用户名: 密码: 验证码:
大孔树脂吸附—生物再生法处理高盐苯胺/苯酚废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高盐高浓度有机废水的排放带来十分严重的环境污染,由于它不仅含有高浓度的盐分,同时还含有大量有毒、难降解的溶解性有机物,传统处理工艺均存在一些难于克服的缺点和局限性。近年来,我国在树脂法处理高浓度有机化工废水及资源化技术的开发和应用方面取得了较大进展,各种新型吸附剂的合成和应用已成为环保领域十分活跃的研究方向之一。在此背景下,本文利用树脂对有机物的选择吸附性及容易再生的特点,提出了针对高盐有机废水的一种新型处理方法——大孔吸附树脂吸附分离-生物再生法。本文针对芳香胺和酚类化合物的物理和化学特性,选用西安蓝深交换吸附材料有限责任公司生产的XDA-1大孔吸附树脂,主要从吸附等温线、热力学和动力学等方面就高盐苯胺/苯酚废水在XDA-1上的吸附作用及传质过程进行了研究,并考察了生物法对吸附饱和的树脂再生的可行性和稳定性,以期为大孔吸附树脂在高盐有机废水的治理应用中提供一定理论基础。
     本文主要研究内容与结果如下:
     1.大孔树脂XDA-1可有效分离苯胺/苯酚和NaCl,溶液pH和初始苯胺浓度的增大均可强化苯胺的吸附去除,吸附质以分子形态为主存在的溶液pH范围有利于吸附。分析大孔树脂XDA-1吸附法处理高盐苯胺/苯酚废水的过程发现:XDA-1的吸附容量与溶液的含盐量呈正相关。Freundlich吸附等温线方程可以很好地解释此吸附过程,苯胺和苯酚在XDA-1表面上是优惠吸附过程,K_F变化说明吸附属于放热过程;在一定温度下,K_F随着NaCl含量的提高而增大,说明苯胺和苯酚的吸附量与NaCl含量呈正相关;热力学研究表明苯胺和苯酚在XDA-1表面的吸附为焓推动的自发的物理吸附过程,吸附的主要作用力为范德华力、氢键、偶极间力及疏水作用。动力学研究表明苯胺和苯酚在XDA-1上的吸附符合准二级动力学吸附速率方程,吸附速率常数随着溶液盐度增大而增大。苯胺和苯酚吸附速率与溶液盐度分别符合下列关系:苯胺:q_t=(18.85·C_(NaCl)+503.83)·exp(-(0.082·C_(NaCl)+0.1577)/t)苯酚:q_t=(83.58·C_(NaCl)+23.35)·exp(18.31·C_(NaCl)-5.90/t)苯胺和苯酚在XDA-1上内扩散过程为吸附速率主要控制步骤,同时还受颗粒外扩散的影响。吸附初始阶段大孔和中孔的内扩散系数稍低于吸附后期平衡阶段。
     2.生物再生过程包括物理解吸和生物降解两部分,苯胺解吸速率(V_d)与XDA-1的平均剩余吸附容量(Qr)有关,其数学关系满足V_d=0.2697exp(0.0195Qr)。综合物理解吸和生物降解两方面因素,确定最适的饱和树脂生物再生条件是在30℃、pH=7.0、固液比为1:400 g/mL和再生时间120 h。采用大孔树脂吸附-生物再生法处理高盐苯胺废水效果稳定,六次吸附/再生循环过程中,NaCl的分离效率和树脂生物再生效率分别稳定在98.3%和92.3%以上。
     3.苯酚解吸速率(V_d)与XDA-1的平均剩余吸附容量(Qr)有关,其数学关系满足:综合物理解吸和生物降解两方面因素,确定最适的饱和树脂生物再生条件是在30℃、pH=7.0、固液比为1:1500g/mL和再生时间48 h。采用大孔树脂吸附-生物再生法处理高盐苯酚废水效果稳定,六次吸附/再生循环过程中,XDA-1对NaCl的分离效率均为98%以上,生物再生效率维持在81%以上。
     4.生物法再生饱和吸附树脂是可行的,但再生树脂的比表面积、总孔容积并不能得到完全恢复,平均孔径也有所增加。吸附剂的吸附性能与表面结构特性密切相关,再生XDA-1吸附容量的下降正是这些吸附剂表面结构的变化的宏观体现。吸附质残留和生物附着均是导致大孔吸附树脂XDA-1生物再生不完全并有所下降的原因。
     5.饱和吸附苯胺/苯酚的大孔吸附树脂XDA-1的生物再生机理符合浓度梯度假说。在前人研究的基础上,本研究对处理高盐苯胺/苯酚废水的大孔吸附树脂的生物再生过程的数学描述进行简化。利用这两个处理体系的生物再生数据进行模型验证,发现此模型能较好的预测饱和吸附苯胺/苯酚的XDA-1的生物再生过程。
     本研究为实现芳香胺及酚类高盐有机废水的处理提供了一条可行而有效途径。
The discharge of high salinity and high organic concentration wastewater causes serious environmental pollution. As it contains not only high concentration of salinity, but also a great quantity of solvable organic compounds, which are toxic and hard for degradation, the performances of conventional processes were always uncompetitive and unstable. Recently, the polymeric adsorption resin has been widely used in the treatment of organic wastewater. The synthesis and application of new kinds of adsorbent is one of the most active research focuses in the area of environmental protection. Thus, a new treatment process which integrated the polymeric resin adsorption separation and biological regeneration was established for treating hyper-saline organic wastewater. Resin XDA-1 offered by Xi'an Lanshen Special Resins Co. Ltd. (China) was selected for aromatic amine and phenolic compounds removal according their physical and chemical properties. In this study, the adsorption characteristic, mass transfer process and mechanism of the combined process were investigated. The objective of this work is to validate the efficiency and stability of the use of a combined adsorption/bio-regeneration method for aniline/phenol treatment from hyper-saline effluents. The following works are carried out main experimental results and conclusions are as follows in this dissertation:
     1. The results show that aniline or phenol can be effectively separated from NaCl by resin XDA-1 adsorption. It was found that decreasing temperatures and increasing initial aniline concentration are beneficial for aniline and phenol adsorption. And adsorption is enhanced in pH values in which aniline or phenol mainly present as molar phase. The isotherm data of aniline and phenol adsorption fitted well with Freundlich equation. The adsorption of aniline and phenol onto XDA-1 were proved to be an exothemic process according to the changing trend of K_F. Parameter K_F, indicated the relative sorption capacity, increases with increasing ionic strength or