用户名: 密码: 验证码:
井楼一区核三段高分辨率层序地层及储层特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以沉积学和高分辨率层序地层学理论作指导,利用岩心资料、钻井资料、测井资料和岩心分析资料,确定各级次基准面旋回的沉积动力学特征,将井楼油田核三段Ⅲ油组划分为一个上升半旋回和一个下降半旋回及13个短期旋回,建立井楼油田核三段Ⅲ油组高分辨率层序地层格架,归纳出扇三角洲高分辨率层序地层对比技术及方法。
     用多种物源分析的方法,确认井楼油田核三段Ⅲ油组沉积不仅受南东部近源长桥扇三角洲主要物源控制,而且还受北东向远源古城三角洲前缘次要物源的影响。在双物源的控制作用下,建立高频层序地层格架,进行短期旋回沉积微相研究,分析沉积微相垂向演变及平面展布特征。
     明确核三段Ⅲ油组主要形成近源扇三角洲环境,主要发育扇三角洲前缘亚相和前扇三角洲亚相。砂体主要以顺源展布水下分流河道砂和河控薄砂为主。短期基准面旋回SSC2沉积时期为最大水退时期。在各旋回发育期物源方向基本均为南东物源,但物源供应及沉积特征不同,各旋回砂岩的分布规律存在明显差异,在砂体分布范围内,旋回砂体分布较连续;主要发育在SSC6-SSC3和SSC11-SSC8,呈连续分布且厚薄相间的分布特点,总体上高厚值在南部的片状,向北演变为条带状,延伸方向基本为南东一北西向。SSC2南部砂体分布范围较小,中部砂体不发育,北部受东北及北部物源影响,砂体发育厚;其余旋回砂体分布范围基本集中南部和中部,但北部砂体多不发育。
     通过对取心井单井微相分析及划分,确定为扇三角洲前缘亚相和前扇三角洲亚相,细划水下分流河道主河道中心砂体、水下分流河道侧砂体、水下溢岸砂体、河口坝、前缘席状砂、重力流、分流间湾和前扇三角洲泥等8种微相类型,建立典型测井相模式,刻画沉积微相在平面上的展布特征。
     依据储层特征,建立泥质、物性和钙质隔夹层识别标准,详述隔夹层平面和垂向上分布规律,明确隔夹层在稠油蒸汽驱油中的控制作用。旋回间隔夹层均有稳定发育,但是SSC4-SSC3、SSC5-SSC4和SSC9-SSC8旋回间具有不稳定隔层;旋回内夹层发育较复杂,利用夹层厚度、夹层个数、夹层分布频率和分布密度进行表征,总体上,旋回内夹层平面上多为不稳定分布,难于横向对比,井间连通状况差。
     与生产动态相结合,应用本次储层沉积微相及储层物性分布特征的研究成果,评价研究区开发效果,确定各旋回含油面积内开发程度;总结归纳出,靠近南东部物源的研究区南部和中部,水下分流河道中心砂体与河侧砂体或水下溢岸的厚度变化带为剩余油富集区。依据核三段Ⅲ油组隔夹层分布特征和生产相结合,稠油油藏蒸汽驱油后,隔夹层发育附近也是剩余油分布聚集带,是有利挖潜区,同时还可以考虑将发育稳定隔夹层井区进行旋回组合分层开采。
Under the guide of sedimentology and high-resolution sequence stratigraphy, this paper determines features of sedimentary dynamics in each secondary base-level cycle and divides III Oil Formation of He-3Member in Jinglou Oilfield into one rising semi-cycle, one descending semi-cycle and13short-term cycles by using core information, drilling data, logging data and core analysis data. It establishes the high-resolution sequence framework of III Oil Formation in He-3Member and summarizes the technical method of high resolution sequence stratigraphic correlation for the fan delta.
     With several provenance analysis methods, the paper determines that the sediment of III Oil Formation in He-3Member is not only affected by the near-source Changqiao fan delta in the southeast, but also by the far-source Gucheng delta front in the northeast, known as a secondary provenance. The paper establishes the high-resolution sequence framework, studies microfacies in short-term cycles and analyzes their features of the vertical evolution and plane distribution under the control of two provenances.
