用户名: 密码: 验证码:
多层陶瓷电容器(MLCC)端电极用超细铜粉的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制、形貌控制和分散状况是多层陶瓷电容器(MLCC)端电极用超细铜粉制备的研究重点。本研究采用两步液相还原法制备超细铜粉,研究包括两个部分:两步加肼法制备超细铜粉和晶种长大法制备超细铜粉。超细铜粉样品采用扫描电子显微镜(SEM)、X射线衍射(XRD)、热重分析(TGA)表征其性质。
     两步加肼法成功地制备了平均粒径在1.4~2.7μm的球形超细铜粉。考察了葡萄糖预还原、反应温、水合肼添加方式与添加量以及添加剂聚乙烯吡咯烷酮(PVP)的用量等因素对超细铜粉粒和形貌的影响。实验结果表明,葡萄糖预还原和分步添加水合肼均有利于超细铜粉的均匀长大;改变两步水合肼添加量的比例能在一定程上调控铜粉的粒径;适量PVP能有效防止超细铜粉粒子的团聚。根据实验结果建议采用的最佳工艺条件是:反应温84℃下,分步添加水合肼,前后两步水合肼添加量的比例=1:5,PVP的添加比例为CuSO_4·5H_2O/PVP=50(质量比)。
     采用晶种长大法制得了平均粒径在2.2~3.1μm的超细铜粉,实验表明铜粉能在晶种的基础上显著长大(晶种的平均粒径为1.5μm)。实验考察了水合肼的用量、晶种用量以及反应温等因素对超细铜粉粒、粒分布的影响。实验结果表明,水合肼的用量和反应温对Cu_2O的还原程有显著影响,适宜的水合肼用量为Cu_2O/肼=1.5(质量比),反应的适宜温为60℃;通过改变晶种的用量能有效控制超细铜粉的粒径,在适当的晶种用量下可以得到平均粒径在2.2~2.7μm之间的超细铜粉。
The main technical problems of ultrafine copper powders for MLCCare particle size controlling, morphology controlling and dispersibility. Inthis work, ultrafine copper powders were prepared by two stepsreduction process of liquid phase. And the research includes two parts:preparation of copper powders by two steps hydrazine hydrate addition:preparation of copper powder by crystal species generation. The copperparticles synthesized were characterized by SEM、XRD and TGA.
     Spherical ultrafine copper powders with average particle size of1.4~2.7μm have been synthesized by two steps hydrazine hydrateaddition. The effects of glucose pre-reduction, reaction temperature,addition methods and amounts of hydrazine hydrate, and additionamount of PVP on particle size and morphology of copper powders wereinvestigated. Experiments showed that glucose pre-reduction and step bystep hydrazine hydrate addition were favorable for uniform growth ofultrafine copper powders. Changing amount of hydrazine hydrate addedin each step could control copper powders particle size in a certain extent.Appropriate amount of PVP could effectively prevent ultrafine copperpowders from agglomerating. Experiments showed that the optimμmconditions were: the reaction temperature 84℃, ratio of hydrazinehydrate amout added by the first step to the amount by the second step:1 to 5, and the proportion of PVP to CuSO_4·5H_2O 1 to 50 (mass ratio).
     Ultrafine copper powders with average particle size of 2.2~3.1μmhave been synthesized by crystal seed generation. It was found thatcopper powders could obviously grow based on crystal seed (averageparticle size 1.5μm of crystal seed). The effects of amount of hydrazinehydrate and crystal seed, reaction temperature on particle size andparticle size distribution of copper powders were investigated.Experiments showed that the reduction extent of Cu_2O were influencedremarkably by amount of hydrazine hydrate and reaction temperature.The proper proportion of Cu_2O to hydrazine hydrate was 1.5 to 1 (massratio), the reaction temperature 60℃, the particle size of ultrafine copper powders could be effectively controlled by changing the amountof crystal seed. Ultrafine copper powders with average particle size in2.2~2.7μm were obtained by adding proper amount of the crystal seed.
