用户名: 密码: 验证码:
纳米SnO_2复合材料的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料具有结构敏感性,纳米材料在尺寸和形貌调控的基础上,其组成和结构上的微小变化有望使材料性能发生明显的改善。因此,借助材料的组成和结构设计,以及探索新型的制备工艺已成为合成高性能纳米功能材料的主要手段。
     本论文以氧化锡为主体研究对象,从纳米材料的微观组成的设计出发,以复合材料晶体缺陷设计理论为指导,设计制备了新型的AgI-SnO2纳米复合材料,并对其光催化性能进行了系统研究;从探索纳米材料新型制备工艺出发,在综合传统液相沉淀法和气相法的基础上,提出了新型的气--液界面法,并运用该法完成了ATO纳米粉体制备,解决了ATO粉体制备工程中因高水解性掺杂剂存在,而影响沉淀不均匀这一难题。在此基础上,分析了ATO纳米粉体电性能及影响机制。
     (一)首先从组成上设计、制备AgI-SnO2纳米的复合粉体,实验采用沉淀法制备AgI-SnO2纳米复合粉体。通过TG-DTA、XRD、TEM、XPS和ESR等对纳米复合粉体的热性能、物相组成、微观形貌、粒径大小、晶体表面结构、元素组成及缺陷浓等进行表征,通过亚甲基蓝降解实验评估了AgI-SnO2复合粉体的光催化性能,并探讨AgI-SnO2复合粉体光催化机理。具体结论如下:
     (1)前驱体经500℃煅烧1h,所制得的AgI-SnO2纳米复合粉体结晶性好,分散均匀, XRD测试表明复合粉体中的SnO2为四方金红石结构,出现AgI的特征峰,所制备的粉体晶粒尺寸约20nm,AgI的复合引起晶粒尺寸的增长。
     (2)XPS图谱表明复合粉体中的Ag,I两种元素在复合物中主要以Ag-I键形式存在,仅有少量的I-进入SnO2晶格;AgI-SnO2纳米复合粉体中Sn与O比例偏离2:1,表明复合粉体中含有较多的氧空位(氧缺陷),电子自旋共振谱(ESR)表明掺杂使得氧空位浓大大增加,掺杂量为2At%的复合粉体缺陷浓最高,其缺陷浓是未掺杂SnO2的32.7倍。
     (3)傅里叶红外光谱表明经高温转相得到的AgI-SnO2纳米复合粉体中仍含有少量-OH,AgI-SnO2复合粉体的红外光谱出现AgI特征峰;可见-紫外漫反射谱表明掺杂AgI使得SnO2带隙变窄,光吸收阀值降低,对可见亚光的吸收率增加。
     (4)通过模拟亚甲基蓝降解实验表明:掺杂AgI后复合粉体的光催化性能得到很大的提高,AgI掺杂量为2At%的复合粉体光催化性能最佳,紫外光条件下,20min降解率达96%,所制备的光催化剂重复利用率高,表现出很好的光催化稳定性。
     (二)从材料制备方法对材料性能的影响出发,设计了气—液界面法制备ATO纳米粉体,解决了传统沉淀法制备ATO粉体存在的掺杂剂分布不均这一难题,并考察了高温煅烧和高温水热两种相转变方式以及掺杂量等因素对ATO粉体电性能的影响。
     (1)在参考工艺条件下通过气液界面法制备了不同掺杂量ATO纳米粉体,XRD物相分析表明,掺杂后样品仍然保持氧化锡的金红石结构,说明Sb固溶进入氧化锡晶格,通过分析ATO纳米粉体的XRD峰型,掺杂Sb引起XRD峰不同程的宽化,说明Sb掺杂,引起了样品晶粒尺寸的降低。TEM表明,高温水热制备的ATO纳米粉体粒径更小,掺杂量为10At%时,样品粒径最小,仅6nm。
     (2)EDS和XPS谱分析表明理论掺杂量跟实验值基本吻合,说明气液界面法制备ATO能更好地实现对掺杂量和掺杂物质分散的控制,从而能制备出高性能的ATO纳米粉体。
     (3)重点研究了气液界面法的高温煅烧和高温水热两种不同的晶化方式对ATO纳米粉体导电性能的影响,考察了不同掺杂浓、反应温、洗涤次数对电性能的影响,同时分析了样品电性能随外加电场频率的变化规律,高频条件下电导率达到10-1s.cm-1,表现出很好的导电性,实验表明高温水热比高温煅烧制备的ATO表现出更加优异的导电性能,当Sb掺杂浓为10At%时,所制备的纳米ATO电阻率最低,高温煅烧制备的ATO电阻率为70.4cm,高温水热制备的ATO电阻率为65.4cm。
Nano-materials are structure sensitive materials, small changes of the material structure may leadgreat changes to the properties of the materials.In this condition, designing the the composition andstructure of the material, as well as exploring new preparation process have become theprimary means of synthetic high-performance nano-functional materials.