decreasing temperature. The thermodynamic parameters indicate a spontaneous exothermic physic-sorption process, and the main adsorption forces are the van der Walls, hydrogen bonds, and hydrophobic interactions. Adsorption kinetics follows pseudo-second-order rate expression. It was demonstrated that the presence of salt enhances the adsorption removal of aniline and phenol from aqueous. The strong influence of salts on the structure of water and water solubility of the hydrophobic adsorbate accelerate the aniline and phenol adsorption onto the surface of XDA-1 resin. It was shown that adsorption capacity of XDA-1 was enhanced with the increase of salinity, and the relationships between instantaneous adsorption of aniline or phenol and salinity could be expressed as follows,Aniline:Q_t=(18.85·C_(NaCl)+503.83)·exp(-0.082·C_(NaCl)+0.1577/t)Phenol:q_t=(83.58·C_(NaCl)+23.35)·exp(18.31·C_(NaCl)-5.90/t)
     Results indicate that the intra-particle diffusion rate is the main control step of aniline or phenol adsorption, and the adsorption process is also affected by external diffusion. The intra-particle diffusion coefficients of macropore and mesopore at the adsorption initial phase are low than that of micropore.
     2. Bio-regeneraton process contains physical desorption process and biodegradation process. It was indicated that the residual adsorption capacity of aniline on XDA-1 (Qr) could be well correlated with the desorption velocity (V_d). The relation can be expressed as follows,Comprehensive considering these two factors, the optimum conditions for bioregeneration of aniline exhausted XDA-1 resin were settled as 30℃, pH=7, the ratio of solid mass and aqueous solution volume being 1/400 g/mL, and 120 h. Under the optimum conditions for bio-regeneration, the exhausted XDA-1 can be recovered successfully. The adsorption and bio-regeneration process repeated for up to six cycles, the PR and NaCl SE of XDA-1 remained 92.3% and 98.3%, respectively.
     3. It was indicated that the residual adsorption capacity of phenol on XDA-1 (Qr) could be well correlated with the desorption velocity (V_d). The relation can be expressed as follows,Comprehensive considering effect factors of physical desorption and biodegradation process, the optimum conditions for bioregeneration of phenolic exhausted XDA-1 resin were settled as 30℃, pH=7, the ratio of solid mass and aqueous solution volume being 1/1500 g/mL, and 48 h. Under the optimum conditions for bio-regeneration, the exhausted XDA-1 can be recovered successfully. The adsorption and bio-regeneration process repeated for up to six cycles, the PR and NaCl SE of XDA-1 remained above 81% and 98%, respectively.
     4. It is feasible for renew exhausted adsorption resin by bio-regeneration method. However, the specific surface area and total pore volume of samples can not be recovered completely with this mothod. And the average pore diameter increases after bio-regeneration process. There is a close relations between adsorption performance and the surface and structure characteristic of adsorbents. The decreased adsorption capacity of regenerated XDA-1 resin is the macroscopical phenomon of these changes of surface and structure characteristic of adsorbents. And the remaining of adsorbate and the attachment of microorganisms on XDA-1 surface are two reasons resulted in the loss of PR.
     5. Bio-regeneration of XDA-1 resin loaded with aniline/phenol is due to a concentration gradient. A simplified model was developed to describe the bio-regeneration process of exhausted adsorption resin. It is demonstrate that this model is very good to predict the bio-regeneration process.
     This research provided an efficient and practical method for the treatment of hyper-saline wastewater loaded with aromatic amine or phenolic compounds.
引文
[1]王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望.工业水处理.2002,22(11):1-4.
    