引文
[1] 章士嬴,鲁圣国,李标荣,等.片式元件产业的发展前景[J].电子科技导报,1996,8:2-4.
    [2] 毛祖佑,田连城,张吉林,等.纳米高性能介质陶瓷材料及大容量MLC[A].四川省纳米材料应用及产业化研讨会[C],2001,8.
    [3] 戴富贵.片式陶瓷电容器技术的新进展[J].电子元件与料,1994,10:11-14
    [4] 向勇.片式高压多层瓷介电容器最新进展[J].电子元件与材料1994,10:5-10
    [5] 向勇.王振平.生产技术发展概述[J].电子元件与材料,1995,8:10-13
    [6] 王文生.多层陶瓷电容器Ni内电极研究进展[J].电子元件与材料,1994,2:7-11
    [7] 李标荣,丁爱军.MLCC规模生产工艺的新进展[J].电子元件与材料,1995,10:10-15
    [8] 李怀新.MLCC端电极热冲击失效机理探讨[J].电子元件与材料,1994,2:59-60
    [9] 周轼.片式元件的破裂原因及防止对策[J].电子工艺技术,1998,19(4):142-143
    [10] Hiroshi K, YouichiM, Hirokazu C. Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives[J]. Japanese journal of applied physics, 2003, 42: 1-15.
    [11] 向勇.新型片式元器件在通信领域中的应用和发展[J].半导体杂志,2000,25(2):37-42.
    [12] 刘涌.新型大电容陶瓷片电容器[J].电子产品可靠性与环境试验,1995,4:58.
    [13] 周少荣,吴浩,陈锦清.WTO与中国的片式元器件产业[C].常德:中国电子学会第十二届电子元件学术年会论文集,2002.10.
    [14] 《有色金属冶金》编辑委员会.有色金属冶金/中国冶金百科全书[M].北京:冶金工业出版社,1999:782-783.
    [15] 尾崎义治,贺集诚一郎,等.超微颗粒导论[M].武汉:武汉工业大学出版社,1991:79—153.
    [16] 饭岛澄男.特集超微粒子[J].日本科学技术,1984,25:227—228.
    [17] Fuchita E, Oda M, Kashu S. Proc 7th Intem Confon Vacuμm Metallurgy[C]. 1982: 973.
    [18] 林主税.[P].特许公报793472,1975.
    [19] 真空蒸着法薄膜形成构造解说[A].金原,藤原.应用物理学选书.薄膜[C].裳华房.1980:42.
    [20] Chen Zuyao, Chen Bo, Qian Yitao. Preparation of Ultrafine Metal Partectes by Combined Methodγ2ray Radiation by Drothemal Crystallization[J]. Acta Metallurgica Sinica, 1992, (5): 407—410.
    [21] 陈震.撞击流反应2沉淀法制纳米铜粉[J].武汉化工学院学报,2004,(3):1—3.
    [22] 何峰.制备超细金属粉末的新型电解法[J].粉末冶金技术,2001,19(2):80—82.
    [23] 王菊香,赵询.超声电解法制备超细金属粉的研究[J].材料科学与工程,2000,18(4):70—74.
    [24] 比嘉知藏.[P].特许公报,昭23721683.
    [25] 刘志杰,赵斌,张宗涛.以抗坏血酸为还原剂的超细铜粉的制备及其热稳定性[J].华东理工大学学报,1996,22(5):548—553.
    [26] 廖戎.以甲醛为还原剂制备超细铜粉的研究[J].成都理工大学学报,2003,30 (4):417—421.
    [27] 张志梅,韩喜江,孙森窒.纳米级铜粉的制备[J].精细化工,2000,17(2):69—71
    [28] Zhao Bin, Liu Zhijie, Zhang Zongtao. Improvement of Oxidation Resistance of Ultrafme Copper Powders by Phosphating Treatment[J]. Journal of Chemistry, 1997,30 (1): 157—160.