     Our research are focused on promoting the performance of tin oxide based on theseideas, including designing composition of the new materials and improving preparationmethods. First, We prepared AgI-SnO2nanocomposites, and analyzed the photocatalyticperformance of AgI-SnO2nanocomposites with defect theory of nano-crystal. then, Wedesign a gas-liquid interface precipitation to deal with the nonhomogeneous precipitationof ATO nanopowders. The prepared ATO exhibited excellent conductive properties, and theinfluencing factors of conductive properties were analyzed.
     Firstly, the AgI-SnO2nano-composite were prepared by liquid precipitation method,and TG-DTA, XRD, TEM, XPS and ESR and other characterization method were carriedout to study the thermal properties, phase composition, morphology, particle size,elemental composition and defect concentration of the nano-composite powders.photocatalytic properties of AgI-SnO2were estimated by photocatalytic degradation of MB,and the photocatalytic mechanism of AgI-SnO2nano-composit are discussed in this paper.The followings are the main research work and results:
     (1)The AgI-SnO2nanocomposite powder obtained with500℃calcined for1h,distributed evenly, the size of the crystal is about20nm. XRD analysis showed that thecomposite powders are rutile phase, the characteristic peaks of AgI can be saw. and AgIdoping caused by the growth of the grain size. XPS spectra show that the AgI is the mainform of Ag+and I-in the composite. In addition, a small number of I doped into the latticeof SnO2. Surface analysis showed that the proportion of Sn and O deviate from the2:1,which Indicating that the composite powders contain more oxygen vacancies.The electron spin resonance (ESR) that the2At%doping amount makes the oxygen vacancyconcentration greatly increased32.7times than those undoped.
     (2) Fourier transform infrared spectroscopy shows that there are still containing asmall amount of-OH in AgI-SnO2nanocomposite even calcined under500℃, Thecharacteristic peaks of AgI appears. UV-VIS diffuse reflectance spectra show that thedoping AgI narrowed the band gap of SnO2, which leading the reducing of opticalabsorption threshold.
     (3) The degradation of methylene blue demonstrated that the photocatalyticperformance of the nanocomposites has been greatly improved by doping AgI. TheAgI-SnO2composite with2At%AgI doping content display the vintage catalyticdegradation rate. the prepared nanocomposite showed good photocatalytic stability.
     Secondly, Taking the preparation methods influence to the material properties intoaccount. We design a gas-liquid interface precipitation to process nanometer ATOconductive based on the nonhomogeneous precipitation of preparation of ATO powders.The prepared ATO exhibited excellent conductive properties, and the influencing factors ofconductive properties were analyzed.
     (1) The ATO nano-powders with different doping content were prepared under the setconditions. XRD analysis showed that the doped composite powders are rutile phasestructure of tin oxide, indicating that Sb replaced Sn4+of tin oxide crystals solid solutioninto the lattice. XRD peak shape indicate that doping with Sb caused peak broadening,TEM showed that the hydrothermal preparation of ATO particle size is smaller, and particlesize are smallest when the doping amount is10At%.
     (2) EDS and XPS spectras show that the theoretical doping content consistent toexperimental results, indicating that the amount of doping and doping substances indecentralized of the ATO powder can better achieve by gas-liquid interface method. whichalso means the high performance of the ATO powder.
     (3) The conductive properties of ATO nano-powders that prepared by gas-liquidinterface method were studied.The effects of different doping concentration, reactiontemperature, washing times were take into consider. conductivity reached10-2s.cm-1underhigh frequency condition. Experiments show that the hydrothermal preparation of ATOshowed excellent electrical properties than the high temperature calcination preparation ofATO, and When the Sb doping concentration is10At%, the nanocrystalline ATO exhibit lowest resistivity. Resistance of ATO prepared by high temperature calcination was70.4Ω·cm. Resistance ofATO prepared by hydrothermal method was65.4Ω· cm.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,16-57.
    [2] Y J Lin, C J Wu. The properties of antimony-doped tin oxide thin films from thesol-gel process [J]. Surface and Coatings Technology,1996,88(1-3):239-247.
