用户名: 密码: 验证码:
汉族人群中SLC26A4,线粒体转录因子A基因多态性与阿尔茨海默病的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease, AD)是一种与年龄相关的进行性神经系统变性病,是老年人发生认知功能减退及痴呆的最常见的病因。临床表现为进行性记忆力减退和严重的智能减退,神经系统病理改变主要有脑内β-淀粉样肽(Aβ)沉积、神经原纤维缠结和神经元缺失等。AD在世界范围内广泛发病,随着老年化时代的到来,AD以成为影响人类健康的最主要疾病之一。据统计到2010年,全世界已有3500万人罹患AD,并且随着年龄的增长,其发病风险每5年会成倍增加。AD的致残率和致死率给家庭和社会带来了沉重的负担。但目前AD的发病机制还不十分清晰,比较有影响的假说主要有“胆碱能学说”和“β-淀粉样蛋白学说”等。随着遗传分子生物学的发展,人类开始从基因层面来寻找AD的发病机制及治疗方法,目前全基因组关联研究(Genome-wide AssociationStudies,GWAS)已发现许多染色体区域很可能存在与AD有关的基因突变,如CLU、CRl、 PICALM、 PCDH11X、NEDD9以及一些神经营养因子等。目前只有载脂蛋白(ApoE)ε4等位基因在世界范围内得到了公认,但ApoEε4等位基因只占迟发型阿尔茨海默病(LOAD)患者遗传风险的42%。因此,寻找更多的候选基因,对将来AD的基因诊断和治疗至关重要。近期一项大规模的全基因关联研究发现SLC26A4基因rs2072064多态性位点与高加索人群迟发型阿尔茨海默病的发病风险相关联,然而目前在汉族人群中还没有关于上述基因位点多态性与LOAD的发病风险关系的研究报道。
     1.SLC26A4基因rs2072064位点多态性与阿尔茨海默病的相关性研究:
     近期一项大规模的全基因关联研究发现SLC26A4基因rs2072064多态性位点与高加索人群迟发型阿尔茨海默病(LOAD)的发病风险相关联,然而目前还没有关于该位点基因变异与亚洲人群LOAD的发病风险关系的研究报道。本研究旨在探讨SLC26A4基因rs2072064多态性位点与北方汉族人群迟发型阿尔茨海默病(LOAD)易感性的关系。采用病例-对照研究方法,选取599例LOAD患者和598例年龄和性别相匹配的健康对照作为研究对象,利用聚合酶链式反应—连接酶检测反应(PCR—LDR)技术进行基因分型。结果发现SLC26A4基因rs2072064多态性位点的基因频率和等位基因频率在病例组和对照组中有显著差异(P=0.001;P <0.001),其中等位基因型A显著降低LOAD的发病风险(OR=0.792, P=0.007)。但是,经ApoEε4分层后,仅在ApoEε4非携带亚组中,SLC26A4基因型和等位基因型频率在AD组和对照组中存在显著差异(基因型p=0.001;等位基因型p=0.001)。此外,logistic回归分析发现,在校正性别、年龄和ApoEε4携带状态等因素后,该位点仍与LOAD的发病风险显著关联(显性模型: OR=0.787,95%CI=0.619-1.000, P=0.050;隐性模型: OR=0.655,95%CI=0.448-0.959,P=0.030;累加模型: OR=0.792,95%CI=0.661-0.950, P=0.012)。本研究支持SLC26A4基因为中国北方汉族人群LOAD的易感基因。
     2.线粒体转录因子A基因遗传多态性与阿尔茨海默病发表风险的关联研究:
     线粒体是ATP产生的主要场所,维持人体细胞的各种正常生理功能,对于能量需求量特别高的神经细胞来说其功能的完整性尤为重要。有研究表明慢性线粒体DNA的损伤和线粒体功能缺陷在阿尔茨海默病的发生和发展进程中发挥了重要的作用。线粒体转录因子A(TFAM)具有维持线粒体DNA结构和功能的完整性的作用。越来越多的研究表明TFAM与阿尔茨海默病发病风险有关。本实验采用大样本病例-对照的研究方法,应用生物质谱测序技术和等位基因特异性多重PCR技术(Multi-ARMS),检测394例临床确诊的迟发型阿尔茨海默病患者(发病年龄≥65岁)和390名健康对照者的TFAM受体基因多态性位点的等位基因型,基因型和单倍体型及载脂蛋白E基因多态性位点的等位基因型,基因型和单倍体型的分布特征情况,以探讨TFAM基因多态性、载脂蛋白E基因多态性以及TFAM基因与载脂蛋白E基因相互作用与迟发型阿尔茨海默病的关系。本研究采用SPSS11.5软件做统计学分析。两组间人群一般特征差异采用student-t检验或卡方检验,Hardy-Weinberg平衡定律采用卡方检验。同时比较AD组和对照组间基因型、等位基因型和单倍体型分布的差异,计算比值比(OR)及其95%可信区间(CI),确定相对风险度。采用多因素Logistic回归分析校正潜在的混淆因素。应用SHEsis软件做单倍体频率分析。所有统计学检验均为双侧概率检验,P﹤0.05为有统计学意义。结果显示,载脂蛋白E(ApoE)ε4与散发、晚发性阿尔茨海默病的发病风险高度相关(P<0.001,OR=2.91),两组间rs1937基因型频率和等位基因频率差异有显著性(基因型p=0.03;等位基因型OR=0.76,95%CI=0.59-0.99,p=0.04)。位点rs2306604基因型和等位基因频率在AD组与对照组间均无显著差异(基因型p=0.76;等位基因型p=0.84)。按性别分层分析后,两位点基因型和等位基因型频率未见明显差异。多因素logistic分析表明ApoEε4与TFAM基因之间无交互作用,rs1937基因型频率差异在三种logistic模型中均有显著差异(显性模型:OR=0.71,95%CI=0.51-0.97, P=0.03;隐性模型:OR=0.25,95%CI=0.08-0.82, P=0.02;递加模型:0R=0.68,95%CI=0.51-0.91,P=0.01)。单倍体型分析发现单倍体型CC在AD的发病中有保护作用(OR=0.76,95%CI=0.59-0.99, P=0.038)。中国汉族人群线粒体转录因子A基因多态性与阿尔茨海默病相关,其中rs1937位点等位基因C和单倍体型CC在迟发型AD发病进程中起保护作用,该作用可能与TFAM基因点突变Ser12Thr可影响TFAM功能进而影响线粒体DNA的转录和线粒体结构和功能完整性等作用相关,TFAM有可作为阿尔茨海默病治疗新的靶标。
     本论文的研究工作丰富了我国有关阿尔茨海默病的遗传风险的研究,发现了在中国北方汉族人群中SLC26A4基因rs2072064及TFAM基因rs1937位点多态性与迟发型阿尔茨海默病有密切相关性。不仅使人们进一步从基因多态性水平探索AD的病因及发病机制,而且为将来的基因诊断和治疗提供重要的资料。
Alzheimer's disease (AD) is a common age-associated progressiveneurodegenerative disorder. Although the etiology of AD remains poorlyunderstood, genetic factors explain about60-80%of the heritability ofAD. Several gene mutations, namely in β-amyloid precursor protein,presenilin1, and presenilin2, have been associated with the early-onsetfamilial form of Alzheimer's disease. In contrast to early-onset AD, thegenetic component of susceptibility to late-onset Alzheimer's disease(LOAD) seems to be more complex. Multiple genetic factors are believedto be involved in the pathogenesis and development of the disorder. Onlythe ε4allele of apolipoprotein E (APOE) gene is definitively associatedwith increased susceptibility to LOAD. However, about half the peoplecarrying at least one ε4allele do not develop LOAD and42%of patientswith LOAD do not possess an APOE ε4allele. Much effort has been madeto search for additional genes that confer LOAD-susceptibility.