    [29] Lisicecki I, Billoudet F, Pilemi M P. Syntheses of Copper Nanopartcles in Gelified Micromudsion and in Reverse Micelles[J]. J Mol Liq, 1997, 72 (1): 251—261.
    [30] 吴秀华,赵斌.直接还原法制备超细铜银双金属粉及性能研究[J].无机化学学报,2002,18(6):597-601.
    [31] 高保娇,高建峰,蒋红梅,等.微米级铜—银双金属粉镀层结构及其抗氧化性[J].物理化学学报,2000,16(4):366-369.
    [32] 蒋红梅.铜-银双金属粉的制备与测定分析[J].湖南农业大学学报,2001,27(5):404-406.
    [33] 秦效慈,余尚银.表面镀覆技术—化学镀的进展[J].化学通报,1996,(8):30-35.
    [34] 徐,滕毅,徐铭熙.硅烷偶联剂应用现状及金属表面处理新应用[J].表面 技术,2001,30(3):48-52.
    [35] Murakame,Ri-ichi,Tanaka. Fundamental Characteristics of Shielding Effectiveness for Electromagnetic Wave of Plastic Composite Oriented Fine Copper Wire[J]. Neppon kikai gakkai ronbunshu,A-hen. 2000, 66(442): 291-297.
    [36] Cheng KB, Ramakrishan S, Lee KC. Electrostatic Discharge Properties of Knitted Copper Wire/Glass Fibric Reinforced Polypropylene composites [J]. Polymer Composites, 2001,22(2): 185-196.
    [37] 佐野和司,江原厚志,岩本康博,三好宏昌,等.日本公开特许公报特开,(P2001—240904A).2001—09—04
    [38] Amit Sinha, B.P.Sharma. Preparation of copper powder by glycerol process[J]. Materials Research Bulletin, 2002,37: 15
    [39] 胡黎明,古宏晨,李春忠.化学工程的前沿——超细粉末制备[J].化工进展,1996,(2):1
    [40] 肖松文.湿法锑白的结构形貌控制机理及制备新工艺(长沙:中南工业大学博士论文):1997,10
    [41] 周祖康,顾惕人,马季铭.胶体化学基础.北京大学出版社,1996
    [42] 沈钟,王果庭.胶体与表面化学.化学工业出版社,1997
    [43] Sugimoto T. Preparation ofmono-dispersed colloidal particles. Adv. Colloidal & Interface Sci., 1987, 12(28): 65
    [44] 丁绪淮,谈道.工业结晶,高等教育出版社,1989
    [45] Randolph A.D., Larson M.A. Theory of particulate process,2nd Edition[C]. 1988 by Academic Press, INC.
    [46] 李继光,孙旭东,茹红强等.湿化学法合成单分散陶瓷超微粉体的基本原理[J].功能材料,1997,28(4):333
    [47] Rawlings J. B, Miller S .M, and Witkowski W.R. Model identification and control solution crystallization processes: a review[J]. Ind. Eng. Chem. Res., 1993,32(7): 1275
    [48] 张克从,张乐惠.晶体长大科学与技术.科学出版社,1996
    [49] 张济忠.分形.清华大学出版社,1995
    [50] Egon Matijevic. Mono-dispersed inorganic colloids: achievements and problems[J]. Pure & Appl. Chem, 1992, 64(11): 1703
    [51] Egon Matijevic. Colloid science of ceramic powders[J]. Pure & Appl. Chem, 1988, 60(10): 1479
    [52] Stanka Kratohvil and Egon Matijevic. Preparation of copper compounds of different compositions and particle morphologies[J]. Mater.Res.,1991,6(4): 766
    [53] Egon Matijevic.The world of fine particles[J]. Chemtech March,1991
    [54] 黄凯,可控缓释沉淀.热分解法制备超细氧化镍粉末的粒与形貌控制研究(长沙:中南工业大学博士论文):2003,10
    [55] 黄凯,郭学益,张多默.超细粉末湿法制备过程中粒子粒和形貌控制的基础理论[J].粉末冶金材料科学与工程,2005,6:25
    [56] 祖庸,刘超锋,李晓娥等.均匀沉淀法合成纳米氧化锌[J].现代化工,1997(9):33