     The study shows that Ⅲ Oil Formation in He-3Member is mainly near-source fan delta environment and develops delta-front facies as well as pro-fan delta facies. The sand bodies mainly are underwater distributary channel sand and thin layers of river-controlled sand that developed along provenances. The sedimentary period of SSC2short-term base-level cycle is the maximum water receding period. During the developing period of each cycle, the provenances are all from southeast. However, the material supply and sedimentary characteristics are different and there is an explicit difference in sandstone distribution laws in each cycle. Within distribution ranges, sand bodies in each cycle have a continuous distribution and mainly are developed in SSC6-SSC3and SSC11-SSC8, featured with continuous distribution and thick layers alternate with thin ones. Overall, the high thickness values are sheet-like distribution in the south, evolving into strip-like distribution in the north. The extending direction is mainly southeast-northwest. In SSC2, distribution ranges of sand body in the south are relatively small while those in the center are not developed, and those in the north are thick due to the influnce of northeastern and northern provenances. Sand bodies in other cycles are mainly developed in the south and center while few are in the north.
     Through single-well microfacies analysis and partition for cored wells, the paper determines that sub phases in the study area mainly are fan delta front and pro-fan delta, further subdivided into central sand body of main channel in underwater distributary channel, sand body along the river side in underwater distributary channel, underwater overbank sand body, debouch bar, front sheet sand, gravity flow, shunt between the bay and front fan delta mud, totally8microfacies types. It establishes typical logging phase modes and depicts microfacies distribution laws in plane.
     Based on reservoir charateristics, the paper establishes identification standards of shale, physical properties and calcium intercalation, describes intercalation distribution laws in plane and vertical section in detail and explicitly points out their roles in controlling steam flooding for heavy oil. Most intercalations between cycles are stable except for unstable ones between SSC4and SSC3, SSC5and SSC4, SSC9and SSC8. Interlayers developed within cycles are complicated. By utilizing thickness, interlayer numbers, distribution frequency and the distribution density to characterize them, it shows that overall, most interlayers within cycles are distributed unstably in plane and hard to laterally correlate and trace. The interwell communication is in poor condition.
     Combing with the production performance and utilizing the study result of reservoir sedimentary microfacies as well as reservoir physical property distribution laws, the paper evaluates the development effect of the study area and identifies the development degree within the oil-bearing area in each cycle. It summarizes the following points. In the south and center of study area closed to southeastern provenance, thickness variation ranges between the central sand body in underwater distributary channel and sand body along the river side or underwater underwater overbank sand body are riched in remaining oil. According to the combination of intercalation distribution features and the production in III Oil Formation of He-3Member, areas near intercalations are also abundant in remaining oil for potential trapping after the steam flooding for heavy oil reserviors. At the same time, cycle combination mining can be taken into consideration in well blocks that are developed with stable intercalations.
引文
[1]刘小亮,王超勇.川中潼南地区须家河组二段高分辨率层序地层学研究[J].岩性油气藏,2013(01):45-50.
    [2]张锐等.陡坡带扇三角洲高分辨率层序地层学——以柳赞油田北区沙三-3亚段下部砂层组为例[J].科学技术与工程,2012(15):3587-3590.
    [3]张世广.复杂断陷盆地开发区块单砂体级高分辨率层序地层学研究——以海拉尔盆地苏31块南屯组二段为例[J].地层学杂志,2011(02):219-226.
    [4]石兰亭等.松辽盆地南部上白垩统中部组合层序界面的识别标志及高分辨率层序地层格架[J].沉积学报,2010(02):235-242.
    [5]刘云,蔡峰,王作碧.高分辨率层序地层学理论基础及将来研究趋势[J].内江科技,2010(05):35-36.
    [6]杨国臣.浅谈“高分辨率层序地层学”概念的内涵[J].地质学刊,2009(04):426-428.
    [7]邓宏文.高分辨率层序地层学应用中的问题探析[J].古地理学报,2009(05):471-480.
    [8]李从先,张桂甲.下切古河谷高分辨率层序地层学研究的进展[J].地球科学进展,1996(02):216-220.
    [9]T.,A.C.与杜宁平,据高分辨率层序地层学认识地层结构、对比概念、体积配分、相分异和储层的间隔单元划分[J].国外油气勘探,1996(03):285-294.
    [10]Henry, W.P.,覃建雄.高分辨率层序地层学——以阿伯塔东坷里三角洲为例[J].地质科学译丛,1993(01):41-47.
    [11]Vail, P. R., F. Audemard, S. A. Bowman., et al. The stratigraphic signatures of tectonics, eustasy and sedimentation-an overview. In:Einsele G, et al. (eds), Cycles and events in stratigraphy. Berlin, Heidelberg, New York:Springer-Verlag,1991,617-659.