     1. association betweenSLC26A4gene polymorphism and late-onsetAlzheimer's disease:In a recent genome-wide association study, theSLC26A4gene rs2072064polymorphism was found to be associated withlate-onset Alzheimer's disease (LOAD) in Caucasians. Here, weinvestigated this association in a large Northern Han Chinese cohortconsisting of599sporadic LOAD patients and598healthy controls matchedfor sex and age in a Northern Han Chinese population from Qingdao, China.Genotyping by the polymerase chain reaction-ligase detection reactionrevealed that there were significant differences in the genotype (P=0.017) and allele (P=0.007) frequencies of the rs2072064polymorphismbetween LOAD patients and controls. The A allele of this polymorphism was significantly associated with a reduced risk of LOAD (odds ratio (OR)=0.792,95%confidence interval (CI)=0.670–0.937, P=0.007). When thedata were stratified by the apolipoprotein E (APOE) ε4status, there wasa significant difference only among APOE ε4non-carriers (genotypic P=0.001, allelic P=0.001). Furthermore, the association betweenrs2072064and LOAD remained significant by logistic regression analysisafter adjustment for age, gender, and the APOE ε4carrier status(dominant model: OR=0.787,95%CI=0.619–1.000, P=0.050; recessivemodel: OR=0.655,95%CI=0.448–0.959, P=0.030; additive model: OR=0.792,95%CI=0.661–0.950, P=0.012). These findings suggest thatSLC26A4is a susceptibility gene for LOAD in a Northern Han Chinesepopulation from the Qingdao area.
     2. association betweenSLC26A4gene polymorphism and late-onsetAlzheimer's disease:been proved to contribute to the development ofAlzheimer's disease (AD).Mitochondrial transcription factor A (TFAM)plays an important role in the maintenance of mtDNA integrity. Recently,some studies suggested two single nucleotide polymorphisms (SNPs)(rs1937and rs2306604) in the TFAM gene are associated with sporadic late-onsetAD (LOAD) in Caucasians. To explore the correlation between TFAM gene andLOAD, we performed a case-control study in a large Chinese cohortconsisting of394patients and390healthy controls. The results showedthat there were significant differences in genotype (P=0.03) and allele(P=0.04) frequencies of the SNP rs1937between LOAD patients and controls.The minor C allele of rs1937acted as a moderate protective factor of LOAD(P=0.04, odds ratios/OR=0.76). The logistic regression analysis alsosuggested an association of LOAD with SNP rs1937(dominant model: P=0.03,OR=0.71; recessive model: P=0.02, OR=0.25; additive model: P=0.01,OR=0.68). No significant association was observed between rs2306604andLOAD. Haplotype analysis identified the haplotype CC as a protective factor of LOAD (P=0.038, OR=0.76). This study provides the evidence thatvariations in TFAM are involved in the pathogenesis of sporadic LOAD inthe Han Chinese population
     This research work enriched the data between Alzheimer's disease andcandidate gene in China, and we discovered the association between SLC26A4gene rs2072064TFAM gene rs1937site polymorphism and late onsetAlzheimer's disease in the northern han people. Our study makes peopleto explore AD etiology and pathogenesis further more from genepolymorphism level, and provides important data for future geneticdiagnosis and treatment to.
引文
[1] Henry W Querfurth, Frank M LaFerla. Alzheimer's disease. N Engl J Med,2010:362(4):329-44.
    [2] Iwata N, Tsubuki S, Takaki Y, et al. Metabolic regulation of brain Abeta by neprilysinin,Science,292(5521):1550-2.
    [3]许志强,周华东,蒋晓江.淀粉样β蛋白沉淀及其神经毒性与阿尔茨海默病.中国临床康复,2006(14):138-140.
    [4] Zhong Sz Fau-Ge, Q.-H., et al. Peoniflorin attentuates Abeta((1-42))-mediated neurotoxicityby regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats. JNeurol Sci.280(1-2):71-8..
    [5] Tanimukai, H., I. Grundke-Iqbal, and K. Iqbal, Up-regulation of inhibitors of proteinphosphatase-2A in Alzheimer's disease. Am J Pathol,2005.166(6):1761-71.
    [6] Ballatore C, VM. Lee, JQ Trojanowski. Tau-mediated neurodegeneration in Alzheimer'sdisease and related disorders. Nat Rev Neurosci,2007.8(9):663-72.
    [7] Morishima-Kawashima M. Proline-directed and non-proline-directed phosphorylation ofPHF-tau. J Biol Chem,1995.270(2):823-9.
    [8] Alonso AD, et al. Abnormal phosphorylation of tau and the mechanism of Alzheimerneurofibrillary degeneration: sequestration of microtubule-associated proteins1and2and thedisassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA,1997.94(1):298-303.
    [9] Braak E, et al. Neuropathology of Alzheimer's disease: what is new since A. Alzheimer? EurArch Psychiatry Clin Neurosci,1999.249Suppl3:14-22.
