用户名: 密码: 验证码:
仪器观测时期中国温变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用目前能够得到的最完整的中国地面气温器测资料,在对资料进行审核、订正和插补的基础上,采用新的平均气温统计方法和面积加权平均方法重新建立并延长了近百年中国温序列。对于中国近百年来的温变化趋势、变化周期以及突变特征等进行了详细的分析和探讨。并预估了未来的气候变化趋势。由于历史原因,1950年以前的温资料存在缺、错和观测规范不统一等多方面的问题。针对这些问题,本研究首先完成了以下几项工作:
     1.采用年值判别法、三项温判别法和三倍标准差判别法对资料进行了质量控制。得到了有较高质量的温资料集。在此基础上,又通过筛选参考站,利用差值订正法对缺测数据进行了插补并对部分序列进行了延长。
     2.在对不同平均气温统计方法及其影响进行分析之后,本文采用最高、最低气温求取平均气温,从而明显改善了中国地面气温序列的均一性和整体质量。
     3.对全国平均温序列的代表性进行了逐年代分析,结果显示:在19世纪70至90年代,全国平均序列大约能反映半个中国的情况;自20世纪初期以后,序列已有了一定的可靠性;而从1921年开始就具有了比较大的可靠性。
     本文的研究结果表明:自1873年以来,中国气候呈显著的增暖趋势,其中年平均气温大约上升了0.96℃,年平均最高、最低气温分别上升约1.20℃和0.70℃;20世纪初以来平均气温升高约0.80℃,1951年以来升高约1.13℃。从温场的时空结构看,20年代后期至40年代和80年代中期之后存在两次明显的暖期,但两者有明显的差异。前者的增暖不具有全国性,其增暖中心主要位于30o~40oN之间且中西部偏暖范围大于东部地区。后者的增暖首先开始于35oN以北区域,90年代中期后扩展至全国。其增暖是全国性的,但最强的增暖区主要分布于34oN以北区域。此外,在50年代中期至80年代中期,冷暖转换比较频繁,而且常常是全国性变化。
     中国温变化趋势存在明显的区域性差异。近55年来,增温趋势最显著的区域主要分布在34oN以北的大部分地区,青藏高原的增温也相对较快;西南地区增温不明显,南方其它地区的增温幅较小。最高、最低气温变化趋势的分布与平均气温有一定相似性,但全国大多数地区的最低气温增温速率显著高于最高气温。而且南方地区的最高气温变化趋势不明显。就全国平均而言,近55年来最低气温的变化幅大于最高气温,表明夜间的气温变化在平均温变化中起了主要作用。而最低气温在50~60年代和80年代后分别有较大幅的偏低和偏高导致其增温速率远远高于最高气温。此外,在70年代中后期全球大气环流有一次明显的调整,在调整前气温日较差相对偏大,但在调整后气温日较差相对变小。
     与全球和半球比较,中国平均温的总体变化趋势及波动特征与全球或北半球相当一致,但也存在着两点明显的差异。其一是中国温的波动幅大于北半球同期的变化;其二是中国存在两次非常显著的增暖期,一次发生于20世纪30~40年代,更强的一次发生于80年代之后。虽然全球和半球的第二次增暖期非常强,但第一次增暖期显然要弱得多。1873年以来全球平均气温升高约0.72℃,同期中国平均气温升高0.96℃,比全球略高0.24℃。但中国平均气温上升幅并非始终高于全球平均。以20世纪20年代以前的计算结果,中国平均气温增温幅与全球的比值大约在78%~133%之间。其中部分结果相当接近,如1890~2005年中国增温0.78℃,与同期北半球完全一致,比全球平均也仅高0.03℃。分析结果表明,当时间尺较短时,中国与全球变化趋势的差异较大。但若从较长尺的长期变化趋势角看,两者的差异则趋于减小。
     本研究应用小波分析技术和移动T检验方法分析中国近百年温序列的多时间尺特征以及周期和突变特征。结果表明,近百年来中国温变化存在着显著的64~71年左右的周期振荡,它的振幅最强并在1926~2005年时段表现得更加明显。这种特征与东亚和全球的气候振荡特征基本一致。除了主要周期,在1873~1925年时段,34~40年左右尺的振荡表现也相当明显。此外,还存在着其它多种尺的振荡,但周期性变化大都仅出现于一些较短的时段。这些较短尺的振荡造成了温序列的短期波动。
     突变分析表明,近百年中国温变化经历了三次时间尺为20~30年左右的突变,分别出现于1925~1932年、1986~1988年(冷到暖)和1950~1956年(暖到冷)。另有两次15年左右尺的突变,即1888~1889年(冷到暖)和1905~1907年(暖到冷)。1986年由冷到暖的突变过程发生变化最大的区域主要在北方,尽管南方也由冷转暖,但其升温幅明显弱于前者。这表明北方地区的强增暖在这次突变中起了主要作用。
     周期分析表明,当前正处于振荡周期正位相的中心位置附近,未来一段时期气温还会继续维持在偏高位置,但到2020~2025年前后有可能出现由暖到冷的突变。不过这种突变只表示气候振荡由正位相转变到负位相。如考虑气候继续变暖的影响,其可能的结果是在一个更高平均值水平上的振荡,而不是简单地回到原来的起点。
     展望未来,在提高早期序列的代表性;分析并估计城市热岛效应等环境因素对温变化的影响;以及探讨中国气候变化的可能原因等方面还有许多工作有待今后进一步深入研究。
In this paper, based on the instrumental surface air temperature data in China as many observation stations as possible, which have been looked though, corrected and made interpolation, China’s surface air temperature time series in the recent 100 years and more have been re-calculated and extended by adopting new statistical method for calculating mean temperature and area weighted average method. The temperature change trends, periods as well as abrupt changes in the recent 100 years and more in China are analyzed and discussed. And the future temperature change trend has also estimated.
