用户名: 密码: 验证码:
动态对动态GPS高精度定位理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,传统的DGPS是一个固定的基准站,通过无线电台把基站的数据传输到流动站上,这一模式能够满足大多数应用的需求,但在某些应用场合,这种固定基准站发送DGPS数据的有限覆盖范围,又不能够满足动态用户的应用需要:例如,远洋编队航行、舰载飞机着舰(或登陆海上作业平台)、编队飞行、空中加油等。在这些应用中,如果仍旧采用固定基准站,移动站与基准站的距离将会变得很长,由此将会产生两个问题:① 随着基线的增长,求解载波相位测量整周模糊度的时间将会增长,而且精度也会降低;② DGPS数据链将会变得很昂贵,不可靠,甚至不可能。
     为了解决两个运动目标之间需要高精度的相对定位问题,我们在采用GPS动态载波相位测量技术时,将基准站也设置在运动载体上,而解求出动态用户相对于基准站的相对位置;并将它称为GPS动态对动态载波相位差分技术。本文针对这一情况,就整周模糊度的解算、周跳的修复、数学处理模型等问题展开研究,论文主要贡献有以下几点:
     1.由于GPS是高轨卫星,如果只有几个历元数据(在动态定位中,GPS接收机采样率一般很高,如10Hz)采用最小二乘估计进行计算时,法矩阵的求逆会出现不稳定,又由于观测噪声不可避免,导致模糊度的浮点解与准确值偏差较大,很难正确地确定整周模糊度,所以以往只有通过增加观测时间来改善法矩阵的状态和模糊度的浮点准确性,这样就降低了快速定位的效率。针对此情况,笔者探讨了用岭估计法、谱迭代修正法、附加约束法来消除其病态性;并用实测结果进行了验证,其结果表明用单频静态数据(采样率为1秒)在连续5个历元即可正确解算出模糊度,从而实现快速定位。
     2.动态对动态高精度相对定位的核心问题是如何快速准确地确定载波相位测量整周模糊度,本文在分析已有OTF的基础上,提出一种综合求解模糊度的方法,该方法的基本思想采用分步求解的方法,先用LAMBDA方法搜索一个初始模糊度,然后再组合搜索,实践证明该方法能进一步提高搜索速度。
     3.在动态对动态GPS相对定位中,有时两个运动载体相距并不太远(小于10km),针对这种情况,我们提出一种适合单频GPS OTF方法,如果采用常规的算法来求解模糊度,则组成法方程阶数巨大,计算负担太大,难以满足实时性要求,而我们使用QR分解方法,再通过矩阵变换,使模糊度参数与位置参数分离,从而使求模糊度的方程阶数大大减少,该方法具有求解速度快,计算简单,适合在航解算等优点。
     4.众所周知,尽管我们在解算过程中采用双差模式,可以消除大部分公共误差的影响,但由于受多路径效应及电离层、对流层残余误差的影响,GPS双差之后数据并不是白噪声,而是含有一个干扰量,如果采用常规的数据处理方法可能会有一个模型误差,针对这种情况,引入H_∞滤波理论。讨论其基本原理及其抗干扰性。
     5.分析比较三种数据处理模型,即LS、Kalman滤波、H_∞滤波,我们可以发现,当γ→∞时,递推方程简化为Kalman滤波方程,这就说明Kalman滤波是的H_∞滤波的特例。通过实验对比,我们发现:当观测数据为白噪声时,三种模型精度相当,当观测数据含有干扰时,H_∞滤波精度最好,LS次之,Kalman滤波精度最差。
     6.周跳是高精度定位中所特有的问题(高精度定位必须采用载波相位测量,实际上是载波相位测量中所特有的问题),所以周跳的探测与修复是GPS高精度定位中另一个核心问题,本文分析已有动态探测与修复周跳的方法,通过算例来说明各种方法的优
It is well known that the pattern of conventional DGPS is that the data of fixed base station transmitted to rover station by radio. Most applications are met by the pattern, But the pattern can not meet the need of some kinematic users in some cases , for example, the voyages are formed into columns to ocean、 the airplanes carried warship are landed in warship、 the airplanes are formed into columns in air et al. For the DGPS data that the fixed base station transmitted cannot cover with largo range. If the pattern of conventional DGPS is still used in the applications, two problems are caused: Firstly, the time that the carrier cycle ambiguity is solved will be increased and the precision of the position will be decreased with the baseline increased; Secondly, the DGPS data will be costly、 incredibility and even impossible. For the range of between the base station and the rover station will become longer and longer.To solve the problem of positioning relatively between the moving objects with high accuracy, we set up the reference station on the moving carrier, to solve the relative position of kinematic user to reference one by GPS carrier phase positioning On-The-Fly (OTF); It's named to On-the-fly GPS Positioning Relative to (?) Moving Reference (KINRTK). the solution of ambiguity 、 the repair of the cycle slip and the mathematical processing model et al are studied ,The main achievement of this paper are as follows:1. If several epoch data are used to solve the ambiguity by LS (Least Square)(the sampling rate of GPS receiver is commonly high, for example 1 OHz, when the receiver is used to kinematic measure), the invert of normal equation of GPS observation