    [3] W Sager, H Eicke, W Sun. Precipitation of nanometer-sized uniform ceramic particlesin emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993,79:199-216.
    [4] J H Grirnill, D G Bessarabov, U Simon, et al. Characterization of doped tin dioxideanodes Prepared by a sol-gel technique and their application in an SPE-reactor, J APPlElee,2000,30(3):293-302.
    [5]高友良.超细粉末的研究进展[J].中国陶瓷,1996,32(30):37–39.
    [6]曹茂盛.超细颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1995:16-19.
    [7]白桂丽,甘国友,严继康,等.纳米粉体的制备技术及应用前景[J].云南冶金,2004,33(4):23–27.
    [8]程国娥.二氧化锡纳米结构的合成、表征与性能研究[D].武汉:中国科技大学无机材料,2007.
    [9]贾曦,刘爱萍,刘洋等. SnO2微纳米材料的合成及其生长机理研究[J].物理学报,2009,58(4):2572-2577.
    [10] S W Lee, H Chen, P P Tsai. Comparision study of SnO2: thin-thick film gas sensors[J].Sensors and Actuators,2000,67(1-2):122-127.
    [11] M Ocana, C J Serna. A vibrational study of uniform SnO2powders of variousmorphologies[J]. Solid State Ionics,1993,63-65:170-177.
    [12]郭广生,危晴,王志华,等.均匀沉淀法制备纳米氧化锡粒子[J].化学通报,2004,3:210-213
    [13] G Sarala Devi, S Manorama, V J Rao. High sensitivity and selectivity of an SnO2sensor to H2S at around100℃[J]. Sensors Actuators B,1995,28:31-37.
    [14] R S Hiratsuka, S H Pulcinelli, C V Santilli. Structural characterization of a tinoxyhydroxide gel and its precursor sol[J]. J Non-Crystall solids,1992,142:181-184.
    [15] M Boutonnet, J Kiziling, eta1.Preparation of monodisperse colloididal metal particlesfrom microemul sions[J]. Colloids and Surfaces,1982,5:209-225.
    [16]潘庆谊,徐甲强,刘宏民等.微乳液法纳米SnO2材料的合成、结构与气敏性能[J].无机材料学报,1999,14(1):83-89.
    [17] H G Yang, H C Zeng, Creation of Intestine-like Interior Space for Metal OxideNanostructures with a Quasi-Reverse Emulsion[J]. Angew.Che.Int.Ed,2004,43(39):5206-5209.
    [18]林碧洲. SnO2纳米晶粉的溶胶-水热合成[J].华侨大学学报(自然科学版),2000,(3):268-270.
    [19] W Z Wang, C K Xu, X S Wang, et al. Preparation of SnO2nanorods by annealingSnO2powder in NaCl flux[J]. Mater Chem,2002,12(6):1922-1925.
    [20] A Jain, S Rogojeric, S Ponoth, el a1.Porous silica materials as low-kdielectrics forelectronic and optical interconnects[J]. Thin Solid Films,2001,398:513-522.
    [21] B Alterkop, N Parkansky, S Goldsmith, R L Boxman. Effeet of annealing onopto-electrical properties of amorphous tin oxide films[J]. J Phys D: Appl.Phys,2003,36:552-556
    [22] W Rieder, V.Weichsler Make erosion mechanism of Ag-CdO and Ag-SnO2contacts[J]. IEEE Tr. CHMT,1992,15(3):332-338.
    [23]郑冀,高晶,李松林,李群英.新型银氧化锡电接触材料[J].稀有金属材料与工程,2005,34(3):483-486.
    [24]宋兴华,於定华,马新胜等.涂料型红外隐身材料研究进展[J].红外技术,2004,26(2):9-12
    [25]杨建广,唐谟堂,张保平等.锑掺杂二氧化锡导电机理及制备方法研究现状[J].中国粉体技术,2004,1:38-43.
    [26]王栋,林耀,顾利霞.纳米锑掺杂二氧化锡水悬浮液性质的研究[J].纳米材料与纳米科技,2004,1:10-14.
    [27]王栋,林耀,赵妍.纳米ATO改性聚丙烯腈纤维的研究[J].功能高分子学报,2004,17:102-108.
    [28] M R Cássia, V C Sousa, M M Oliveira, et al. Recent research developments in SnO2based varistors[J]. Materials Chemistry and Physics,2005,(90):1-9
    [29]洪吉,常温半导体氧传感器[D].浙江,浙江大学硕士学位论文,2001.