    [10] Frolich L. The cholinergic pathology in Alzheimer's disease--discrepancies between clinicalexperience and pathophysiological findings. J Neural Transm,2002.109(7-8):1003-13.
    [11] Nordberg A. Nicotinic receptor abnormalities of Alzheimer's disease: therapeutic implications.Biol Psychiatry,2001.49(3):200-10.
    [12] Guan ZZ, et al. Decreased protein levels of nicotinic receptor subunits in the hippocampusand temporal cortex of patients with Alzheimer's disease. J Neurochem,2000.74(1):237-43.
    [13] Srivareerat M Fau-Tran, T.T., et al. Chronic nicotine restores normal Abeta levels andprevents short-term memory and E-LTP impairment in Abeta rat model of Alzheimer'sdisease, in Neurobiol Aging.2009(5):834-44.
    [14] Butterfield, D.A., et al., Roles of amyloid beta-peptide-associated oxidative stress and brainprotein modifications in the pathogenesis of Alzheimer's disease and mild cognitiveimpairment. Free Radic Biol Med,2007.43(5):658-77.
    [15] Yu WF, et al., High selective expression of alpha7nicotinic receptors on astrocytes in thebrains of patients with sporadic Alzheimer's disease and patients carrying Swedish APP670/671mutation: a possible association with neuritic plaques. Exp Neurol,2005.192(1):215-25.
    [16] Yan SD, DM. Stern, Mitochondrial dysfunction and Alzheimer's disease: role of amyloid-betapeptide alcohol dehydrogenase (ABAD). Int J Exp Pathol,2005.86(3):161-71.
    [17] Farkas, E. and P.G. Luiten, Cerebral microvascular pathology in aging and Alzheimer'sdisease. Prog Neurobiol,2001.64(6):575-611.
    [18] Wu Z, et al. Role of the MEOX2homeobox gene in neurovascular dysfunction in Alzheimerdisease. Nat Med,2005.11(9):959-65.
    [19] Del, B.R., et al. Vascular endothelial growth factor gene variability is associated withincreased risk for AD. Ann Neurol,2005.57(3):373-80.
    [20] Heun R, H Kolsch, F Jessen. Risk factors and early signs of Alzheimer's disease in a familystudy sample. Risk of AD. Eur Arch Psychiatry Clin Neurosci,2006.256(1):28-36.
    [21] Wang HF, et al. SORCS1and APOE polymorphisms interact to confer risk for late-onsetAlzheimer's disease in a Northern Han Chinese population. Brain Res,2012.1448:111-6.
    [22] Liu QY, et al. An exploratory study on STX6, MOBP, MAPT, and EIF2AK3and late-onsetAlzheimer's disease. Neurobiol Aging,2013.34(5):1519e13-7.
    [23] Scarmeas N, et al. Physical activity and Alzheimer disease course. Am J Geriatr Psychiatry,2011.19(5):471-81.
    [24] Connell CM, et al. Racial differences in knowledge and beliefs about Alzheimer disease.Alzheimer Dis Assoc Disord,2009.23(2):110-6.
    [25] Brenner DE, et al. Relationship between cigarette smoking and Alzheimer's disease in apopulation-based case-control study. Neurology,1993.43(2):293-300.
    [26] Aggarwal NT, et al. The relation of cigarette smoking to incident Alzheimer's disease in abiracial urban community population. Neuroepidemiology,2006.26(3):140-6.
    [27] Frisardi V, et al. Metabolic-cognitive syndrome: a cross-talk between metabolic syndromeand Alzheimer's disease. Ageing Res Rev,2010.9(4):399-417.
    [28] Lee TA, et al. Assessment of the emergence of Alzheimer's disease following coronary arterybypass graft surgery or percutaneous transluminal coronary angioplasty. J Alzheimers Dis,2005.7(4):319-24.
    [29] Chong MS, et al. Continuous positive airway pressure reduces subjective daytime sleepinessin patients with mild to moderate Alzheimer's disease with sleep disordered breathing. J AmGeriatr Soc,2006.54(5):777-81.
    [30]王柠,林毅.正确理解神经系统复杂疾病的全基因组关联研究.中华神经科杂志,2010,43(10):673-675.
    [31]吴林林,白燕,许秀峰.迟发型阿尔茨海默病的基因研究进展.医学综述,2011,17(02):192-194.
    [32] Bertram L Fau-Tanzi, R.E. and R.E. Tanzi, The genetic epidemiology of neurodegenerativedisease, in J Clin Invest.1449-57.
    [33] Bekris Lm Fau-Yu, C.-E., et al. Genetics of Alzheimer disease, in J Geriatr PsychiatryNeurol.213-27.
    [34] Naj Ac Fau-Beecham, G.W., et al., Dementia revealed: novel chromosome6locus forlate-onset Alzheimer disease provides genetic evidence for folate-pathway abnormalities.LID-10.1371/journal.pgen.1001130[doi] LID-e1001130[pii], in PLoS Genet.2010Sep23;6(9).
    [35] Tanzi Re Fau-Bertram L, L Bertram. Twenty years of the Alzheimer's disease amyloidhypothesis: a genetic perspective, in Cell.545-55.
    [36] van Es Ma Fau-van den Berg, L.H. and L.H. van den Berg, Alzheimer's disease beyondAPOE. Nat Genet.41(10): p.1047-8.
    [37] Donnelly RJ, et al. Interleukin-1stimulates the beta-amyloid precursor protein promoter. CellMol Neurobiol,1990.10(4):485-95.
    [38] Marx, JL. Brain protein yields clues to Alzheimer's disease. Science,1989.243(4899):1664-6.
    [39] Herreman A, et al. Total inactivation of gamma-secretase activity in presenilin-deficientembryonic stem cells. Nat Cell Biol,2000.2(7):461-2.
    [40] Wolfe MS, et al. Two transmembrane aspartates in presenilin-1required for presenilinendoproteolysis and gamma-secretase activity. Nature,1999.398(6727):513-7.
    [41] Queralt, R., et al., Detection of the presenilin1gene mutation (M139T) in early-onsetfamilial Alzheimer disease in Spain. Neurosci Lett,2001.299(3):239-41.
    [42] Ezquerra, M., et al., A novel presenilin1mutation (Leu166Arg) associated with early-onsetAlzheimer disease. Arch Neurol,2000.57(4):485-8.
    [43]谭兰,欧江荣.阿尔茨海默病主要相关基因的研究现状.山东医药,2009,651(21):104-105.