equations will be instable, Because the GPS satellites are high orbit, and the float solution of the ambiguity departured from the exact value because of the inevitably observation noise, So the right ambiguity is difficultly fixed. The normal equation of GPS observation equations and the veracity of ambiguity are improved by increased observation time before, So the efficiency of rapid position is decreased. For this situation, the method of Ridge Estimation、 the method of spectrum correction iteration and the method of restricted condition are discussed to eliminate the ill condition of the normal equation; and the experiments results show, for single frequency GPS ,the initialization can be finished in sequence 5 epoches (the sampling rate of GPS receiver is 1s)and the right ambiguity can be achieved.2.The core problem of high accuracy kinematic to kinematic relative position is how to fast confirm the solution of carrier phase ambiguity. An integrate method of solving ambiguity was put forward on analyzed existed OTF methods, step solution is the basic idea of the method, the initial ambiguity was searched by the method with LAMBDA method firstly, and with combined method, experiments results show the method can improve the search speed.3. Sometimes two moving platforms do not apart far (less than 10km) in kinematic to kinematic relative position, For this situation, an new GPS OTF method was put forward for single frequency. If the routine algorithm of solution ambiguity was used, the formation of normal equation rank is large, thus the calculation burdened greatly, the algorithm can not meet the real-time need, but the method of QR decomposition is used, and then the
    ambiguity parameter was apart from position parameter by matrix transformation;and the rank of solution ambiguity reduced greatly. So the method have the advantage of solving speed fast> easily calculating and on-the-fly ambiguity.4. It is well known that though Double Difference patter can eliminate most common error;the remains error of troposphere and ionosphere have influence on DD data;so the data is not white noise;but corruption. If the routine algorithm is used to process the data;there is a model error in its results. So the theory of Hm Filter is introduced;and its basic principle and robust were discussed.5. Three model of data processing were analyzed and compared;that is LS;Kalman Filter and Hw Filter,While analysing and comparing the three model of data processing;namely LS;Kalman Filter and Hn Filter;we can find that when y ->■ oo;the recursion equation can simplify the Kalman Filter equation ,this shows that Kalman Filter is one special case of Hn Filter. Through the experiment contrast;we find that when the observation data has the character of white noise;three kinds of models are equivalent in precision. But when the observation data has the corruption;the Ha Filter can get the best precision and the LS takes second place;Kalman Filter can but get the worst precision.6. Cycle-slip is the peculiar problem of high precision positioning (high precision positioning must adopt the carrier phase observation,. and in nature cycle-slip is a peculiar problem of carrier phase measurement);so the