     Because of past history, there are some problems as gaps of observation, mistakes and an observation norm without unification etc. in the data before 1950. Being aimed at these problems, the works have been finished as follows: firstly, the data set used in this paper have been quality-controlled by means of the comparison of annual mean values, the relationship between three (mean, maximum and minimum) temperatures and triplication standard error. Consequently, the quality-higher data set has been obtained. Based on the more reliable data set, the data series minus some observations have inserted and partly prolonged by adopting difference correction method on possible condition. Secondly, after the different methods of calculating mean temperature and its influences on the results are analyzed and discussed, adopting the mean temperature derived from maximum and minimum temperature, accordingly, the homogeneity and quality of China’s surface air temperature time series are markedly improved. Thirdly, the representativeness of China’s surface air temperature time series is analyzed decade after decade. The results display that the series can reflect the climate change of approximately half China during 1870s–1890s; From the early 20th century on, the series has already had definite reliability; since 1921, it has had higher reliability.
     The results of this research show that since 1873, the climate in China has shown an evident warming trend. The annual mean temperature has risen by about 0.96℃. The annual mean maximum and minimum temperatures have respectively risen by about 1.20℃and 0.70℃. Since the early 20th century, the annual mean temperature has approximately risen by 0.80℃; Since 1951, it has risen by about 1.13℃. According to the analysis for the temperature fields, there are two remarkable warm periods during the late 1920s–1940s and 1980s in China, but with obvious differences between them. The first warming is not countrywide, in which its center mainly lie in the region between 30oN and 40oN and the warming range in the central and western portions is more than that in the eastern part of China. The second warming occurred firstly to the north region of 35oN, and afterward extended all but to the whole of China after the middle 1990s. This warming is countrywide, but then the strongest warming region is to the north of 34oN. Besides, the climate alternated more frequently between warm and cold during the middle 1950s–the middle 1980s, which is generally a countrywide change.
     The temperature change trends have obviously regional differences in China. In the recent 55 years, the most remarkable warming regions lie mainly to the north of 34oN, and the warming in Qinghai-Xizang plateau is also obvious; But then the warming in the southwest is not obvious, and the warming extent in the rest of the south is less. The distributions of maximum and minimum temperature change trends are a certain extent similar to that of the mean temperature. But the warming rates of minimum temperatures are much greater than those of maximum temperatures in most of the regions in China. And the maximum temperature change trend is not evident in the south. As far as all country average is concerned, the change extent of the minimum temperature is greater than that of the maximum temperature in the recent 55 years, which shows that the temperature change during the nighttime hours plays major role in the change of the mean temperature. As a result of the greater extent of low in 1950s–1960s and of high after 1980s, the warming rate of minimum temperature is much more than that of maximum temperature. Besides, a remarkable adjustment of the atmosphere general circulation occurred in the middle and late 1970s. The average daily range before the adjustment is relatively greater. However the one after the adjustment is relatively less.
     The change trend and fluctuation feature of the mean temperature in China are to a great extent consistent with those of global and hemispherical mean temperatures, but there are also some differences. First, the fluctuation extent of the mean temperature in China is greater than one of northern hemisphere in the corresponding period. Second, there are two highly notable warm periods in China, which occurred respectively during 1930s–1940s and after 1980s. Although the second warm periods of the globe and hemispheres are very strong, their first warm periods are apparently weaker. The global average surface air temperature has increased by 0.72℃since 1873, and the China’s one of the same term has increased by 0.96℃, which is higher by 0.24℃than that of the globe. But the increased extent of China’s average temperature is not all the time higher than that of the globe. According to the results that the beginning years are before 1920s, the ratios between both are about 78%–133%. Some of them are rather adjacent, for example, the increased extent of 0.78℃during 1890–2005 in China is equal to one of northern hemisphere, and merely higher by 0.03℃than one of the globe. The analysis results show that while the time scale is shorter, there is greater difference between the temperature change trends of China and globe. However, from the point of view of the long-term change trend with longer timescale, their difference tends to diminish.