    [12]Vail, P. R., and R. M. Mitchum, Jr. Seismic stratigraphy and global change of sea level, Part 1:Overview, in C. E. Payton (ed.), Seismic stratigraphy-Applications to hydrocarbon exploration:Am. Assoc. Petroleum Geologists,1977, Mem.26, p.51-52.
    [13]Vail, P. R. sequence and J. B. Sangree. Sequence stratigraphy workbook, Fundamentals of stratigraphy[A]. AAPG, P. R. Vail, J. B. Sangree. Annual Convention course:Sequence stratigraphy interpretation of seismic well and outcrop[C]. March 19,1988, Houston, Texas.
    [14]石万忠等.时-频分析在高分辨率层序地层学中的应用[J].石油与天然气地质,2001(03):234-237.
    [15]吴富强等.经典层序地层学与高分辨率层序地层学[J].中国海上油气(地质),2001.15(3):220-223.
    [16]邓宏文,王红亮与宁宁.沉积物体积分配原理——高分辨率层序地层学的理论基础[J].地学前缘,2000(04):305-313.
    [17]席国兴.小波变换高分辨率层序地层学研究[J].价值工程,2012(19):15-17.
    [18]刘媛等.三肇凹陷白垩系姚——段葡萄花油层浅水三角洲高分辨率层序地层新认识[J].中国石油大学学报(自然科学版),2010(04):7-12.
    [19]邵龙义等.沁水盆地石炭——二叠纪含煤岩系高分辨率层序地层及聚煤模式.地质科学,2008(04):777-791.
    [20].范广娟.双城气田高分辨率层序地层学研究及其在气田开发中的应用[J],2008,大庆石油学院.78.
    [21]靳松,朱筱敏与钟大康.扇三角洲高分辨率层序地层对比及砂体分布规律[J].中国地质,2006(01):212-220.
    [22]毛琼等.四川龙门山前陆盆地上三叠统小塘子组、须家河组高分辨率层序地层学特征.资源产业,2006(02):119-124.
    [20]陈蓉等.黄骅坳陷新近系馆陶组Ⅲ段辫状河相高分辨率层序分析[J].沉积与特提斯地质,2006(03):56-60.
    [23]王嗣敏与刘招君.高分辨率层序地层学在陆相地层研究中若干问题的讨论[J].地层学杂志,2004(02):179-184.
    [24]张光明与陈恭洋.高分辨率层序地层学在油砂层对比中的应用[J].断块油气田,2004(03):30-32,90-91.
    [25]田波.长堤地区下第三系高分辨率层序地层学研究与隐蔽油藏预测[D].四川:成都理工大学,2004.
    [26]古俊林.川西坳陷南部侏罗系高分辨率层序地层学研究[D].四川:成都理工大学,2004.
    [27]雷雪等.高分辨率层序地层学在川西地震资料反演中的应用[J].石油物探,2003(04):493-500.
    [28]邓宏文.美国层序地层研究中的新学派:高分辨率层序地层学[J].石油与天然气地质.1995,16(2):89-97.
    [29]Cross, T. A. High-resolutions stratigraphic correlation from the perspective of base-level cycles and sediment accommodations. In:Proceedings of Northwestern European Sequence Stratigraphy Congress,1994,105-123.
    [30]Cross, T. A., M. R. Baker, M. A. Chapin, et al. Applications of high-resolution sequencestratigraphy to reservoir analysis, in R. Eschard and B. Doligez, (eds), Subsurface reservoir characterization from outcrop observation, proceedings of the 7th Exploration and roduction research conference. Paris:Technip,1993.11-13.
    [31]Cross T A and Lessenger M A.Sediment volume artitioning:rationale for stratigraphic model evaluation and high-resolution stratigraphic correlation.In Gradstein F M, Sandvik K 0 and Milton N J. eds.Sequence stratigraphy concepts and applications:NPF Special Publicaton 8,1998:171-195.
    [32]Posamentier H W.高分辨率层序地层学——以阿伯塔东坷里二角洲为例[J].覃雄译.地质科学译丛.1993,10(1):41-47.
    [33]赵俊青,纪友亮与张善文.地球化学在高分辨率层序界面识别中的应用[J].石油与天然气地质,2003(03):264-268.