    [2] Panswad T, Anan C. Impact of high chloride wastewater on anaerobic/anoxic/aerobic process without inoculation of chloride acclimated seeds. Water Res., 1999,33 (5): 1165-1172.
    
    [3]文湘华,占新民,王建龙等.含盐废水的生物处理进展.环境科学.1999,20(3):104-106.
    
    [4]杨哗,陆芳,潘志彦等.高盐度有机废水处理研究进展.中国沼气.2003,21(1):21-25.
    
    [5]刘洪滨.我国海水淡化和海水直接利用事业前景的分析.海洋技术.1995,14(4):73-78.
    
    [6]杨健,郭长虹.废水中高浓度钠盐对活性污泥法系统的影响.污染防治技术.1998,11(4):199-204.
    
    [7]沈耀良,黄勇,赵丹等.固定化微生物污水处理技术.北京:化学工业出版社,2002.
    
    [8] Liesack W, Stackbrandt E. Occurrence of novel groups of the do main bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol., 1992, 174: 5072 -5078.
    
    [9]郭永海.河北平原地下水环境演化规律及其与人类活动相互关系的研究: (博士论文).北京: 中国地质大学,1993.
    
    [10]王菊思,赵丽辉,匡欣等.某些芳香化合物生物降解性研究.环境科学学报.1995,15(4):407-414.
    
    [11]孙艳,钱世钧.芳香族化合物生物降解的研究进展.生物工程进展.2001,21(1):42-46.
    
    [12]李建军,方德华,陈玉成.光合细菌对芳香族化合物厌氧降解的研究进展.微生物学杂志.2002, 22(3):38-41.
    
    [13] Dale C J. Submerged biotower technology for tertiary nitrification of poultry abattoir wastewater.Journal of the Chartered Institution of Water and Environmental Management. 2000, 14 (1): 35-38.
    
    [14] Woolard C R, Irvine R L. Biological treatment of hypersaline wastewater by a biofllm of halophilicbacteria. Water Envionmental Research, 1994,66 (3): 230-235.
    
    [15] Woolard C R, Irvine R L. Treatment of hypersaline wastewater in the sequencing batch reactor. WaterRes., 1995,29 (4): 1159-1168.
    
    [16]何健,李顺鹏,崔中利等.含盐工业废水生化处理耐盐污泥驯化及其机制.中国环境科学.2002, 22(6):546-550.
    
    [17]杨健,王士芬.高含盐量石油发酵废水处理研究.给水排水.1999,25(3):35-39.
    
    [18] Ei-Boushy A R, Klaassen G J, Ketelaars E H. Biological conversion of poultry and animal waste to afeedstuff for poultry. World's Poultry Science Journal, 1985,41 (2): 133-145.
    
    [19] An L, Gu G W. The treatment of saline wastewater using a two-stage contact oxidation method. WaterScience and Technology, 1993, 28 (7): 31-37.
    