    [30]徐甲强,潘庆谊,孙雨安.纳米氧化锌的乳液合成、结构表征与气敏性能[J].无机化学学报,1998,14(3):355-359.
    [31] G R Goward, L F Nazar, W P Power. Electrochemical and multinuclear solid stateNMR studies of tin composite oxide glasses as anodes for Li ion batteries[J]. Journalof Materials Chemistry,2000,10,1241-1249.
    [32]韩巧凤,阚春,李丹. SnO2纳米晶的制备及性能研究[J].上海化工,2002,(18):18-19.
    [33] M Lyuboysky, L Pfeferle. Complete methane oxidation over Pd catalyst supported onα-alumina. Influence of temperature and oxygen pressure on the catalyst activity [J].Catalysis Today,1999,47:29-44.
    [34] M M Zwinkd, S G Jaras, P C Menon, Cata1. Rev-Sci. Eng,1993,35(3):319.
    [35] J Ma, Y X Zhu, J Y Wei, X H Cai, Y C Xie. Lean NOxreduction over Sn1xZrxO2solid solutions[J]. Stud Surf Sci Catal,2000,13:617-622.
    [36] S Nishiyama, T Kubota. Unique hydrogenation activity of supported tin catalyst:Selective hydrogenation catalyst for unsaturated aldehydes[J]. J.Mol.Catal.A: Chem.,1997,120(1-3): L17-L22.
    [37] O Carp, C L Huisman, A Reller.et al. Photoinduced reactivity of titanium dioxide[J].Progress in Solid State Chem,2004,32(1-2):33-77.
    [38]刘平,周延云,林华香,傅贤智. TiO2/SnO2复合光催化剂的耦合效应[J].物理化学学报,2001,17(03):265-270.
    [39]于长风,朱小平,缺陷化学概论[M].武汉,武汉理工大学出版社,2006,2-17.
    [40] W M Zhang, J S Hu, S F Zheng, L S Zhong, Tin-nanoparticles encapsulated in elastichollow carbon spheres for high-performance anode material in lithium-ion batteries[J].Advanced Materials,2008,20(6):1160–1165.
    [41] L B Fraigi, D G Lamas, N E Wals e. Comparison between two combustion routes forthe synthesis of nano-crystalline SnO2powders[J]. Materials Letters,2001,47(45):262-266.
    [42] F Fujishiro, S Mochizuki. Structural and optical studies on mesoscopic defectstructure in highly conductive AgI-ZnO composites[J]. Physica B,2003,340–342
    [43] S H Sun, G W Meng, G X Zhang, J P Masse, L D Zhang. Controlled growth of SnO2hierarchical nanostructures by a multistep thermal vapor deposition process[J]. ChemEur J,2007,13(32):9087-9092.
    [44] Z M Tian, S L Yuan, J H He, P Li, et al. Structure and magnetic properties in Mndoped SnO2nanoparticles synthesized by chemical co-precipitation method[J].Journal of Alloys and Compounds,2008,466(1-2):26-30
    [45] H J Jeon, M Kang, S G Lee, et al. Synthesis and characterization of antimony dopedtin oxide (ATO) with nanometer sized particles and their conductivities[J]. MaterialsLetters,2005,59:1801-1810.
    [46]王城英,姜洪泉,李井申,卢智宇,闫盼盼. TiO2-yNx纳米光催化剂的制备及其可见光响应机理[J].2012,27(12):1413-1418.
    [47] Y Z Li, D S Hwang, N H Lee, S J Kim. Synthesis and characterization of carbondoped titania as an artificial solar light sensitive photocatalyst[J]. Chem Phys Lett,2005,404(1-3):25-29.
    [48]赵杰,赵经贵,高山,霍丽华.二氧化锡气敏纳米粉体的红外光谱研究[J].光散射学报,2004,16(3):234-238.
    [49]翟庆洲,蔡建岩,李景梅,等.(NaZSM-5)-AgI主体-客体纳米复合材料的研究[J].化学物理学报,2005,18(6):1029-1033.
    [50] L Abello, B Bochu, A Gaskov, S Koudryavtseva, G Lucazeau. StructuralCharacterization of Nanocrystalline SnO2by X-Ray and Raman Spectroscopy[J].Solid State Chem,1998,135(1):78-85.
    [51] J Zuo, C Xu, X Liu, C Wang, Y Hu,et al. Study of the Raman spectrum of nanometerSnO2[J]. J Appl Phys,1994,75(3):1835-1836.
    [52] S P Porto, P A Fleury, T C Damen, Raman Spectra of TiO2, MgF2, ZnF2, FeF2, andMnF2[J]. Phys Rev,1967,154:522-526.