detection and repair of cycle-slip is key question of GPS high precision positioning;and all methods of detection and repair of cycle-slip used in kinematic positioning are analyzed and state the advantages and shortcomings of these methods are compared by experiment results. On this basis;a new method of detection and repair of cycle-slip based on tri-difference which has a similar idea and process with the LS ambiguity resolution is introduced. Experiments results show that the new method has a better result in kinematic positioning.7. In GPS kinematic positioning;if the altitude difference of the base station and the rover station is large;then troposphere error would take considerable effect on positioning result;so the correction of troposphere error is necessary in high precision position. In past application;we mostly use Hopfield model and improved Hopfield model which are based on standard meteorological elements to calculate the correction. This paper puts forward a kind of a dynamic troposphere error correction model by utilizing the relation among temperature;atmospheric pressure;height;and the new model can correct the error according to the real-time height. The contrast results of some tests show that the new model can get better result.8. KINRTK is different to conventional DGPS whose precise position is known;so its theory differs from ones. It's discussed that single-point positioning on pseudo-range provides original coordinates;their precision and influence on KINRTK; then author draws the conclusion that it's same to integer ambiguity researching process and cycle slip disposal with each other; The only difference is that the initialed coordinate must be fixed and known in conventional DGPS. And the results of the practical data processing show that KINRTK algorithm's precision to cm level.
引文
1.刘基余.GPS卫星导航定化与方法·北京:科学出版社,2003.
    2.刘基余,李征航等·全求定位系统原理及其应用·北京:测绘出版社,1993,
    3.柳响林.精密GPS动态定位的质量控制与随机模型精化.[博士学位论文]武汉大学,2002.
    4.何海波.高精度GPS动态测量及其质量控制.[博士学位论文]中国人民解放军信息工程大学,2002.
    5.郑庆辉.基于GPS的航于器姿态、相对姿态确定研究[博士学位论文]国防科学技术大学,2003.
    6.陈小明.高精度GPS动态定位的理论与实践.[博士学位论文]武汉测绘科技大学,1997.
    7.李洪涛,许国昌,薛鸿印等,GPS应用程序设计,北京 科学出版社,1999.
    8.袁洪,万卫星,宁百齐,李静年。基于三差解检测与修复GPS载波相位周跳新方法,测绘学报,1998,189~194.
    9.何海波,杨元喜.GPS动态测量连续周跳检验,测绘学报,1999,199~203.
    10.黄丁发,卓健成.GPS相位观测值周跳检测的小波分析法,测绘学报,1997,352~357.
    11.胡丛玮,刘大杰,姚连壁·高精度动态定位中的一种周跳修复方法,同济大学学报,1998,199~202.
    12.魏子卿,葛茂荣.GPS相对定位数学模型,北京:测绘出版社,1998.
    13.周忠谟,易杰军等.GPS测量原理与应用。北京:测绘出版社,1997.
    14.付梦印,邓志红等,Kalman滤波理论及其在导航系统中的应用。北京:科学出版社,2003.
    15.韩保民。用拟准检定法探测和修复GPS数据中的粗差和周跳,武汉大学学报(信息版),2002,246~250。
    16.陈小明,刘基余,GPS动态定位对流层改正模型,导航,1996(2).
    17.陈小明,刘基余,GPS动态载波相位测量的波数在航解算,导航,1996(4),30~38。
    18.董绪荣,陶大欣,一个快速的滤波方法及其在GPS动态数据处理中的应用,测绘学报,1997,221~227。
    19.姬生月,欧吉坤等,一种适合单频接收机快速模糊度求解的新方法,武汉测绘科技大学学报,,2000,108~112。
    20.俞文伯,高国江等,单频GPS动态相对定位的模糊度逼近搜索解法,北京航空航天大学学报,2002,242~244。
    21.贾沛璋,吴大连,单频GPS周跳检测与估计算法,天文学报,2001,192~197。
    22.刘根友,单频GPS接收机动态定位的相何与伪距联合算法及其周跳检测,地壳形变与地震,2001,(3),26~31。
    23.刘经南,陈俊勇等,广域差分GPS原理和方法,北京:测绘出版社,1999。
    24.刘经南,叶世榕,GPS非差相位精密单点定位技术探讨,武汉大学学报(信息科学版)2002
    25.刘基余,GPS卫星测量技术在海洋开发中的应用展望,海洋技术,2000,(4)35~39。
    26.张青云,自适应滤波方法研究,航空学报,1998,96—99
    27.薜鸿印,焦守峰.双移动载体GPS相对定位系统中整周模糊度快速求解方法,舰船科学技术,2001.6,46-54.