    [20] Lefebvre O, Vasudevan N, Torrijos M et al. Halophilic biological treatment of tannery soak liquor in asequencing batch reactor. Water Res., 2005, 39 (8): 1471-1480.
    
    [21] Morin O J. Design and operation of MSF and MED systems. Desalination, 1993, 93 (1-3): 69-109.
    
    [22] Wade N M. Technical and economic evaluation of distillation and reverse osmosis desalinationprocesses. Desalination, 1993, 93 (1-3): 343-363.
    
    [23]曾琪.多菌灵及其中间体工业废水的处理.化工环保.1993,13(5):277-281.
    
    [24] Amadelli R, De Battisti A, Girenko D V et al., Electrochemical oxidation of trans 3, 4-dihydroxy cinnamicacid at PbO2 electrodes: direct electrolysis and ozonemediated reactions compared. Electrochimica Acta, 2000,46 (2-3): 341-347.
    
    [25]王宏,郑一新,钱彪等.电解凝絮法处理高盐度有机废水的实验研究.环境科学研究.2001, 14(2): 51-53.
    
    [26]王慧,王建龙,占新民等.电化学法处理含盐染料废水.中国环境科学.1999,19(5):441-444.
    
    [27]张衍国,吕俊复.国内外城市垃圾能源化焚烧技术发展现状及前景.环境保护.1998,26(7): 38-41.
    
    [28]李家珍.简述国外高浓度含染料废水焚烧技术.化工给排水设计.1993,24(3):1-7.
    
    [29] Kaul S N, Nandy T, Deshpande C V et al. Application of Full-scale Evaporation-incineration Technology for Hazardous Wastewater. Wat. Sci. Tech., 1998,38 (4-5): 363-372.
    
    [30] Yasuhir H, Takio A. Treatment of industrial wastewaters by extraction and incineration. Energy Conversion and Management, 2000,46,1165-1178.
    
    [31]陈晓平,赵长遂.纸污泥流化床焚烧炉设计分析.新能源.1998,20(8):16-20.
    
    [32]周桂英,曲景金,隋智慧等.机械压缩蒸发在麻黄素废液处理中的应用分析.过滤与分离.2001, 12(3): 14-16.
    
    [33]丑明,窦吉平,李念慈等.焚烧处理焦化污水的生产应用.冶金能.2001,20(6):56-59.
    
    [34] Brun J P. Process for separating hydrocarbons. US Pat. Appl., US, 3930990. 1976.
    
    [35] Banat F, Al-Asheh S, Qtaishat M. Treatment of waters colored with methylene blue dye by vacuum membrane distillation. Desalination, 2005,174 (1): 87-96.
    
    [36]万金宝.纳滤膜处理酸洗废液工艺.膜科学与技术.2000,20(3):59-61.
    
    [37]柴红,周志军,陈欢林.纳滤膜脱盐浓缩染料的研究.高校化学工程学报.2000,14(5):461-464.
    
    [38]谢林.高盐有机废水的膜蒸馏集成技术开发:(硕士学位论文).宁波:浙江大学,2006.
    
    [39] Slejk F L. Adsorption Technology: A step-by-step approach to process evaluation and application.Adsorp. Technol., New Jersey: Tall Oaks Publishing, 1985.
    
    [40] Motoyuki S, Adsorption Engineering. Tokyo: Kodansha Ltd, 1990.
    
    [41] Weber J W J, Critendent J C. A numeric method for design of adsorption systems. J.Water Poll.Control Fed, 1975,47 (5): 924-940.
    
    [42]刘家棋.分离过程与技术.天津:天津大学出版社,2001.
    
    [43]傅献彩,沈文霞,姚天扬.物理化学.北京:高等教育出版社,1990.
    
    [44]肖衍繁,李文斌.物理化学.天津:天津大学出版社,1997.
    
    [45]王春红.吸附树脂吸附动力学研究: (博士学位论文).天津:南开大学,2000.
    
    [46]蒋维钧.新型传质吸附分离技术.北京:高等教育出版社,1992.
    
    [47] Jansson-Charrier M, Guibal E, Roussy J et al. Vanadium sorption by chitosan: kinetics and equilibrium. Wat. Res., 1996,30 (2): 465-475.
    
    [48]王学江.超高交联吸附树脂对酚酸类物质的吸附行为及其在水杨酸生产废水处理中的应用:(博 士学位论文).南京:南京大学,2003.
    