    [44] Bell, R.D., et al., Transport pathways for clearance of human Alzheimer's amyloidbeta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb BloodFlow Metab,2007.27(5):909-18.
    [45] Martins, I.J., et al., Cholesterol metabolism and transport in the pathogenesis of Alzheimer'sdisease. J Neurochem,2009.111(6): p.1275-308.
    [46] Harold, D., et al., Genome-wide association study identifies variants at CLU and PICALMassociated with Alzheimer's disease. Nat Genet,2009.41(10): p.1088-93.
    [47] Lambert, J.C., et al., Genome-wide association study identifies variants at CLU and CR1associated with Alzheimer's disease. Nat Genet,2009.41(10): p.1094-9.
    [48] Seshadri, S., et al., Genome-wide analysis of genetic loci associated with Alzheimer disease.JAMA,2010.303(18): p.1832-40.
    [49] Wijsman, E.M., et al., Genome-wide association of familial late-onset Alzheimer's diseasereplicates BIN1and CLU and nominates CUGBP2in interaction with APOE. PLoS Genet,2011.7(2): p. e1001308.
    [50] Hollingworth, P., et al., Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33and CD2AP are associated with Alzheimer's disease. Nat Genet,2011.43(5): p.429-35.
    [51] Naj, A.C., et al., Common variants at MS4A4/MS4A6E, CD2AP, CD33and EPHA1areassociated with late-onset Alzheimer's disease. Nat Genet,2011.43(5): p.436-41.
    [52] Wu, Z.C., et al., Clusterin in Alzheimer's disease. Adv Clin Chem,2012.56:155-73.
    [53] Yu, J.T., et al., Toll-like receptor2-196to-174del polymorphism influences thesusceptibility of Han Chinese people to Alzheimer's disease. J Neuroinflammation,2011.8(136):136.
    [54] Zhang, Q., et al., Complement receptor1polymorphisms and risk of late-onset Alzheimer'sdisease. Brain Res,2010.1348:216-21.
    [55] Wu, Z.C., et al., Association of DAPK1genetic variations with Alzheimer's disease in HanChinese. Brain Res,2011.1374:129-33.
    [56] Wang, W., et al., Insulin-like growth factor1(IGF1) polymorphism is associated withAlzheimer's disease in Han Chinese. Neurosci Lett,2012.531(1):20-3.
    [57] Zhang, Q., et al., Mitochondrial transcription factor A (TFAM) polymorphisms and risk oflate-onset Alzheimer's disease in Han Chinese. Brain Res,2011.1368:355-60.
    [58] Ma, X.Y., et al., Replication of the MTHFD1L gene association with late-onset Alzheimer'sdisease in a Northern Han Chinese population. J Alzheimers Dis,2012.29(3):521-5.
    [59] Xing, Y.Y., et al., NEDD9is genetically associated with Alzheimer's disease in a Han Chinesepopulation. Brain Res,2011.1369:230-4.
    [60] Tan, L., et al., Association of GWAS-linked loci with late-onset Alzheimer's disease in anorthern Han Chinese population. Alzheimers Dement,2012.8(12):02495-8.
    [61] Xing, Y.Y., et al., Blood clusterin levels, rs9331888polymorphism, and the risk ofAlzheimer's disease. J Alzheimers Dis,2012.29(3):515-9.
    [62] Yu, J.T., R.C. Chang, and L. Tan, Calcium dysregulation in Alzheimer's disease: frommechanisms to therapeutic opportunities. Prog Neurobiol,2009.89(3):240-55.
    [63] Everett, L.A., et al., Pendred syndrome is caused by mutations in a putative sulphatetransporter gene (PDS). Nat Genet,1997.17(4):411-22.
    [64] Dossena, S., et al., Functional characterization of wild-type and mutated pendrin (SLC26A4),the anion transporter involved in Pendred syndrome. J Mol Endocrinol,2009.43(3):93-103.
    [65] Dossena, S., et al., Molecular and functional characterization of human pendrin and its allelicvariants. Cell Physiol Biochem,2011.28(3):451-66.
    [66] Royaux, I.E., et al., Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is anapical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5cells.Endocrinology,2000.141(2): p.839-45.
    [67] Kopp, P., L. Pesce, and S.J. Solis, Pendred syndrome and iodide transport in the thyroid.Trends Endocrinol Metab,2008.19(7): p.260-8.
    [68] Royaux, I.E., et al., Localization and functional studies of pendrin in the mouse inner earprovide insight about the etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol,2003.4(3):394-404.
    [69] Wangemann, P., et al., Loss of cochlear HCO3-secretion causes deafness via endolymphaticacidification and inhibition of Ca2+reabsorption in a Pendred syndrome mouse model. Am JPhysiol Renal Physiol,2007.292(5): F1345-53.
    [70] Kim, Y.H., et al., Immunocytochemical localization of pendrin in intercalated cell subtypes inrat and mouse kidney. Am J Physiol Renal Physiol,2002.283(4): p. F744-54.
    [71] Amlal, H., et al., Deletion of the anion exchanger Slc26a4(pendrin) decreases apicalCl(-)/HCO3(-) exchanger activity and impairs bicarbonate secretion in kidney collecting duct.Am J Physiol Cell Physiol,2010.299(1): p. C33-41.
    [72] Eladari, D., et al., Pendrin as a regulator of ECF and blood pressure. Curr Opin NephrolHypertens,2009.18(4): p.356-62.
    [73] Mount, D.B. and M.F. Romero, The SLC26gene family of multifunctional anion exchangers.Pflugers Arch,2004.447(5): p.710-21.
    [74] Scott, D.A., et al., The Pendred syndrome gene encodes a chloride-iodide transport protein.Nat Genet,1999.21(4): p.440-3.
    [75] Kraiem, Z., et al., Sulfate transport is not impaired in pendred syndrome thyrocytes. J ClinEndocrinol Metab,1999.84(7): p.2574-6.
    [76] Yoshida, A., et al., Pendrin is an iodide-specific apical porter responsible for iodide effluxfrom thyroid cells. J Clin Endocrinol Metab,2002.87(7): p.3356-61.
    [77] Dossena, S., et al., Fast fluorometric method for measuring pendrin (SLC26A4) Cl-/I-transport activity. Cell Physiol Biochem,2006.18(1-3): p.67-74.
    [78] Dossena, S., et al., Functional characterization of wild-type and a mutated form of SLC26A4identified in a patient with Pendred syndrome. Cell Physiol Biochem,2006.17(5-6):245-56.