    28.刘广军,曾纪斌.GPS动态相对导航用于航天器交会对接的研究及其OTF解算方法。飞行器测控学报,2000.2,86-93.
    29.葛茂荣,过静君,谢宝童.动态对动态GPS实时差分定位,工程勘察,1998,4.14.
    30.徐绍铨,张华海,杨志强等,GPS测量原理及应用,武汉大学出版社,1998,8
    31.欧吉坤,王振杰,单频GPS快速定位中模糊度解算的一种新方法[J],科学通报,2003(24),2572~2575。
    32.陈希孺,王松桂,近代回归分析[M],合肥,安徽教育出版社,1987
    33.王新洲,在无偏估计类中改进最小二乘估计的方法[J],武汉测绘科技大学学报,1995(3),46~50。
    34.王新洲、刘丁酉、张前勇、黄海兰,谱修正迭代法及其在测量数据处理中的应用[J]。黑龙江工程学院学报,第15卷第2期,2001(2)3-6.
    35.陈永奇,一种检验GPS整周模糊度解算有效性的方法[J],武汉测绘科技大报,1997,12(4):342~345.
    36.胡国辉,范胜林,袁信。GPS定位定向系统的研究。宇航学报,2000,111-116。
    37.崔希璋、於宗俦、陶本藻等,广义测量平差(新版),武汉:武汉测绘科技大学出版社,2000。
    38.2004年导航学术年会论文集,中国电子学会导航分会和中国全球定位系统协会仪器设备专委会编
    39.赵丽,刘建业,范胜林。基于QR分解的快速解算初始整周模糊度方法的研究,南京航空航天大学学报,2004,249-253。
    40.赵伟,袁信,林雪原。采用H_∞滤波器的GPS/INS全组合导航系统研究。航空学报,2002,265-267
    41.申铁龙,H_∞控制理论及应用。北京:清华大学出版社,1996
    42.刘立龙、刘基余、李光成,单频GPS整周模糊度动态快速求解的研究,武汉大学学报信息版,2005.
    43.刘立龙、刘基余、韦其宁,一种GPS快速定位技术研究,宇航学报,2005.(1)。
    44.刘立龙、刘基余、李光成,一种适合单频GPS动态求解模糊度的方法,飞行器测控学报,2005,(1):6-10.
    45.刘立龙、刘基余、李光成,附加约束法及其在GPS快速定位中的应用,测绘科学,2005.
    46.刘立龙、刘基余、李光成,一种组合模糊度搜索方法的研究,遥测遥控,2005,(1):6-9.
    47.刘立龙、刘基余,基于岭估计理论实现GPS快速定位研究,遥测遥控,2004,(4):1-4.
    48. Alfred Leick, GPS Satellite Surveying, New York: A Wiley-Interscience Publication JOHN WILEY &SONS, 1990.
    49. Bernd Eissfeller, Tiberius and Pany etal, Real-Time Kinematic in the Light of GPS Modernization and Galileo. ION-2001, 2001, 650~682.
    50. Azmi Hassan and David Mezera, Pseudo Randomized Search Strategy Algorithm in Resolving the Ambiguity Resolution. ION-97, 1997, 1135~1142.
    51. Yunchun Yang, Richard T, Hatch R, A Fast Ambiguity Resolution Technique for RTK Embedded Within a GPS Receiver[A]. ION-2002[C]. 2002, 945~952.