    [34]陈建达与李莉.高分辨率层序地层学在油田开发中的应用[J].江汉石油职工大学学报,2002(03):15-17.
    [35]郝素凤与马立祥.高分辨率层序地层学在油田上的应用[J].沉积与特提斯地质,2002(04):102-106.
    [36]郑荣才,吴朝容,叶茂才.浅谈陆相盆地高分辨率层序地层研究思路[J].成都理工学院学报,2000(03):241-244.
    [37]邓宏文,工洪亮,李熙喆.层序地层基准而的识别、对比技术及应用[J].石油与天然气地质.1996,17(3):177-184.
    [38]古莉.高分辨率层序地层学在开发早期储层描述与建模中的应用[D].北京:中国地质大学(北京).2005.
    [39]柯光明.高分辨率层序地层学在储层研究中的应用[D].四川:成都理工大学.2004.
    [40]杜振川等.高分辨率层序地层模式及油气地质意义——以沾化凹陷下第三系为例[J].中国矿业大学学报,2002(04):103-107.
    [41]胡孝林.黎明碧与郑荣才,高分辨率层序地层学理论探析[J].中国海上油气地质,1999(02):3-8.
    [42]郑小武等.测井高分辨率层序地层自动划分技术与应用尝试[J].石油与天然气地质,1999(04):357-360.
    [43]邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学[J].石油与天然气地质,1995(02):89-97.
    [44]邓宏文,王洪亮与李小孟.高分辨率层序地层对比在河流相中的应用[J].石油与天然气地质,1997(02):10-15.
    [45]鲁洪波,姜在兴.高分辨率层序地层学在资源序列评价中的应用[J].石油大学学报(自然科学版),1997(05):9-12.
    [46]吴朝容,郑荣才.辽河油田西部洼陷沙河街组高分辨率层序地层学特征[J].成都理工学院学报.1999,26(4):375-381.
    [47]郑荣才,彭军.陕北志丹二角洲长6油层组高分辨率层序分析与等时对比[J].沉积学报.2002,20(1):92-100.
    [48]胡孝林等.高分辨率层序地层学的突破与发展[J].地质科技管理,1998(01):51-54.
    [49]覃建雄,田景春.高分辨率层序地层学[J].岩相古地理,1998(03):57-68.
    [50]J.F.A.,邵龙义.高分辨率层序地层学——创新、应用及发展前景[J].地质科学译丛,1997(02):19-22.
    [51]杨忠亮.高分辨率层序地层格架内岩相特征精细研究[D].四川:成都理工大学. 2012.
    [52]张世广.复杂断陷盆地开发区块单砂体级高分辨率层序地层学研究——以海拉尔盆地苏31块南屯组二段为例[J].地层学杂志,2011(02):219-226.
    [53].刘婷.黑帝庙地区青山口组高分辨率层序地层学与沉积相研究[D].中国海洋大学,2011:115-118.
    [54]魏钦廉,郑荣才与肖玲.惠州凹陷古近系珠海组—恩平组高分辨率层序格架与储层分布规律[J].地层学杂志,2010(01):60-68.
    [55]张世广等.高分辨率层序地层学在储层宏观非均质性研究中的应用——以松辽盆地朝阳沟油田朝1—朝气3区块扶余油层为例[J].沉积学报.2009(03):458-469.
    [56]江志强与张金亮.高分辨率层序地层学在末端扇沉积体系中的应用[J].中国海洋大学学报(自然科学版),2009(S1):247-252.
    [57]朱剑兵.基于测井资料的高分辨率层序旋回划分方法探讨[J].油气地球物理,2011(04):6-11.
    [58]黄彦庆等.高分辨率层序地层学中自旋回作用的探讨[J].石油天然气学报(江汉石油学院学报),2006(02):6-8.
    [59]汪彦等.中国高分辨率层序地层学的研究现状[J].天然气地球科学,2005(03):352-358.
    [60]陈钢花,王中文与王湘文.河流相沉积微相与测井相研究[J].测井技术,1996(5):25-30.
    [61]吴继余与刘开.碳酸盐岩测井电相、岩相与沉积微相研究[J].测井技术,1993(3):171-182.
    [62]李元元,方少仙与陈景山.自然伽玛数字判别法研究沉积微相——以东濮盆地文留地区沙四段为例[J].沉积学报,1991(4):59-68.
    [63]谈德辉与刘旭宁.自然伽玛测井信息研究沉积微相——以扇三角洲为例[J].西南石油学院学报,1986(4):36-44.