    [53] S B Ram, T K Dusan, S Dusan, K C Chang, et al. Enhancing Hydrogen EvolutionActivity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces[J]. Science,2011:1180-1191.
    [54] M R Hoffmann, S T Martin, W Y Choi, et al. Environmental Applications ofSemiconductor Photocatalysis[J]. Chem Rev,1995,95(1):6996.
    [55] T Puangpetch, T Sreethawong, et al. Synthesis and photocatalytic activity in methylorange degradation of mesoporous-assembled SrTiO3nanocrystals prepared bysol-gel method with the aid of structure directing surfactant[J]. J Mol Catal A: Chem,2008,287(1-2):70-79.
    [56]张彤,张悦炜,张世著,陈冠钦,洪樟连.可见光响应型窄带隙半导体光催化材料的研究及应用进展[J].材料导报,2009,23(2):24-28.
    [57] J J Wu, F Q Huang, P Chen, et a1. Improved visible light photocatalysis ofnano-Bi2Sn2O7with disperseds bands[J]. J Mater Chem,2011,21:3872-3876.
    [58] S Tsunekawa, T Fukuda, A Kasuya. Blue shift in ultraviolet absorption spectra ofmonodisperse CeO2-xnanoparticles[J]. Journal of Applied Physics,2000,87(3):1318-1321.
    [59] Y Z Li, D S Hwang, N H Lee, S J Kim. Synthesis and characterization ofcarbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chem PhysLett,2005,404(1-3):25-29.
    [60]井立强,蔡伟明,孙晓君,掺杂Ce的TiO2纳米粒子的光致发光及其光催化活性[J].化学学报,2003,61(8):1241-1245.
    [61]计峰,氧化锡及其锑掺杂薄膜的制备、结构和光致发光性质研究[D].山东大学:微电子学与固体电子学,2006.
    [62] J G Yang, M T Tang, S H Yang, et a1. Conducting mechanism and theory conductivityof antimony doped tin oxide[J]. Micronanoelec-tronic Technology,2004,4l(4): l8-20.
    [63]李青山,张金朝,宋鹂,等.锑掺杂浓对于二氧化锡纳米微粉的影[J].无机材料学报,2002,17(6):1283-1287.
    [64]刘海涛,张树军.无机材料合成[M].北京:化学化工出版社,2008,24-40.
    [65]刘培生.晶体点缺陷基础[M].北京:科学出版社,2010,316-332.
    [66] F Montilla, E Morallon, S Barison, et al. Preparation and Charaeterization ofAntimony Doped Tin Dioxide Electrodes[J]. Jounal of physical Chemistry B,2004,108:15976-1598.
    [67] R G Egdell, J Rebane, T J Walker. Competition between initial and final state effeetsin valence-and core-level x-ray Photoemission of Sb doped SnO2[J]. Physical ReviewB,1999,59:1792-179.
    [68] Z C Rnjakorel, M Hodoseek, V Kaucic. Conductive SnO2-Sb powders: Preparationand optical properties[J]. J Mater Sci,1992,27:313-318.
    [69]李青山,张金朝,宋鹏,等.纳米级掺锑SnO2粉末的制备和表征[J].硅酸盐通报,2001,4:26-30.
    [70]杨建广,唐谟堂,张保平,唐朝波,杨声海.锑掺杂二氧化锡薄膜的导电机理及其理论电导率[J].粉体技术,2004,4:1-5.
    [71] J R Tan, L Z Shen, X S Fu, etal. Preparation of nanometer sized SnO2-xSb2conduetivePigment powders and the hydrolysis behavior of urea[J]. Dyes and Pigments,2004,61(l):31-38.
    [72] C Terrier, J P Chatelon, R Berjoan, J A Roger. Sb-doped SnO2transparent conduetingoxide from the sol-gel dip coating technique[J].Thin Solid Films,1995,263:37-41.
    [73]郭玉忠,王剑华.掺杂SnO2透明导电薄膜电学及光学性能研究[J].无机材料学报,2002,17(1):131-138.
    [74] D E Dyshel, T F Lobunets, A Rogozinskaya. Preparation technology and properties ofpowders and fibers-porous structure of powders prepared with heat treatment of gelfrom tin and antimony hydroxide[J]. Powder Metallurgy and Metal Ceramic,2001,40:1-7.
    [75] D J Smith, A Bursill, G J Wood. High resolution electron microscopic study of TinDioxide crystals[J]. J Solid State Chem,1983,50:51-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700