    [79] Wangemann, P., et al., Developmental delays consistent with cochlear hypothyroidismcontribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression. Am JPhysiol Renal Physiol,2009.297(5): p. F1435-47.
    [80] Soleimani, M., et al., Pendrin: an apical Cl-/OH-/HCO3-exchanger in the kidney cortex. AmJ Physiol Renal Physiol,2001.280(2): p. F356-64.
    [81] Frische, S., et al., Regulated expression of pendrin in rat kidney in response to chronicNH4Cl or NaHCO3loading. Am J Physiol Renal Physiol,2003.284(3): p. F584-93.
    [82] Bizhanova, A. and P. Kopp, Genetics and phenomics of Pendred syndrome. Mol CellEndocrinol,2010.322(1-2): p.83-90.
    [83] Kandasamy, N., et al., Life-threatening metabolic alkalosis in Pendred syndrome. Eur JEndocrinol,2011.165(1): p.167-70.
    [84] Pela I, M Bigozzi, B Bianchi. Profound hypokalemia and hypochloremic metabolic alkalosisduring thiazide therapy in a child with Pendred syndrome. Clin Nephrol,2008.69(6):450-3.
    [85] Quentin F, et al. The Cl-/HCO3-exchanger pendrin in the rat kidney is regulated in responseto chronic alterations in chloride balance. Am J Physiol Renal Physiol,2004.287(6):F1179-88.
    [86] Wall, S.M., et al., NaCl restriction upregulates renal Slc26a4through subcellularredistribution: role in Cl-conservation. Hypertension,2004.44(6): p.982-7.
    [87] Vallet, M., et al., Pendrin regulation in mouse kidney primarily is chloride-dependent. J AmSoc Nephrol,2006.17(8): p.2153-63.
    [88] Kim, Y.H., et al., Role of pendrin in iodide balance: going with the flow. Am J Physiol RenalPhysiol,2009.297(4): p. F1069-79.
    [89] Everett La Fau-Belyantseva, IA, et al. Targeted disruption of mouse Pds provides insightabout the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet.10(2):153-61.
    [90] Wangemann P Fau-Itza, E.M., et al., Loss of KCNJ10protein expression abolishesendocochlear potential and causes deafness in Pendred syndrome mouse model, in BMC Med.2004Aug20;2:30.
    [91] Dror Aa Fau-Politi, Y., et al., Calcium oxalate stone formation in the inner ear as a result ofan Slc26a4mutation, in J Biol Chem. p.21724-35. doi:10.1074/jbc.M110.120188. Epub2010May4.
    [92] Kuperman Da Fau-Lewis, C.C., et al., Dissecting asthma using focused transgenic modelingand functional genomics, in J Allergy Clin Immunol. p.305-11.
    [93] Nakao I Fau-Kanaji, S., et al., Identification of pendrin as a common mediator for mucusproduction in bronchial asthma and chronic obstructive pulmonary disease, in J Immunol. p.6262-9.
    [94] Nakagami Y Fau-Favoreto, S., Jr., et al., The epithelial anion transporter pendrin is inducedby allergy and rhinovirus infection, regulates airway surface liquid, and increases airwayreactivity and inflammation in an asthma model, in J Immunol. p.2203-10.
    [95] Cremers, F.P., Genetic causes of hearing loss. Curr Opin Neurol.11(1): p.11-6.
    [96] Colvin Ib Fau-Beale, T., K. Beale T Fau-Harrop-Griffiths, and K. Harrop-Griffiths,Long-term follow-up of hearing loss in children and young adults with enlarged vestibularaqueducts: relationship to radiologic findings and Pendred syndrome diagnosis.Laryngoscope.116(11): p.2027-36.
    [97] Pryor Sp Fau-Madeo, AC, et al. SLC26A4/PDS genotype-phenotype correlation in hearingloss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome andnon-syndromic EVA are distinct clinical and genetic entities, in J Med Genet.159-65.
    [98] Azaiez H Fau-Yang, T., et al., Genotype-phenotype correlations for SLC26A4-relateddeafness, in Hum Genet. p.451-7. Epub2007Aug10.
    [99] Albert S Fau-Blons, H., et al., SLC26A4gene is frequently involved in nonsyndromichearing impairment with enlarged vestibular aqueduct in Caucasian populations, in Eur JHum Genet. p.773-9.
    [100] Fugazzola L Fau-Cirello, V., et al., High phenotypic intrafamilial variability in patientswith Pendred syndrome and a novel duplication in the SLC26A4gene: clinicalcharacterization and functional studies of the mutated SLC26A4protein. Eur J Endocrinol.157(3): p.331-8.
    [101] Reardon W Fau-Coffey, R., et al., Prevalence, age of onset, and natural history of thyroiddisease in Pendred syndrome, in J Med Genet. p.595-8.
    [102] Yang T Fau-Vidarsson, H., et al., Transcriptional control of SLC26A4is involved inPendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4), in AmJ Hum Genet. p.1055-63. Epub2007Apr23.
    [103] Yang T Fau-Gurrola, J.G.,2nd, et al., Mutations of KCNJ10together with mutations ofSLC26A4cause digenic nonsyndromic hearing loss associated with enlarged vestibularaqueduct syndrome, in Am J Hum Genet. p.651-7. doi:10.1016/j.ajhg.2009.04.014. Epub2009May7.
    [104] Verlander Jw Fau-Hassell, K.A., et al., Deoxycorticosterone upregulates PDS (Slc26a4) inmouse kidney: role of pendrin in mineralocorticoid-induced hypertension, in Hypertension.p.356-62. Epub2003Aug18.
    [105] Pech V Fau-Kim, Y.H., et al., Angiotensin II increases chloride absorption in the corticalcollecting duct in mice through a pendrin-dependent mechanism, in Am J Physiol RenalPhysiol. p. F914-20. Epub2006Oct31.
    [106] Dossena S Fau-Bizhanova, A., et al., Identification of allelic variants of pendrin (SLC26A4)with loss and gain of function, in Cell Physiol Biochem.2011;28(3):467-76. doi:10.1159/000335108. Epub2011Nov18.
    [107] Nofziger C Fau-Vezzoli, V., et al., STAT6links IL-4/IL-13stimulation with pendrinexpression in asthma and chronic obstructive pulmonary disease, in Clin Pharmacol Ther. p.399-405. doi:10.1038/clpt.2011.128. Epub2011Aug3.