    [49] Cooney D O, Adsorption design for wastewater treatment. Florida: CRC Press LLC, 1999.
    
    [50] Magdya Y H, Daifullahb A A. Adsorption of a basic dye from aqueous solutions onto sugarindustry-??mud in two modes of operations. Waste Management, 1988,18: 219-226.
    
    [51] Ho Y S, McKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal,1998,70(2): 115-124.
    
    [52] Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue by adsorption onvarious carbons-a comparative study. Dyes and Pigments, 2001, 51 (1): 25-40.
    
    [53] Ruthven D M. Principles of adsorption and adsorption process. New York: John Wiley and Sons,1984.
    
    [54]钱庭宝.吸附树脂及其应用.北京:北京出版社,1990.
    
    [55]陈金龙.有毒有机化工废水的治理与资源化.精细与专用化学品.2002,(17):17-18.
    
    [56]张全兴,黄杰,裘兆蓉等.树脂吸附法处理苯胺工业废水的研究.离子交换与吸附.1991,7(6): 421-426.
    
    [57]张炜铭,徐仲艳,陈金龙等.苯基周位酸生产废水处理实验研究.化工环保.2001,21(3):125-131.
    
    [58]王晶,岳海燕,蔺岩.树脂吸附法处理含苯胺废水的效果研究.天津化工.2004,18(5):56-57.
    
    [59]许月卿,彭应登,赵仁兴.树脂吸附法处理磺胺脒生产废水的工艺.环境科学.2003,24(6): 139-143.
    
    [60] Cai J G, Li A M, Shi H Y et al. Adsorption characteristics of aniline and 4-methylaniline onto bifunctional polymeric adsorbent modified by sulfonic groups. Journal of Hazardous Materials, 2005, 124(1-3): 173-180.
    
    [61] Huang J H, Huang K L, Liu S Q et al. Synthesis, characterization, and adsorption behavior of aniline modified polystyrene resin for phenol in hexane and in aqueous solution. Journal of Colloid and Interface Science, 2008, 317 (2): 434-441.
    
    [62] Juang R S, Ahiau J Y. Adsorption isotherms of phenols from water onto macroreticular resins. Journal of Hazardous Materials, 1999, 70 (3): 171-183.
    
    [63]陈瑞华.用NKA树脂处理含酚废水.化工环保.1988,8(1):52.
    
    [64]张全兴等.树脂吸附法处理苯酚生产中高浓度含酚废水的研究.江苏化工.1988,(1):48-51.
    
    [65]杨学富,张坷.水中3中酚类化合物在NKA上的吸附研究.环境科学学报.1996,16(2):162-166.
    
    [66]周黎,陈亚娟,张亚丽.印染工业废水中苯酚的回收.江苏环境科技.2005,18(1):36-37.
    
    [67]高俊刚,崔岳,王红等.MMA-DVB大孔树脂对二氯苯酚等的吸附性能.河北大学学报(自然科 学版).2004,24(4):377-381.
    
    [68]周希圣,杨德富,胡华等.树脂吸附法处理水杨酸生产中含酚废水的研究.离子交换与吸附. 1989,5(2):120-126.
    
    [69]张炜铭,吕路,潘丙才等.用大孔树脂吸附处理2,6-二羟基苯甲酸合成废水.水处理技术.2002, 28(3): 156-159.
    
    [70] Zhang H C, Chen J L, Zhang Q X. Study on the treatment and reuse of wastewater from the production of 2,3-Naphthnol. Chinese Journal of Reactive Polymers, 1998,8 (1-2): 76-89.
    
    [71]王穆君,孙越,周玮等.大孔树脂对水溶液中邻苯二甲酸的吸附行为及其热力学研究.离子交换 与吸附.2004,20(6):533-540.
    
    [72]张晓,张全兴,陈金龙.树脂吸附法处理含邻苯二甲酸的废水.石油化工.2000,29(11):822-825.
    
    [73]乐清华,吴凡,施云海等.大孔树脂吸附法处理含苯肼工业废水的研究.离子交换与吸附.2004, 20(1): 82-88.
    
    [74]邹敏.大孔树脂吸附法处理甲苯硝化废水的研究.江苏环境科技.1999,12(3):7-8.
    