    [64]包洪平,杨承运.鄂尔多斯东部奥陶系马家沟组微相分析[J].古地理学报,2000,2(01):31-42.
    [65]王刘华.松辽盆地北部西斜坡萨尔图油层二砂组沉积微相研究[J].科学技术与工程,2012(9):2153-2156.
    [66]杨新宇,程日辉与黄党委.松辽盆地梨树断陷营城组沉积微相特征及意义[J].世界地质,2012(1):28-39.
    [67]韩莹.松辽盆地长10区块扶余油层沉积微相研究[J].内蒙古石油化工,2011(4):110-111.
    [68]秦秋寒,宋效文与柳成志.葡萄花油层高分辨率层序地层划分及沉积微相研究[J].科学技术与工程,2011(15):3503-3509.
    [69]范广娟与马世忠.大庆油田杏十二区单砂体级沉积微相精细研究——以葡萄花油 层重点沉积时间单元为例[J].科学技术与工程,2011(7):1535-1539.
    [70]向景红.松辽盆地高台子地区扶余油层沉积微相研究[J].科学技术与工程,2011(20):4862-4865.
    [71]胡晓兰等.松辽盆地北部西斜坡姚家组SⅡ+Ⅲ砂组物源分析及沉积微相[J].吉林大学学报(地球科学版),2011(3):647-656.
    [72]吴海瑞.松辽盆地乾北地区青三段沉积微相发育特征及其对岩性油藏的控制作用[J].大庆石油学院学报,2011(4):8-11.
    [73]陆道林等,松辽盆地南部乾安北地区扶余油层沉积微相分析[J].中国石油大学学报(自然科学版),2011(6):8-13.
    [74]陈伟等.大庆油田肇35区块葡萄花油层沉积微相分布演化规律及有利相带预测[J].现代地质,2010(6):1072-1078.
    [75]李琦等,河流相砂体的沉积微相特征——以济阳坳陷埕东北坡馆陶组砂体为例[J].岩相古地理,1999(1):27-33.
    [76]宋春晖等.青海湖现代滨岸沉积微相及其特征[J].沉积学报,1999(1):51-57.
    [77]李志安,张思富与施龙,松辽盆地北部头台油田沉积微相研究[J].大庆石油地质与开发,1998(1):16-18.
    [78]陈和平.辽河油田欢50块杜家台油层储集砂体沉积微相[J].江汉石油学院学报,1997(2):13-17.
    [79]张兴金,杨清彦,马世忠.朝阳沟油田扶余油层曲流河沉积微相及测井相研究[J].大庆石油学院学报,1994(1):17-22.
    [80]彭仕宓等.砾岩储层沉积微相研究新方法[J].石油学报,1994:44-51.
    [81]刘建华,朱玉双,胡友洲等.安塞油田H区开发中后期储层地质建模[J].沉积学报,2007,25(1):110-115.
    [82]田波,陈方鸿,胡宗全.岩性控制下的测井储集层参数评价与预测[J].石油勘探与开发,2003,30(5):75-77.
    [83]宋子齐,李亚玲,潘玲黎等.测井资料在小洼油田盖层评价中的应用[J].油气地质与采收率,2005,12(4):4-6.
    [84]宋子齐等.利用单渗砂层能量厚度研究有利沉积微相及其含油有利区的方法[J].沉积学报,2008(3):452-458.
    [85]朱现胜.三角洲体系沉积微相的测井识别方法与应用[J].断块油气田,2007(5):91-92.
    [86]陈烨菲,彭仕宓.沉积微相定量研究方法[J].石油勘探与开发,2003(4):51-53.
    [87]Miall A D. Architeeture element analysis:a new method of faciesanalysis applied to fluvial deposits. Earth Seience Review.1985,22(4):261-308.
    [88]Miall A D. Reservoir heterogeneities in fluvial sandstone:lessons from outcrop studies. AAPG.1988,72(6):682-697.
    [89]Miall A D. The Geology of Fluvial Deposits M. SPRINGER-Verlag Berlin Heidelberg, NewYork.1996:1-190,453-478.
    [90]马世忠等.单砂体内部建筑结构及其对剩余油控制机理[A].第八届古地理学与沉积学学术会议论文摘要集,2004.