    [108]陈谊, O HANON.老年人高血压与认知功能障碍的关系.中国行为医学科学,2005.14(2):2.
    [109]吴传深,周东丰,乔友林.高血压与阿尔茨海默病关系的初步探讨.中国心理卫生杂志,2003.17(2):3.
    [110] Folstein, M.F., S.E. Folstein, and P.R. McHugh,"Mini-mental state". A practical method forgrading the cognitive state of patients for the clinician. J Psychiatr Res,1975.12(3):189-98.
    [111] Reyes A, M Mezzina, G Gadaleta. Human mitochondrial transcription factor A (mtTFA):gene structure and characterization of related pseudogenes. Gene,2002.291(1-2):223-32.
    [112] McCulloch, V. and G.S. Shadel, Human mitochondrial transcription factor B1interacts withthe C-terminal activation region of h-mtTFA and stimulates transcription independently ofits RNA methyltransferase activity. Mol Cell Biol,2003.23(16): p.5816-24.
    [113] Dairaghi, D.J., G.S. Shadel, and D.A. Clayton, Addition of a29residue carboxyl-terminaltail converts a simple HMG box-containing protein into a transcriptional activator. J MolBiol,1995.249(1): p.11-28.
    [114] Ohno, T., et al., Binding of human mitochondrial transcription factor A, an HMG box protein,to a four-way DNA junction. Biochem Biophys Res Commun,2000.271(2): p.492-8.
    [115] Falkenberg, M., et al., Mitochondrial transcription factors B1and B2activate transcriptionof human mtDNA. Nat Genet,2002.31(3): p.289-94.
    [116] Alam, T.I., et al., Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res,2003.31(6): p.1640-5.
    [117] Kanki, T., et al., Mitochondrial nucleoid and transcription factor A. Ann N Y Acad Sci,2004.1011: p.61-8.
    [118] Kang, D. and N. Hamasaki, Mitochondrial transcription factor A in the maintenance ofmitochondrial DNA: overview of its multiple roles. Ann N Y Acad Sci,2005.1042:101-8.
    [119] Takamatsu, C., et al., Regulation of mitochondrial D-loops by transcription factor A andsingle-stranded DNA-binding protein. EMBO Rep,2002.3(5): p.451-6.
    [120] Kim, J.E., et al., Exogenous8-oxo-dG is not utilized for nucleotide synthesis but enhancesthe accumulation of8-oxo-Gua in DNA through error-prone DNA synthesis. Mutat Res,2006.596(1-2): p.128-36.
    [121] Ohtsubo, T., et al., Identification of human MutY homolog (hMYH) as a repair enzyme for2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei andmitochondria. Nucleic Acids Res,2000.28(6): p.1355-64.
    [122] Yoshida, Y., et al., Human mitochondrial transcription factor A binds preferentially tooxidatively damaged DNA. Biochem Biophys Res Commun,2002.295(4): p.945-51.
    [123] Ikeuchi, M., et al., Overexpression of mitochondrial transcription factor a amelioratesmitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation,2005.112(5): p.683-90.
    [124] Jeng, J.Y., et al., Maintenance of mitochondrial DNA copy number and expression areessential for preservation of mitochondrial function and cell growth. J Cell Biochem,2008.103(2): p.347-57.
    [125] Yoshida, Y., et al., P53physically interacts with mitochondrial transcription factor A anddifferentially regulates binding to damaged DNA. Cancer Res,2003.63(13): p.3729-34.
    [126] Broekhuizen, R., et al., Pulmonary cachexia, systemic inflammatory profile, and theinterleukin1beta-511single nucleotide polymorphism. Am J Clin Nutr,2005.82(5): p.1059-64.
    [127] Rabinovich, R.A., et al., Mitochondrial dysfunction in COPD patients with low body massindex. Eur Respir J,2007.29(4): p.643-50.
    [128] Rantanen, A. and N.G. Larsson, Regulation of mitochondrial DNA copy number duringspermatogenesis. Hum Reprod,2000.15Suppl2: p.86-91.
    [129] Sathyapala SA, P Kemp, M.I. Polkey. Decreased muscle PPAR concentrations: a mechanismunderlying skeletal muscle abnormalities in COPD? Eur Respir J,2007.30(2):191-3.
    [130] Hayashi, Y., et al., Reverse of age-dependent memory impairment and mitochondrial DNAdamage in microglia by an overexpression of human mitochondrial transcription factor a inmice. J Neurosci,2008.28(34): p.8624-34.
    [131] Swerdlow, R.H. and S.M. Khan, A "mitochondrial cascade hypothesis" for sporadicAlzheimer's disease. Med Hypotheses,2004.63(1): p.8-20.
    [132] Moreira, P.I., et al., The key role of mitochondria in Alzheimer's disease. J Alzheimers Dis,2006.9(2): p.101-10.
    [133] Swerdlow, R.H., J.M. Burns, and S.M. Khan, The Alzheimer's disease mitochondrialcascade hypothesis. J Alzheimers Dis,2010.20Suppl2(2): p. S265-79.
    [134] Khan, S.M., et al., Alzheimer's disease cybrids replicate beta-amyloid abnormalities throughcell death pathways. Ann Neurol,2000.48(2): p.148-55.
    [135] Gabuzda, D., et al., Inhibition of energy metabolism alters the processing of amyloidprecursor protein and induces a potentially amyloidogenic derivative. J Biol Chem,1994.269(18): p.13623-8.
    [136] Szabados, T., et al., A chronic Alzheimer's model evoked by mitochondrial poison sodiumazide for pharmacological investigations. Behav Brain Res,2004.154(1): p.31-40.
    [137] Escobar-Khondiker, M., et al., Annonacin, a natural mitochondrial complex I inhibitor,causes tau pathology in cultured neurons. J Neurosci,2007.27(29): p.7827-37.
    [138] Swerdlow, R.H., Pathogenesis of Alzheimer's disease. Clin Interv Aging,2007.2(3):347-59.
    [139] de, M.M.B., S.L.S. dos, and H.B. Van, Mitochondrial dysfunction in neurodegenerativediseases and cancer. Environ Mol Mutagen,2010.51(5): p.391-405.
    [140] Gunther, C., et al., Possible association of mitochondrial transcription factor A (TFAM)genotype with sporadic Alzheimer disease. Neurosci Lett,2004.369(3): p.219-23.