    [75]王海玲,陈金龙,张全兴.树脂吸附法处理硫化促进剂以生产废水的研究.环境污染治理技术与 设备.2003,4(10):43-47.
    
    [76]寇晓康,陈敏,王槐三等.树脂吸附法处理萘普生和二氯氟苯生产废水的研究.四川大学学报(工 程科学版).2000,32(5):58-61.
    
    [77]孙越,朱兆连,潘丙才等.树脂吸附法处理磺胺中间体生产废水的研究.化工环保.2003,23(1): 9-14.
    
    [78] Natarja G, Wankat P C. Thermal-adsorptive concentration. Adsorption, 2003, 9 (1): 67-76.
    
    [79] Ahmed Z M, Lyne S, Shahrabani R. Removal and recovery of phenol from phenolic wastewater viaion exchange and polymeric resins. Environmental Engineering Science, 2000,17 (5): 245-255
    
    [80] Furuya E, Sato K, Kataoka T et al. Amount of aromatic compounds adsorbed on inorganic adsorbents.Separation and Purification Technology, 2004,39 (1-2): 73-78.
    
    [81] Abburi K. Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutionson Amberlite XAD-16 resin. Journal of Hazardous Materials, 2003,105 (1-3): 143-156.
    
    [82] Frimmel F H, Assenmacher M, Soeresen M et al. Removal of hydrophilic pollutants from water withorganic adsorption polymers: Part I. Adsorption behaviour of selected model compounds. ChemicalEngineering and Processing, 1999, 38 (4-6): 601-610.
    
    [83] Deosarkar S P, Pangarkar V G. Adsorptive separation and recovery of organics from PHBA and SAplant effluents. Separation and Purification Technology, 2004,38 (3): 241-254.
    
    [84] Thamtharai P, Rangsunvigit P, Malakul P et al. Surfactant-enhanced regeneration of polymeric resin ina vapor-phase application. Separation Science and Technology, 2007,42 (14): 3117-3130.
    
    [85] Kujawski W, Warszawski A, Ratajczak R et al. Application of pervaporation and adsorption to thephenol removal from wastewater. Separation and Purification Technology, 2004,40 (2): 123-132.
    
    [86] Cai J G, Li A M, Shi HY et al. Equilibrium and kinetic studies on the adsorption of anilinecompounds from aqueous phase onto bifunctional polymeric adsorbent with sulfonic groups.Chemosphere, 2005,61 (4): 502-509.
    
    [87]李湘,王兵,李忠.Fenton试剂再生吸附树脂的研究.肇庆学院学报.2005,5:37-40.
    
    [88]王鹏.环境微波化学技术.北京:化学工业出版社,2003.
    
    [89] Price D W, Schmidt P S. VOC recovery through microwave regeneration of adsorbents: Process design studies. J. of th e Air & waste Management Association, 1998,48 (12): 1135-1145.
    
    [90]王欢,奚红霞,李湘等.微波再生含VOCs的高聚物吸附树脂.华南理工大学学报(自然科学版). 2001,29(8):13-16.
    
    [91] Wang H J, Li Z, Xi H X et al. Efficient microwave radiation regeneration of polymeric resin adsorbing volatile organic compound. Huagong Xuebao/Journal of Chemical Industry and Engineering, 2003, 54 (12): 1683-1688.
    
    [92]韩永忠,韩丽,陈金龙等.吸附硝基苯酚的超高交联树脂微波辅助再生研究.环境科学与技术. 2006,6:34-36
    
    [93] Xu Z Y, Zhang Q X, Fang H H P. Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Critical Reviews in Environmental Science and Technology, 2003, 33 (4): 363-389.
    
    [94]曾祥燕,林庆生,陈健等.超声波在树脂再生中的应用.应用声学.2004,3:45-48.
    
    [95]于淑娟,高大维,秦志荣.超声脱附.离子交换树脂再生新技术的研究.甘蔗糖业.1999,(6): 25-29.
    
    [96]秦炜,原永辉,戴猷元.超声场聚能效应的研究.清华大学学报(自然科学版).1998,38(2):84-87.
    
    [97] Caldeira M, Heald S C, Carvalho M F et al. 4-chlorophenol degradation by a bacterial consortium: Development of a granular activated carbon biofilm reactor. Appl Microbiol Biotechnol, 1999, 52 (): 722-729.
    
