚斌,杨亚江,分子凝胶电解质的电导率研究.化学学报2004, 62: 1509~1513.
    [133] George M., Weiss R. G. Chemically Reversible Organogels: Aliphatic Amines as "Latent" Gelators with Carbon Dioxide. J. Am. Chem. Soc. 2001, 123: 10393~10394.
    [134] George M., Weiss R. G. Chemically Reversible Organogels via "Latent" Gelators. Aliphatic Amines with Carbon Dioxide and Their Ammonium Carbamates. Langmuir 2002, 18: 7124~7135.
    [135] George M., Weiss R. G. Primary Alkyl Amines as Latent Gelators and Their Organogel Adducts with Neutral Triatomic Molecules. Langmuir 2003, 19: 1017~1025.
    [136] Trivedi D. R., Dastidar P. Instant Gelation of Various Organic Fluids Including Petrol at Room Temperature by a New Class of Supramolecular Gelators. Chem. Mater. 2006, 18: 1470~1478.
    [137] Kara S., Pekcan O. In situ Photon Transmission Technique for Monitoring Formation of Hydrogels in Real-Time at Various Water Contents. Polymer 2000, 41: 6335~6339.
    [138] Clavier G., Mistry M., Fages F., Pozzo J. L. Remarkably Simple Small Organogelators: Di-n-alkoxy-benzene Derivatives. Tetrahedron Lett. 1999, 40: 9021~9024.
    [139] Schmidt R., Adam F. B., Michel M., Schmutz M., Decher G., Mésini P. J. New Bisamides Gelators: Relationship between Chemical Structure and Fiber Morphology. Tetrahedron Lett. 2003, 44: 3171~3174.
    [140] Atkins P. W. Physical Chemistry. 6th ed. Oxford: Oxford University Press, 1998.
    [141] Hirst A. R., Smith D. K. Solvent Effects on Supramolecular Gel-Phase Materials: Two-Component Dendritic Gel. Langmuir 2004, 20: 10851~10857.
    [142] Kamlet M. J., Abboud J.-L. M., Abraham M. H., Taft R. W. Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters,π*,α, andβ, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 1983, 48: 2877~2887.
    [143] Jung J. H., Lee S. H., Shin J. Creation of Double Silica Nanotubes by Using Crown-Appended Cholesterol Nanotubes. Chem. Eur. J. 2003, 9: 5307~5013.
    [144] George M., Tan G., John V. T., Weiss, R. G. Urea and Thiourea Derivatives as Low Molecular-Mass Organogelators. Chem. Eur. J. 2005, 11: 3243~3254.
    [145] Gronwald O., Shinkai S. Sugar-Integrated Gelators of Organic Solvents. Chem. Eur. J. 2001, 7: 4328~4334.
    [146] Bhuniya S., Park S. M., Kim B. H. Biotin-Amino Acid Conjugates: An Approach Toward Self-Assembled Hydrogelation. Org. Lett. 2005, 7: 1741~1744.
    [147] Koga T., Taguchi K., Kobuke Y., Kinoshita T., Higuchi M. Structural Regulation of a Peptide-Conjugated Graft Copolymer: A Simple Model for Amyloid Formation. Chem. Eur. J. 2003, 9: 1146~1156.
    [148] Okabe S., Hanabusa K., Shibayama M. Gelation Mechanism and Microstructure of Organogels Formed with Various Types of Gelators. J. Polym. Sci. B 2005, 43: 3567~3574.
    [149] Suzuki M., Nakajima Y., Yumoto M., Kimura M., Shirai H., Hanabusa K. Effects of Hydrogen Bonding and van der Waals Interactions on Organogelation Using Designed Low-Molecular-Weight Gelators and Gel Formation at Room Temperature. Langmuir 2003, 19: 8622~8624.
    [150] Kimura M., Kobayashi S., Kuroda T., Hanabusa K., Shirai H. Assembly of Gold Nanoparticles into Fibrous Aggregates Using Thiol-Terminated Gelators. Adv. Mater. 2004, 16: 335~338.
    [151] Chang F-R. C., Skipper N. T., Sposito G. Computer Simulation of Interlayer Molecular Structure in Sodium Montmorillonite Hydrates. Langmuir 1995, 11: 2734~2741.
    [152] Heinz H., Vaia R. A., Krishnamoorti R., Farmer B. L. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Chain Length, Head Group Structure, and Cation Exchange Capacity. Chem. Mater. 2007, 19: 59~68.
    [153] Ha B., Char K. Conformational Behavior of Dodecyldiamine inside the Confined Space of Montmorillonites. Langmuir 2005, 21: 8471~8477.
    [154] Bujdák J., Martínez V. M., Arbeloa F. L., Iyi N. Spectral Properties of Rhodamine 3B Adsorbed on the Surface of Montmorillonites with Variable Layer Charge. Langmuir 2007, 23: 1851~1859.
    [155] Beall G. W., Goss M. Self-assembly of Organic Molecules on Montmorillonite. Applied Clay Science 2004, 27: 179~186.
    [156] Ralston A.W., Mccorkle M. R. 4,4'-Diaminodiphenylmethane as a Reagent for the Identification of Monobasic Saturated Aliphatic Acids. J. Am. Chem. Soc. 1939, 61: 1604~1605
    [157] George J., Jong H. J., Mitsutoshi M., Toshimi S. Unsaturation Effect on Gelation Behavior of Aryl Glycolipids. Langmuir 2004, 20: 2060~2065.
    [158] Cameron A., Louise D., Wayne H. Imprinted Polymers: Artificial Molecular Recognition Materials with Application in Synthesis and Catalysis. Tetrahedron 2003, 59: 2025~2057.
    [159] Brinksma J., Feringa B. L., Kellogg R. M., Vreeker R., van Esch J. Rheology and Thermotropic Properties of Bis-Urea-Based Organogels in Various Primary Alcohols. Langmuir 2000, 16: 9249~9255.
    [160] Alvarez-Lorenzo C., Concheiro A. Molecularly Imprinted Polymers for Drug Delivery. J. Chromatogr. B 2004, 804: 231~245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700