    [141] Blomqvist, M.E., et al., Towards compendia of negative genetic association studies: anexample for Alzheimer disease. Hum Genet,2006.119(1-2): p.29-37.
    [142] Bertram, L., et al., Systematic meta-analyses of Alzheimer disease genetic associationstudies: the AlzGene database. Nat Genet,2007.39(1): p.17-23.
    [143] Belin AC, et al. Association study of two genetic variants in mitochondrial transcriptionfactor A (TFAM) in Alzheimer's and Parkinson's disease. Neurosci Lett,2007.420(3):257-62.
    [144] Alvarez, V., et al., Mitochondrial transcription factor A (TFAM) gene variation and risk oflate-onset Alzheimer's disease. J Alzheimers Dis,2008.13(3): p.275-80.
    [1] Gatz, M., et al., Role of genes and environments for explaining Alzheimer disease. Arch GenPsychiatry,2006.63(2): p.168-74.
    [2] Campion, D., et al., Early-onset autosomal dominant Alzheimer disease: prevalence, geneticheterogeneity, and mutation spectrum. Am J Hum Genet,1999.65(3): p.664-70.
    [3] Bekris LM,et al. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol,2010.23(4):213-27.
    [4] Choi, Y., et al., Genome scan of age-at-onset in the NIMH Alzheimer disease sample uncoversmultiple loci, along with evidence of both genetic and sample heterogeneity. Am J Med GenetB Neuropsychiatr Genet,2011.156B(7): p.785-98.
    [5] Zhang, Q., et al., Mitochondrial transcription factor A (TFAM) polymorphisms and risk oflate-onset Alzheimer's disease in Han Chinese. Brain Res,2011.1368: p.355-60.
    [6] Wu, Z.C., et al., Association of DAPK1genetic variations with Alzheimer's disease in HanChinese. Brain Res,2011.1374: p.129-33.
    [7] Lee, J.H., et al., Analyses of the National Institute on Aging Late-Onset Alzheimer's DiseaseFamily Study: implication of additional loci. Arch Neurol,2008.65(11): p.1518-26.
    [8] Naj, A.C., et al., Dementia revealed: novel chromosome6locus for late-onset Alzheimerdisease provides genetic evidence for folate-pathway abnormalities. PLoS Genet,2010.6(9): p.1001130.
    [9] Favis, R., et al., Universal DNA array detection of small insertions and deletions in BRCA1and BRCA2. Nat Biotechnol,2000.18(5): p.561-4.
    [10] Xiao, Z., et al., A novel method based on ligase detection reaction for low abundant YIDDmutants detection in hepatitis B virus. Hepatol Res,2006.34(3): p.150-5.
    [11] Everett, L.A., et al., Pendred syndrome is caused by mutations in a putative sulphatetransporter gene (PDS). Nat Genet,1997.17(4): p.411-22.
    [12] Dossena, S., et al., Functional characterization of wild-type and mutated pendrin (SLC26A4),the anion transporter involved in Pendred syndrome. J Mol Endocrinol,2009.43(3): p.93-103.
    [13] Soleimani, M., et al., Pendrin: an apical Cl-/OH-/HCO3-exchanger in the kidney cortex. AmJ Physiol Renal Physiol,2001.280(2): p. F356-64.
    [14] Shcheynikov, N., et al., The Slc26a4transporter functions as an electroneutral Cl-/I-/HCO3-exchanger: role of Slc26a4and Slc26a6in I-and HCO3-secretion and in regulation of CFTRin the parotid duct. J Physiol,2008.586(16): p.3813-24.
    [15] Wall, S.M., The renal physiology of pendrin (SLC26A4) and its role in hypertension. NovartisFound Symp,2006.273: p.231-9; discussion239-43,261-4.
    [16] Kim, Y.H., et al., Reduced ENaC protein abundance contributes to the lower blood pressureobserved in pendrin-null mice. Am J Physiol Renal Physiol,2007.293(4): p. F1314-24.
    [17] Wall, S.M., et al., NaCl restriction upregulates renal Slc26a4through subcellularredistribution: role in Cl-conservation. Hypertension,2004.44(6): p.982-7.
    [18] Kivipelto, M., et al., Midlife vascular risk factors and Alzheimer's disease in later life:longitudinal, population based study. Bmj,2001.322(7300): p.1447-51.
    [19] Skoog, I., et al.,15-year longitudinal study of blood pressure and dementia. Lancet,1996.347(9009): p.1141-5.
    [20] Wu, C., et al., Relationship between blood pressure and Alzheimer's disease in LinxianCounty, China. Life Sci,2003.72(10): p.1125-33.
    [21] Gregoire, J.M. and P.H. Romeo, T-cell expression of the human GATA-3gene is regulated bya non-lineage-specific silencer. J Biol Chem,1999.274(10): p.6567-78.
    [22] Kim, C.H., et al., A previously undescribed intron and extensive5' upstream sequence, but notPhox2a-mediated transactivation, are necessary for high level cell type-specific expression ofthe human norepinephrine transporter gene. J Biol Chem,1999.274(10): p.6507-18.
    [1] Querfurth, H.W. and F.M. LaFerla, Alzheimer's disease. N Engl J Med,2010.362(4):329-44.
    [2] Johannsen, D.L. and E. Ravussin, The role of mitochondria in health and disease. Curr OpinPharmacol,2009.9(6): p.780-6.
    [3] Raichle, M.E., Neuroscience. The brain's dark energy. Science,2006.314(5803): p.1249-50.
    [4] Atamna, H. and W.H. Frey,2nd, Mechanisms of mitochondrial dysfunction and energydeficiency in Alzheimer's disease. Mitochondrion,2007.7(5): p.297-310.
    [5] Swerdlow, R.H., J.M. Burns, and S.M. Khan, The Alzheimer's disease mitochondrial cascadehypothesis. J Alzheimers Dis,2010.20Suppl2(2): p. S265-79.
    [6] Yu, J.T., R.C. Chang, and L. Tan, Calcium dysregulation in Alzheimer's disease: frommechanisms to therapeutic opportunities. Prog Neurobiol,2009.89(3): p.240-55.
    [7] Orth, M. and A.H. Schapira, Mitochondria and degenerative disorders. Am J Med Genet,2001.106(1): p.27-36.
    [8] Small, G.W., et al., Cerebral metabolic and cognitive decline in persons at genetic risk forAlzheimer's disease. Proc Natl Acad Sci U S A,2000.97(11): p.6037-42.