    [98]张金松,赫俊国.臭氧化-生物活性炭技术试验研究.给水排水.2002,28(3):29-31.
    
    [99]王琳,王宝贞.优质饮用水净化技术.北京:科学出版社,2000.
    
    [100] van der Hoek J P, Hofman J A M H, Graveland A. Use of biological activated carbon filtration for the removal of natural organic mater and organic micropollutants from water. Wat Sci Tech., 1999, 40 (9): 257-264.
    
    [101]王琳,王宝贞.饮用水深度处理技术.北京:化学工业出版社,2002.
    
    [102] Silva M, Fernandes A, Mendes A et al. Preliminary feasibility study for the use of an adsorption/bio-regeneration system for molinate removal from effluents. Water Res., 2004, 38 (11): 2677-2684.
    
    [103]李望良,李玉光,熊小超等.吸附法脱除芳香含硫化合物的研究进展.现代化工.2006,S1(26): 16-24.
    
    [104] Li W L, Xing J M, Xiong X C et al. Feasibility study on the integration of adsorption/bioregenerationof n-complexation adsorbent for desulfueization. Ind. Eng. Chem. Res., 2006,45 (8): 2845-2849.
    
    [105] Yang L. Biodegradation of dispersed diesel fuel under hish salinity conditions. Water Res., 2000, 34(13): 3303-3314.
    
    [106] Freitas dos Santos L M, Livingston A G. Novel membrane bioreactor for detoxification of VOCwastewaters: Biodegradation of 1,2-dichloroethane. Water Res., 1995,29 (1): 179-194.
    
    [107] Brookes P R, Livingston A G. Biological detoxification of a 3-chloronitrobenzene manufacturewastewater in an extractive membrane bioreactor. Water Res., 1994,28 (6): 1347-1354.
    
    [108]彭跃莲,刘忠洲.膜生物反应器在废水处理中的应用.水处理技术.1999,25(2):63-69.
    
    [109] Dalmacija B, Karlovic E, Tamas Z et al. Purification of high-salinity wastewater by activated sludge process. Wat Res., 1996,30 (2): 295-298.
    
    [110]张晓,掌权行,陈金龙等.树脂吸附法处理1,4-二羟基葸醌生产废水的研究.离子交换与吸附. 2000,16(2):140-146.
    
    [111]占新民,王建龙,吴立波等.沉淀-树脂吸附法处理对氨基偶氮苯盐酸盐生产废水的研究.环境 工程.1998,16(3):7-10.
    
    [112]王卓,纪逸之.物化.生化组合工艺在含高盐量、高氨氮量有机废水处理中的应用.江苏环境科 技.2000,13(2):10-13.
    
    [113] Xu Z Y, Zhang Q X, Chen J L. Treatment and reuse of industrial wastewater containing toxic organic compounds with macroporous resins. In: Nankai University IUPAC 9th International Conference on Polymer Based Technology.Tianjin: International Union of Pure and Applied Chemistry, 2000: 58-61.
    
    [114]张全兴,刘天华.我国应用树脂吸附法处理有机废水的进展(续).化工环保.1995,1(15):24-27.
    
    [115] American Public Health Association (APHA). Standard Methods for the Examination of Water andWastewater 20th ed., Washington: APHA, 1998.
    
    [116] Putz A R H. Biological activated carbon: The relative role of metabolism and cometabolism inextending service life and improving process performance: [dissertation]. American: Univ. of Texasat Austin, 2004.
    
    [117] De-Waters J E. Biological activity on granular activated carbon in the presence of ozonated naturallyoccurring humic substances. American: University of North Carolina at Chapel Hill, 1987.
    
    [118]房德敏,李洁,周永梅等.器械消毒液中苯酚的含量测定.华西药学杂志.2004,19(5):385-386.
    
    [119]李湘,李忠.低浓度苯胺在大孔树脂上吸附的动力学研究.肇庆学院学报.2006,27(2):32-35.
    
    [120]大淹仁质,田中元治,舟桥重信.溶液反应的化学.北京:高等教育出版社,1985.
    
    [121]胡纪华,杨兆禧,郑忠.胶体与界面化学.广州:华南理工大学出版社,1997.
    
    [122] Arafat H A, Franz M, Pinto N G. Effect of salt on the mechanism of adsorption of aromatics on activated carbon. Langmuir, 1999,15 (18): 5997-6003.
    