    52. Donghyun Kim, Richard B. Langley, An Optimized Least-Squares Technique for Improving Ambiguity Resolution and Computational Efficiency[A], ION GPS-99, The 12th international technical meeting of the satellite division of the institute of navigation[C], 1579~1588.
    53. Bisnath. S. B, Eifficient, automated cycle-slip correction of dual-frequency kinematic GPS data, ION-2000, 145~154
    54. Kim. D and Langley. R, Instantaneous real time cycle-slip correction of dual-frequency GPS Data, Proceedings of the International Symposium on Kinematic System in Geodesy, Geomatics and Navigation, 255~264.
    55. Frei. E And Beutler. G, Rapid static positioning based on the fast ambiguity resolution approach(FARA): theory and first results, Manuscripta Geodaetica, 1990, 1059~1067.
    56. Han.S, Rizos.C, improving the computational efficiency of ambiguity function algorithm .Journal of Geodesy,1996,330~341.
    57. Hoffmann-Wllenhof. B, Lichtenegger.H, Collins.J, Global Position System Theory and Practice, Fourth revised edition,Springer Wien New York.
    58. Gao Y and Li z, Cycle slip detection and ambiguity resolution algorithm for dual-frequency GPS data processing, Marine Geodesy, 1999,169—181.
    59. Han S, Quality Control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic position. Journal of Geodesy, 1997, 351~361.
    60. Janet Brown Nwumann, Keith J, Allan Manz etal, Real-Time Carrier Phase Positioning Using the RTCM Standard Message Types 20/21 and 18/19. ION-97,1997,857—866.
    61. Van Grass F.D, FAA/Ohio University/United parcel service DGPS autoland flight test demonstration. ION-95,1995,727~737.
    62. Ronald Braff, Descrition of the FAA'S local area augmentation system LAAS, Navigation: Journal of The Institute of Navigation, 1997,411—424.
    63. Loh R, Wullschleger V,Elrod B etal, The US Wide-area-augmentation-system(WASS),Navigation: Journal of The Institute of Navigation, 1998,435 ~466.
    64. V.Spinney, Applications of GPS as an Attitude Reference for Near Earth Uses. Institute of Navigatio, 1976.4
    65. Evans A.GRoll, Pitch and Yaw Determination Using a Global Positioning System Receiver and Antenna Periodically Moving in a Plane, Marine Geodesy, 1986,10(1)
    66. Frank Van Grass & Michael Braasch. GPS Interferometric Attitude and Heading Determination Initial Flight Tests Results. Navigation 1991,38(4):297-316
    67. Mauricio A Gende, Ionospheric Effect in Instantaneous Positioning, ION GPS 2003,826-832.
    68. M.Hernandez-Pajares, J.M.Juan, J.Sanz. Precise Ionospheric Determination and its Application to Real-Time GPS Ambiguity Resolution.ION GPS1999,1409-1417.
    69. Kendall Ferguson, Joanna Kosmalska, Mark kuhl, etal, Three Dimensional Attitude Determination with the Ashtech 3DF 24 Channel GPS Measurement System, Proceedings of 47~th Annual National Technical Meeting on Using Synergism to Strengthen Navigation System 1991,35-41
    70. Clark E Cohen, Bradford W. Parkinson and B. David Mcnally. Flight Tests of Attitude Determination Using GPS compared Against an Inertial Navigation Unit, Navigation 1994,41(l),83-97.
    71. Lachapelle.G,B.Faklenberg, D. Neufledt etal Marine DGPS Using Code and Carrier in a Multipath Environment, Proceedings of the Second International Technical Meeting of the Satellite Division of the ION, GPS-1989,1989,26-29.
    72. Ashjace.J,R.Lorenz, R.Sutherland,etal New GPS Developments and Ashtech M-XII,Preceedings of the Second International Technical Meeting of the Satellite Division of the ION, GPS-1989,1989,226-229.