    [9] Khan, S.M., et al., Alzheimer's disease cybrids replicate beta-amyloid abnormalities throughcell death pathways. Ann Neurol,2000.48(2): p.148-55.
    [10] Crouch, P.J., et al., Copper-dependent inhibition of human cytochrome c oxidase by a dimericconformer of amyloid-beta1-42. J Neurosci,2005.25(3): p.672-9.
    [11] Manczak, M., et al., Mitochondria are a direct site of A beta accumulation in Alzheimer'sdisease neurons: implications for free radical generation and oxidative damage in diseaseprogression. Hum Mol Genet,2006.15(9): p.1437-49.
    [12] de, M.M.B., S.L.S. dos, and H.B. Van, Mitochondrial dysfunction in neurodegenerativediseases and cancer. Environ Mol Mutagen,2010.51(5): p.391-405.
    [13] Kang, D., S.H. Kim, and N. Hamasaki, Mitochondrial transcription factor A (TFAM): roles inmaintenance of mtDNA and cellular functions. Mitochondrion,2007.7(1-2): p.39-44.
    [14] Lambert, J.C., et al., Genome-wide association study identifies variants at CLU and CR1associated with Alzheimer's disease. Nat Genet,2009.41(10): p.1094-9.
    [15] Harold, D., et al., Genome-wide association study identifies variants at CLU and PICALMassociated with Alzheimer's disease. Nat Genet,2009.41(10): p.1088-93.
    [16] Carrasquillo, M.M., et al., Genetic variation in PCDH11X is associated with susceptibility tolate-onset Alzheimer's disease. Nat Genet,2009.41(2): p.192-8.
    [17] Bertram, L. and R.E. Tanzi, The genetic epidemiology of neurodegenerative disease. J ClinInvest,2005.115(6): p.1449-57.
    [18] Gunther, C., et al., Possible association of mitochondrial transcription factor A (TFAM)genotype with sporadic Alzheimer disease. Neurosci Lett,2004.369(3): p.219-23.
    [19] Blomqvist, M.E., et al., Towards compendia of negative genetic association studies: anexample for Alzheimer disease. Hum Genet,2006.119(1-2): p.29-37.
    [20] Bertram, L., et al., Systematic meta-analyses of Alzheimer disease genetic association studies:the AlzGene database. Nat Genet,2007.39(1): p.17-23.
    [21] Belin, A.C., et al., Association study of two genetic variants in mitochondrial transcriptionfactor A (TFAM) in Alzheimer's and Parkinson's disease. Neurosci Lett,2007.420(3):257-62.
    [22] Alvarez, V., et al., Mitochondrial transcription factor A (TFAM) gene variation and risk oflate-onset Alzheimer's disease. J Alzheimers Dis,2008.13(3): p.275-80.
    [23] McKhann, G., et al., Clinical diagnosis of Alzheimer's disease: report of theNINCDS-ADRDA Work Group under the auspices of Department of Health and HumanServices Task Force on Alzheimer's Disease. Neurology,1984.34(7): p.939-44.
    [24] Donohoe, G.G., et al., Rapid identification of apolipoprotein E genotypes by multiplexamplification refractory mutation system PCR and capillary gel electrophoresis. Clin Chem,1999.45(1): p.143-6.
    [25] Van, H.B., V. Woshner, and J.H. Santos, Role of mitochondrial DNA in toxic responses tooxidative stress. DNA Repair,2006.5(2): p.145-52.
    [26] Mandavilli, B.S., J.H. Santos, and H.B. Van, Mitochondrial DNA repair and aging. Mutat Res,2002.509(1-2): p.127-51.
    [27] Kang, D. and N. Hamasaki, Mitochondrial transcription factor A in the maintenance ofmitochondrial DNA: overview of its multiple roles. Ann N Y Acad Sci,2005.1042: p.101-8.
    [28] Liu, P. and B. Demple, DNA repair in mammalian mitochondria: Much more than we thought?Environ Mol Mutagen,2010.51(5): p.417-26.
    [29] Swerdlow, R.H. and S.M. Khan, A "mitochondrial cascade hypothesis" for sporadicAlzheimer's disease. Med Hypotheses,2004.63(1): p.8-20.
    [30] Moreira, P.I., et al., The key role of mitochondria in Alzheimer's disease. J Alzheimers Dis,2006.9(2): p.101-10.
    [31] Gabuzda, D., et al., Inhibition of energy metabolism alters the processing of amyloidprecursor protein and induces a potentially amyloidogenic derivative. J Biol Chem,1994.269(18): p.13623-8.
    [32] Szabados, T., et al., A chronic Alzheimer's model evoked by mitochondrial poison sodiumazide for pharmacological investigations. Behav Brain Res,2004.154(1): p.31-40.
    [33] Escobar-Khondiker, M., et al., Annonacin, a natural mitochondrial complex I inhibitor, causestau pathology in cultured neurons. J Neurosci,2007.27(29): p.7827-37.
    [34] Swerdlow, R.H., Pathogenesis of Alzheimer's disease. Clin Interv Aging,2007.2(3):347-59.
    [35] Guliaeva NA, EA Kuznetsova, AI Gaziev. Proteins associated with mitochondrial DNAprotect it against the action of X-rays and hydrogen peroxide. Biofizika,2006.51(4):692-7.
    [36] Kienhofer, J., et al., Association of mitochondrial antioxidant enzymes with mitochondrialDNA as integral nucleoid constituents. Faseb J,2009.23(7): p.2034-44.
    [37] Reyes A, M. Mezzina, and G. Gadaleta, Human mitochondrial transcription factor A (mtTFA):gene structure and characterization of related pseudogenes. Gene,2002.291(1-2):223-32.
    [38] Bertram, L., et al., Evidence for genetic linkage of Alzheimer's disease to chromosome10q.Science,2000.290(5500): p.2302-3.
    [39] Blacker, D., et al., Results of a high-resolution genome screen of437Alzheimer's diseasefamilies. Hum Mol Genet,2003.12(1): p.23-32.
    [40] Johansson, A., et al., Increased frequency of a new polymorphism in the cell division cycle2(cdc2) gene in patients with Alzheimer's disease and frontotemporal dementia. Neurosci Lett,2003.340(1): p.69-73.
    [41] Myers, A., et al., Susceptibility locus for Alzheimer's disease on chromosome10. Science,2000.290(5500):2304-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700