用户名: 密码: 验证码:
北大西洋涛动(NAO)位相转换的诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文使用NCEP/NCAR的再分析资料以及CPC提供的NAO指数资料,对1978-1990年(P1阶段),1991-2009年(P2阶段)这两个阶段NAO位相转换事件进行了分析。论文主要描述了这两个阶段不同转相事件的NAO流场,基本西风等的结构和演变特征。
     通过对NAO转相事件的指数合成发现,P1阶段以NAO-转NAO+为主;P2阶段NAO+转NAO-位相的发生频率较高,且转后的NAO-(相对于P1阶段)更强,这在一定程上可以解释90年代开始NAO指数的下降趋势。流场的合成则表明大尺大尺正(负)异常的西退和加强是NAO+位相转NAO-位相事件(NAO-位相转NAO+位相事件)的主要特征,这种特征在未转相的NAO事件中是不存在的。此外,西退也导致了转相后的NAO位相的中心位置偏向下游一侧。即对应NAO活动中心的“向东漂移”。对于基本西风的分布,转相事件的急流会出现双支与单支急流之间的转变,具体依赖于NAO的位相转换类型。未转相事件中不存在单双支急流的交替。
     P2阶段转后的NAO-活动中心其强和西退非常显著,而P1阶段的NAO+则没有这种特征。这种不同的特征可能是由于异常场主要的谐波------1波和2波具有不同的强和相速配置。对于P1阶段的转相,1波,2波的强不同使得两者相速相差很大,这导致1波和2波叠加无法达到“共振”的效果。相反,对于P2阶段,1波和2波在大部分时刻几乎以相同的速转播,这种1波和2波的叠加作用会使得在P2阶段NAO的活动中心强大大地加强,西退也更显著。对于NAO的两个位相,1波和2波在NAO减弱过程中的重新加强对于NAO转相都是非常重要的。
With daily NCEP/NCAR reanalysis data and daily NAO Index data from CPC, this study examines NAO phase transitions during 1978-1990(P1) and 1991-2009(P2). The focus of this study is on the structure and evolution characteristics of different transitions, which is performed on some basic variables such as geopotential height and zonal wind.
     The results of a composite analysis with NAO Index suggest that the frequency of the NAO- to NAO+ transition is dominant during P1, while the NAO+ to NAO- transition prevails during P2. As the later phase of the transition(NAO-) is much stronger during P2 than that of P1, it is likely to partly account for the linear downtrending within P2. The composite of geopotential height shows that, the main characters of different transitions are enhancement and westward withdrawing of the positive or negative anomaly. However, these characters cannot be detected for NAO events without transition. The westward withdrawing also lead to NAO anomaly being located close to the downstream, which just reflects the "eastward shift" of the NAO pattern. Moreover, it is found that there exists the change between the double-jet state and single-jet state during the transition events in the Atlantic area,which would not happen during the non-transition events. The type of this jet change depend on the type of phase transition.
     It is much more significant with the intensity and the westward - withdrawing during P2 than that during P1. The reason for this difference may probably be the interference between wavenumber 1 and 2. During P1, as for the different intensities and phase velocities, it is hardly to achieve the "resonance" between wavenumber 1 and 2. Nevertheless, for the most period during P2, the two waves stay with most the same phase velocity and could be coupled well as a result. Thus it would be indicated that the the intensity and the westward - withdrawing of the NAO anomaly is extraordinarily significant. However, no matter of what phase transitions, the re-intensification of both wavenumbers 1 and 2 after the decay of the former NAO events is crucial for the transitions.
引文
[1] Appenzeller, C., T. F. Stocker, and M. Anklin, 1998: North Atlantic Oscillation dynamics recorded in Greenland ice core. Science, 282, 446-449.
    [2] Archambault, H. M., D. Keyser and L. F. Bosart, 2010: Relationship between largescale regime transitions and major cool-season precipitation events in the Northeastern United States. Mon. Wea. Rev., 138, 3454-3473.
    [3] Barnston, A. G., and R. E. Livezey, 1987: Classification , seasonality and persistence of low frequency atmospheric circulation patterns. Mon. Wea. Rev., 105, 1083-1126.
    [4] Bloomfield, P., 1976: Fourier Analysis of Time series: An introduction. Wiley, 258pp.
    [5] Cassou C., L. Terray, J. W. Hurrell and C. Deser 2004: North Atlantic winter climate regimes: spatial asymmetry, stationarity with time and oceanic forcing. J. Climate, 17,1055–1068.
    [6] Cohen, J. and M. Barlow, 2005: The NAO, the AO, and Global warming: How closely related. J. Climate, 18, 4498-4513.
    [7] Colucci, S. J., A. Z. Loesch and L. F. Bosart, 1981: Spectral evolution of a blocking episode and comparison with wave interaction theory. J. Atmos. Sci., 38, 2092- 2111.
    [8] Cook, E. R., D. D'A rrigo, and K. R. Briffa, 1998: The North Atlantic Oscillation and its expression in circum-Atlantic tree-ring chronologies from North America and Europe. The Holocene, 8 (1), 9-17.
    [9] Cook, E. R., D. D'A rrigo, and M. E. Mann, 2001: A Well-Verified, Multiproxy Reconstruction of the Winter North Atlantic Oscillation Index since A.D. 1400*. J. Climate, 15, 1754-1764.