    73. Georgiadou.Y, Kleusberg.A, On Carrier Phase Multipath Effects in Relative GPS Positioning, Vol(13),172-179.
    74. Oscar L.Colombo, Manuel Hernandez-Pajares, J.Miguel Juan et al .Rosolving Carrier-Phase Ambiguities On The Fly, At More Than 100 km From Nearest Reference Site,With The Help of Ionospheric Tomography, ION GPS99,1999:1635-1642.
    75. Odijk D, Stochastic modeling of the ionosphere for fast GPS ambiguity resolution. Geodesy beyond 2000-the challenges of the first decade, IAG General Assembly, Vol(121),1999,387-392.
    76. Odijk.D, Improving ambiguity resolution by applying ionosphere corrections from a permanent GPS array, Earth, Planes and Space, special issue GPS99, 18-22.
    77. Odijk.D, Weighting Ionospheric Corrections to Improve Fast GPS Positioning Over Medium Distances ION_GPS2000,
    78. Rothacher.M, Geodetic Applications of GPS: Lecture Notes for Nordic Autumn School. Chapter GPS Satellite Orbits, Orbit Determination and IGS. 55-108, National Land Survey of Sweeden.
    79. Klobuchar.J.A, Ionospheric Time Delay Algorithm for Single Frequency GPS Users. IEEE Transacions on Aerospace and Electronic Systems, AES-23(3):325-331.
    80. Brunner.F.K, Ming Gu, An improved model for the dual frequency ionospheric correction of GPS observations, Manuscripta Geodaetica Vol(16),205-214.
    81. Linyuan Xia, Approach for Multipath Reduction Using Wavelet Algorithm. ION-2001,2001,2134-2143.
    82. Kanwaljit S, Sandhoo, FAA's Plan for the future use of GPS,ION-99,1763-1768.
    83.Spilker J, Van Dierendonck A. Proposed New Civil GPS signal at 1176.45MHz, ION-99,1717-1726.
    84. Andrea Posfay, Tropospheric Delay Modeling for the European Space Agency's Galileo Testbed:Methos of Improvement and First Results. ION GPS-2003,817-824.
    85. Mike Pattinson, Alan Dodson, Terry Moore,Tropospheric Delay Estimation from a Moving GPS Receiver. ION GPS2002,2294-2303.
    86. Canmen Bonillo-Martinez, Manuel Toledo-Lopez, Miguel Romay-Merino.The benefits of the GPS three frequencies on the ambiguity resolution techniques,ION-99,1737-1746.
    87. Anderson C J, Lazar S, L _m and L_c How the Military and Civil Users of GPS Can Reuse Our Existing Spectrum, GPS System Engineering, 1997.
    88. Liu Jiyu. A Real-time Solution for GPS Measured Distances Without Cycle Slips. Survey Review(UK), 1993,32(247):31 -38.
    89. P. J. G. Teunissen. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, Vol. 70, No. 1-2, pp. 65-82.
    90. P. J. G Teunissen, P.J. de Jonge, and C.C.J.M. Tiberius, On the spectrum of the GPS DD-ambiguities. Proceedings of ION GPS-94, 7th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, UT, September 20-23, pp. 115-124
    91. P. J. G. Teunissen, P.J. de Jonge, and C.C.J.M Tiberius, The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans, Journal of Geodesy, Vol. 71, No. 10, pp. 589-602.
    92. P. J. G Teunissen, P.J. de Jonge. and C.C.J.M. Tiberius, The volume of the GPS ambiguity search space and its relevance for integer ambiguity resolution. Proceedings of ION GPS-96, 9th International Technical Meeting of the Satellite Division of the Institute of Navigation, Kansas City, Missouri, Sept. 17-20, pp. 889-898.
    93. P. J. G. Teunissen , A new method for fast carrier phase ambiguity estimation. Proceedings IEEE Position, Location and Navigation Symposium PLANS'94, Las Vegas, NV, April 11-15, pp. 562-573.