    [123]黄子卿.电解质溶液理论导论(修订本).北京:科学出版社,1987.
    
    [124] Bjelopavlic M, Newcombe G, Hayest R. Adsorption of NOM onto activated carbon: Effect of surface charge, ionic strength, and pore volume distribution. Jounal of Collide and Interface Science, 1999, 210 (2): 271-280.
    
    [125]曹婉真,夏又新.电解质.西安:西安交通大学出版社,1991.
    
    [126]朱利中,杨坤,许高金.对硝基苯酚在沉积物上的吸附特征.吸附等温线和吸附热力学.环境科 学学报.2001,21(6):674-678.
    
    [127] Lagergren S, Svenska B K. Zur theorie der sogenannten adsorption gel(?)ster stoffe. VeternskapsakadHandlingar, 1898,24(1): 1-39.
    
    [128] McKay G, Ho Y S. The sorption of lead (II) on peat. Water Res., 1999,33 (2): 578-584.
    
    [129] Ho Y S, Ofomaja A E. Pseudo-second-order model for lead ion sorption from aqueous solutions ontopalm kernel fiber. Journal of Hazardous Materials, 2006,129 (1-3): 137-142.
    
    [130] Dutta M, Dutta N N, Bhatacharya K G. Aqueous phase adsorption of certain beta-lactam antibioticsonto polymeric resins and activated carbon. Separation and Purification Technology, 1999, 16 (3):213-224.
    
    [131] Charie S, Ratto M, Rovtti M., Mercury removal from water by ion exchange resins adsorption. WaterRes., 2000,34 (11): 2971-2978.
    
    [132] Schultz J R, Keinath T M. Powdered activated carbon treatment process mechanisms. Journal ofWater Pollution Control Federation, 1984,56 (2):143-151.
    
    [133] de Jonge R J, Breure A M, van Andel J G. Bioregeneration of powdered activated carbon (PAC)loaded with aromatic compounds. Water Res., 1996, 30 (4): 875-882.
    
    [134] Kim D J, Miyahara T, Noike T. Effect of C/N ratio on the bioregeneration of biological activatedcarbon. Water Science and Technology, 1997, 36 (12): 239-249.
    
    [135] Klimenko N, Winther-Nielsen M, Smolin S et al. Role of the physico-chemical factors in thepurification process of water from surface-active matter by biosorption. Water Res., 2002, 36 (20):5132-5140.
    
    [136] Kim B R, Chian E S K, Cross WH et al. Adsorption,desorption, and bioregeneration in an anaerobicgranular activated carbon reactor for remova of phenol, Journal Water Pollution Control Federation,1986, 58 (1): 35-40.
    
    [137]杜锦珠,茹炳根.酶的结构和作用机制.北京:北京大学出版社,1991.
    
    [138] Andrews GF, Tien C. The inter-reaction of bacterial growth, adsorption and filtration in carbon columns treating liquid waste. AICHE Syrup, 1980,71:164-175.
    
    [139] Zhang X J, Wang Z S, Gu X S. Simple combination of biodegradation and carbon adsorption-mechanism of the biological activated carbon process. Water Res., 1991,25 (2), 165-172.
    
    [140] Aktas O, Cecen F. Bioregeneration of activated carbon: A review. International Biodeterioration and Biodegradation, 2007, 59 (4): 257-272.
    
    [141] Jankowska H, Swiatkowski A, Choma J. Active Carbon. New York: Ellis Horwood, 1991.
    
    [142] Martin M J, Artola A, Balaguer M D et al. Enhancement of the activated sludge process by activated carbon produced from surplus biological sludge. Biotechnology Letters, 2002,24 (3): 163-168.
    
    [143] Dagley S. Catabolism of aromatic compounds by microorganisms. Adv. Micro. Physiol., 1971, 6 (0): 1-46.
    
    [144] Gibson D T. Microbial degradation of organic compounds. New York: Marcel Dekker, Inc., 1984.
    
    [145]林颖,蔡容华.芳香族化合物生物降解的研究进展.福建轻纺.2006, (2):6-10.
    
    [146]艾明星,相变贮能材料的研究: (硕士学位论文).天津:河北工业大学,2003.
    
    [147] Goeddertz J G, Matsumoto M R, Weber A S. Offline bioregeneration of granular activated carbon. Journal of Environmental Engineering, 1988,114 (5): 1063-1076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700