    [57] 胡晓力,尹虹,胡晓洪.用均匀沉淀法制备纳米Ti02粉体[J].中国陶瓷,1997,33(4):5
    [58] 张近.均匀沉淀法制备纳米氧化镁的研究[J].功能材料,1999,30(2):193
    [59] 张明月,廖列文.均匀沉淀法制备纳米氧化物研究进展[J].化工装备技术,1999,30(2):193
    [60] 卫志贤,刘荣杰,郑岚,等.均匀沉淀法制备纳米氧化物工艺分析[J].西北大学学报(自然科学版),1998,28(5):407
    [61] 古宏晨,胡黎明,陈军等.超细a-FeOOH制备过程研究Ⅰ.制备工艺[J].华东化工学院学报,1992,18(4):467
    [62] 古宏晨,陈军,郑柏存,等.超细a-FeOOH制备过程研究Ⅱ.晶体生成与长大机理[J].华东化工学院学报,1992,18(4):472
    [63] M yung Jin Kim and Egon Matijevic. Preparation and characterization of uniform sub-micrometer metal niobate particles.I.Lead niobate [J]. Mater. Res., 1991, 6(4): 840
    [64] 古宏晨,胡黎明,陈敏恒等.超细Fe(OH)2悬浮液氧化反应中氧传递速率[J].华东化工学院学报,1992,18(4):479
    [65] Kajiyama K, Nakamura T. Hydrothermal synthesis of B-FeO(OH) rod-like particles with uniform size distribution [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000, 163(2-3): 301
    [66] Lu C.H, Yeh C.H. Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder[J]. Ceram Intemational, 2000, 26(4): 351
    [67] Zabicky J, Zingerman D, Shneck R, et al. Properties of nanostructured Magnesiμm metatitanate prepared by the sol-gel technique[J]. Nanostructured Matedlas, 1996, 7(5): 527
    [68] Lu C.H, Tsai C.C. A new sol-gel route using inorganic salts for synthesizing bariμm magnesiμm tantalite ceramics[J]. Mater.Let, 1997, 31(3-6): 271
    [69] Purohit R.D, Saha S. Synthesis of magnesiμm dititanate by citrate gel route and its characterization[J]. Ceram.International, 1999, 25(5): 475
    [70] Ding X.Z, Liu X.H. Synthesis and microstructure control ofnano-crystalline titania powders via a sol-gel process[J]. Mater.Sci. Eng:A. 1997, 224(1-2): 210
    [71] Sugimoto T., Shimotsμma Y and Itoh H. Synthesis of uniform cobalt ferrite particles from a highly condensed suspension of B-Fe00H and B-Co(OH)2 particles[J]. Powder Tech., 1998, 96(2): 85
    [72] Adair J.H., Suvaci E. Template control growth[J]. Current Opinion in Colloids and Interface Sci., 2000, 5(1-2): 160
    [73] Antonietti M. Surfactants for novel templating applications[J]. Current Opinion in Colloids and Interface Sci., 2001, 6(3): 244
    [74] 成国祥,沈锋,张仁柏,等.反向胶束微反应器及其制备纳米微粒的研究进展[J].化学通报,1997,3:14
    [75] 沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报,1995,11:6
    [76] 郭永,巩雄,杨宏微秀.纳米微粒的制备方法及其进展[J].化学通报,1996,3:25
    [77] Egon Matijevic. Preparation and properties of uniform size colloids.[J]. Chemistry of Materials.1993, 5(4): 412-426
    [78] Sugimoto,Tadao. Preparation of monodispersed colloidal particles[J]. Advances in Colloid and Interface Science,1987,28(1): 65-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700