    [10] Dong B., R. T. Sutton and T. Woollings, 2010: Changes of interannual NAO variability in response to greenhouse gases forcing. Clim. Dynamics, DOI 10.1007/s00382-010-0936-6.
    [11] Feldstein, S. B., 2002: The recent trend and variance increase of the annular mode. J. Climate, 15, 88-94.
    [12] Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901-924.
    [13] Gillett, N. P., H. F. Graf and T. J. Osborn, 2003: Climate change and the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monor., No. 134, Amer. Geophys. Union, 193-2009.
    [14] Hall, N. M., B. J. Hoskins, P. J. Valdes and C. A. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide, Quart. J. R. Meteoro. Soc., 120, 1209-1230.
    [15] Hilmer, M and T. Jung, 2000: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys. Res. Lett., 27, 989–992.
    [16] Hoerling, M. P., J. W. Hurrell and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292, 90-92.
    [17] Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676-679.
    [18] Hurrell, J. W., and H. Van Loon, 1997: Decadal variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23,665-668.
    [19] Johnson, N. C, S. B. Feldstein and B. Trembley, 2008:The continuum of northern hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 6354–6371.
    [20] Jung, T., and M. Hilmer, 2001: The link between the North Atlantic Oscillation and Arctic sea ice export through Fram Strait, J. Climate, 14,3932– 3943.
    [21] Jung T., M. Hilmer, E. Ruprecht, S. Kleppek, S. K. Gulev and O. Zolina, 2003: Characteristics of the recent eastward shift of interannual NAO variability. J. Climate, 16,3371–3382.
    [22] Koslowski, G., and P. Loewe, 1994: The Western Baltic Sea ice season in terms of a mass-related serity index 1879-1992.Part I: Temporal variability and association with the North Atlantic Oscillation. Tellus, 46A (1): 66-74.
    [23] Li Jianping, and Julian X. L. Wang, 2003: A New North Atlantic Oscillation Index and Its Variability. Advances in Atmospheric Sciences, 20 (5):661-676.
    [24] Luo D., 2000: Planetary-scale baroclinic envelope Rossby solitons in a two- layer model and their interaction with synoptic-scale eddies. Dyn. Atmos. Oceans, 32, 27-74.
    [25] Luo D., A., R. Lupo and H. Wan, 2007a: Dynamics of eddy-driven low- frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 3-28.
    [26] Luo D., T. Gong and Y.diao, 2007b: Dynamics of eddy-driven low-frequency dipole modes. Part III: Meridional displacement of westerly jet anomalies during two phases of NAO. J. Atmos. Sci., 64, 3232-3248.
    [27] Luo, D., T. Gong and Y. Diao, 2007c: Dynamics of eddy-driven low-frequency dipole modes. Part III: Meridional displacement of westerly jet anomalies during two phases of NAO. J. Atmos. Sci., 64, 3232-3248.
    [28] Luo, D., Y. Diao and B. S. Feldstein, 2011: The variability of the Atlantic stormtrack and the North Atlantic Oscillation: A link between intraseasonal and interannual variability. J. Atmos. Sci. ,68, 577-601
    [29] Moses, T., G. N. Kiladis, H. F. Diaz et al., 1987: Characteristic and frequency of reversals in mean sea level pressure in the North Atlantic sector and their relationship to long-term temperature trends. J. Climate, 13 (14): 2652-2662.
    [30] Palmer, T. N., 1993: A nonlinear dynamical perspective on climate change, Weather, 48, 314-326.
    [31] Peterson, K. A., R. J. Greatbatch, J. Lu, H. Lin, and J.Derome, 2002: Hindcasting the NAO using diabatic forcing of a simple AGCM. Geophys. Res. Lett., 29, 1336, doi:10.1029/2001GL014502.
    [32] Peterson K. A, J. Lu and R. J. Greatbatch, 2003: Evidence of nonlinear dynamics in the eastward shift of the NAO. Geophys. Res. Lett., 30(2), 1030. doi:10.1029 /2002GL015 585.
    [33] Rodwell, M. J., D. P. Rowell and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398, 320-323.
    [34] Rogers, J. C., 1984:The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Wea. Rev., 112, 1999-2015.
    [35] Shindell, D. T., R. L. Miller, G. A. Schmidt and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by Greenhouse-gas forcing, Nature, 399, 452-455.
    [36] Sigmond, M., P. C. Siegmund, E. Manzini, and H. Kelder, 2004: A simulation of the separate climate effects of middle-atmospheric and tropospheric CO2 doubling, J. Climate, 17, 2352– 2367.
    [37] Thompson, D. W. J., and J. M. Wallace, 1998:The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 (9), 1297-1300.
    [38] Trenberth, K. E., and D. A. Paolino, 2000: Characteristic patterns of variability of sea level pressure in the Northern Hemisphere, Mon. Wea. Rev.,109, 1169-1189, 1981.
    [39] Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dyn., 15, 551-559.
    [40] Woollings T., A. Hannachi, B., Hoskins and A. Turner, 2010a: A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing. J. Climate, 23,1291–1307.
    [41]龚道,王绍武,2000:北大西洋涛动指数的比较及其年代际变率,大气科学, 24(2),187-192.
    [42]施能,1996:北半球冬季大气环流遥相关型的长期变化及其与我国气候变化的关系,气象学报,54(6),675-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700