    [91]陈论韬等.多资料约束单砂体3D非均质地质建模[J].中国高新技术企业,2011(25):119-122
    [92]李志鹏等.影响低渗透油藏注水开发效果的因素及改善措施[J].地学前缘,2012(02):171-175.
    [93]张善义.长43-39区块扶余油层点坝识别及建筑结构研究[D].大庆:东北石油大学.2011.
    [94]李换浦,刘汝敏与王震.水下分流河道储层隔夹层研究——以H油田沙二段为例[J].油气地球物理,2013(1):54-56.
    [95]徐寅等.隔夹层成因、特征及其对油田开发的影响——以塔中地区海相砂岩储层为例[J].科技导报,2012(15):17-21.
    [96]周改英等.海上厚砂体油气藏内隔夹层研究[J].石油地质与工程,2012(1):36-37.
    [97]杜微,马世忠与范广娟.复合河道砂体劈分及隔夹层研究——以大庆油田北一区断东葡12小层为例[J].科学技术与工程,2011(16):3637-3640.
    [98]汪莉彬等.辫状河储层中隔夹层对岩性油藏的控制作用[J].西部探矿工程,2011(10):30-33.
    [99]邹志文,斯春松与杨梦云.隔夹层成因、分布及其对油水分布的影响——以准噶尔盆地腹部莫索湾莫北地区为例[J].岩性油气藏,2010(3):66-70.
    [100]王健.储层隔夹层模型研究[D].北京:中国石油大学.2010
    [101]周国文等.H油田隔夹层测井识别方法研究[J].石油物探,2006(5):542-545.
    [102]王振彪.块状气顶底水油气藏低渗透夹层研究[J].石油勘探与开发,1996,23(6):23-26
    [103]裘亦楠.中国陆相碎屑岩储层沉积学进展[J].沉积学报,1992,10(3):15-19.
    [104]张吉,张烈辉,胡书勇.陆相碎屑岩储层隔夹层成因、特征及其识别[J].大庆石油地质及开发,2003,22(4):2-4.
    [105]杨玉茹.渤中25-1南油田浅水三角洲相储层隔夹层研究[D].北京:中国石油大学.2007.
    [106]吴胜和,武军昌,李恕军等.安塞油田坪桥水平井区沉积微相三维建模研究[J].沉积学报,2003,21(2):266-241.
    [107]徐樟有,张国杰.碳酸盐岩储层中非渗透性隔层的识别及分类评价[J].石油大学学报.2001,25(1):46-50.
    [108]高兴军,宋子奇.真12块垛一段六油组隔夹层划分和描述[J].西安石油学院学报.2000,15(5).11-13.
    [109]朱东亚,胡文,曹学伟等.临南油田隔层类型划分及其分布规律研究.地球科学.2004,29(2):211-223.
    [110]王国鹏,何光玉.双河油田厚油层内夹层分布特征[J].石油勘探与开发.1995,22(2):55-58.
    [111]林博,戴俊生,陆先亮等.孤岛油田中一区馆5段隔夹层划分与展布[J].西安石油大学学报.2006,21(4):11-14.
    [112]柳成志,张雁,单敬福.砂岩储层隔夹层的形成机理及分布特征——以萨中地区PI2小层曲流河河道砂岩为例[J].天然气工业.2006,26(7):15-17.
    [113]王延章,林承焰,温长云等.夹层分布模式及其对剩余油的控制作用[J].西南石油学院学报,2006,28(5):6-10.
    [114]束青林.孤岛油田馆陶组河流相储层隔夹层成因研究[J].石油学报,2006,27(3):100-103.
    [115]吕晓光,马福士,田东辉.隔层岩性、物性及分布特征研究[J].石油勘探与开发,1994,21(5):1-9,81-87.
    [116]李长山,吕晓光,王占国.大庆油田北部河流相储层沉积微相与水淹特征[J].现代地质,2000,14(2):198-202.
    [117]唐清山与施晓蓉.高升油田高3块隔夹层特征及对稠油热采的影响[J].特种油气藏,1995(1):25-32.
    [118]林承焰等.应用地质统计学方法识别隔夹层一以辽河西部凹陷沙三段为例[J].石油实验地质,1997(3):245-251.
    [119]张吉,张烈辉与胡书勇.陆相碎屑岩储层隔夹层成因、特征及其识别[J].大庆石油地质与开发,2003(4):1-3.
    [120]瞿子易等.小波神经网络在隔夹层研究中的应用[J].石油天然气学报,2009(4):265-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700