    94. P. J. G Teunissen , P.J. de Jonge, and C.C.J.M. Tiberius, The LAMBDA method for fast GPS surveying. Proceedings of International Symposium 'GPS technology applications', Bucharest, Romania, September 26-29, pp. 203-210.
    95. P. J. G. Teunissen , P.J. de Jonge, and C.C.J.M. Tiberius, A new way to fix carrier-phase ambiguities. GPS World, Vol. 6, No. 4, pp. 58-61.
    96. P. J. G. Teunissen, A canonical theory for short GPS baselines Part I: The baseline precision, Journal of Geodesy, 1997, 71: 320-336
    97. P. J. G. Teunissen, A canonical theory for short GPS baselines. Part II: the ambiguity precision and correlation Journal of Geodesy, 1997, 71: 389-401
    98. Jonge de, P.J., and C.C.J.M.Tiberius, Integer ambiguity estimation with the LAMBDA method. Proceedings IAG Symposium No. 115, GPS trends in precise terrestrial, airborne and spaceborne applications, XXI General Assembly of IUGG, July 2-14, Boulder, CO, July 2-14, 1995, G Beutler et.al., (Eds.), Springer Verlag, pp. 280-284.
    99.Alexander Fridman. Mothods of Filtering in Instant Ambiguity Resolution and Their Application To RTK-OTF Positioning.ION GPS1998,381-388.
    100. Eric Sutton,. Optimal Search Space Identification for Instantaneous Integer Cycle Ambiguity Resolution,ION GPS 1997,313-322.
    101. Janet Brown Neumam,Keith J,Vandierendonck,Allan Manz Thomas J.Fond. Real-Time Carrier Phase Positioning Using the RTCM Standard Message Types20/21 and 18/19.
    102. Caroline Erickson, Investigations of C/A Code and Carrier Measurements and Techniques for Rapid Static GPS Surveys, June 1992, Calgary, Alberta, Canada.
    103. Paul de Jonge and Christian Tiberius, The LAMBDA method for integer ambiguity estimation : implementation aspects, Publications of the Delft Geodetic Computing Center, 1996.8
    104. Donghyun Kim and Richard B. Langley, GPS Ambiguity Resolution and Validation: Methodologies, Trends and Issues, Presented at the 7~th GNSS Workshop - International Symposium on GPS/GNSS, Seoul, Korea, Nov.30-Dec.2,2002
    105. Jinling Wang, Toshiaki Tsujii,Chris Rizos et al, Integrating GPS and Pseudolite Signals for Position and Attitude Determination: Theoretical Analysis and Experiment Results, ION-99,435-444.
    106. Chansik Park,Ilsun Kim, Jang Gyu Lee etal. Efficient technique to fix GPS carrier phase integer ambiguity on-the-fly[J] ADVANCES IN NAVIGATION,1997,144(3):148~ 155.
    107.YOUNG JAE LEE, Yu-Doo WON, Gyu-In Jee el ta, A Real Time Ambiguity Search Technique for Precise Positioning Using GPS LI Carrier Phase[A], Proceedings ION GPS-1999[C].1999:1589~ 1595.
    108. Yang Gao, James F.McLellan and John B.Schleppe,An Optimized GPS Carrier Phase Ambiguity Search Method Focusing on Speed and Reliability[J],IEEE AES Systems Magazine,1996,22~ 26.
    109. Sueo Sugimoto, Yukihiro Kubo, Tsuyeshi Kindo et al, Static Carrier Phase Differential Positioning by Applyingthe H_∞ Filter. ION GPS-1999.1999:1241-1250.
    110. Shinya Maruo, Yukihito Kubo, Chie Uratani et al, Kinematic Carrier Phase Differential GPS Positioning byApplying the H_∞ Filter. ION GPS-2002.2002: 1842-1849.
    111. Greg Johnson. A Truth System for Evaluating a Relative Solution Between Two Moving Platforms.ION GPS1997,1185-1194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700