     Using wavelet analysis technique and moving-t test method, the multi-time scale character as well as the periods and the abrupt change points for the air temperature change in the last 133 years in China are analyzed. The results indicate that there is the oscillation period 64–71 years for China’s air temperature changes in the last 100 years and more, which has the strongest extent and plays major role during 1926–2005. It is basically consistent with the oscillation features of the climate in East Asia and the globe. In addition to the major period, the oscillation period 34–40 years is rather obvious during 1873–1925. And there are a number of scale periods, but they only occur in some shorter periods of time. These shorter time-scale oscillations bring forth the short-term fluctuations of the air temperature in China.
     The abrupt change analysis shows that the air temperature changes experienced three abrupt changes with the timescale around 20–30 years in the last 133 years in China, which occurred respectively in 1925–1932, 1986–1988 (cold–warm) and 1950–1956 (warm–cold). There are other two abrupt changes with the timescale around 15 years, occurred respectively in 1888–1889 (cold–warm) and 1905–1907 (warm–cold). The strongest air temperature change in the transitional process from cold to warm in 1986 occurred basically in the north of China. Although the climate in the south of China changes from cold to warm at the same time, the warming extent is weaker than that of the former. This shows that the strong warming in the north of China plays main role in the abrupt change.
     The period analysis displays that the current climate is about the center of the positive phase of the oscillation period, and in the future period of time the air temperature will still continue in the higher position. However, the abrupt change from warm to cold is likely to occur approximately in 2020–2025. But then this abrupt change express only that the position of the climate oscillation change from the positive phase to the negative phase. If considering the influences of the continuous warming of climate on it, it will be the possible result that the air temperature oscillates on a higher level of average value, and does not simply return to the primary jumping-off point.
     Looking to the future, some further studies, such as advancing the representativeness of the early series, analyzing and estimating the impacts of the environmental factors like urban heat island effect etc. on the temperature changes as well as discussing the possible causes of the climate change in China and so on, should be planed and made.
引文
[1] IPCC. Climate Change : The IPCC Scientific Assessment. J. T. Houghton, G. J. Jenkins and J. J. Ephraunms (eds.), Cambridge University Press, UK, 1990, 265pp
    [2] IPCC. Climate Change 1995: The Science of Climate Change. J. T. Houghton, L. G. Meira Filho, B.A. Callander, N. Harris, A.Kattenberg and K.Maskell (eds.). Cambridge University Press, Cambridge , UK., 1996, 572pp
    [3] IPCC. Climate Change 2001: The Scientific Basis. J. T. Houghton, Ding. Y., D.J. Griggs, et al. (eds.). Cambridge University Press, Cambridge , UK. 881pp
    [4] 潘家华. 后京都国际气候协定的谈判趋势与对策思考. 气候变化研究进展,2005,1(1):10~15
    [5] 苏伟,孙国顺,赵军. 《京都议定书》第二承诺期谈判艰难迈出第一步. 气候变化研究进展,2006,2(4):202~203
    [6] 丁一汇,孙颖. 国际气候变化研究新进展. 气候变化研究进展,2006,2(4):161~167
    [7] Willett H C. Temperature trends in the past century. Centenary Proceedings of the Royal Meteorological Society, 1950, 195–206
    [8] Mitchell, J M. Recent secular changes of global temperature. Ann. N.Y. Acad. Sci., 1961, 95: 235–250
    [9] Borzenkova I L., K Y Vinnikov, L P Spirina, D L Stekhnovskii. Change in the air temperature of the Northern Hemisphere for the period 1881–1975, Meteor. Gidrol. 1976, 7: 27–35
    [10] 王绍武. 温室效应及其对气候影响的最新研究. 气象,1990,16(10):3~9
    [11] Vinnikov K Ya., Groisman P Ya., Lugina K M. Empirical data on contemporary global climate changes (temperature and precipitation). J. Climate, 1990, 3: 662–667
    [12] Jones P D., T M L Wigley, P M Kelly. Variations in surface air temperature : part 1, Northern Hemisphere, 1881–1980. Mon. Wea. Rev., 1982, 110: 59–72
    [13] Jones P D., P M Kelly, T M L Wigley. Northern Hemisphere surface air temperature Variations : 1851–1984. Jour. Clim. Appl. Meteor., 1986, 25: 161–179
    [14] Jones P D., S C B Raper, T M L Wigley. Southern Hemisphere surface airtemperature Variations : 1851–1984. Jour. Clim. Appl. Meteor., 1986, 25: 1213–1230
    [15] Jones. P. D., Hemispheric surface air temperature variations: recent trends and an update to 1987. J. Climate, 1988, 1: 654–660
    [16] Hansen J., S. Lebedeff. Global trends of measured surface air temperature. J. Geophy. Res. 1987, 92: 13345–13372
    [17] Lindzen R.S., Some coolness concerning global warming. Bul. Amer. Metero. Soc., 1990, 71: 288–299
    [18] Lindzen R.S. (吕越华节译自 BAMS,1990,71(3) ). 对全球变暖的一些看法. 气象科技, 1990,5:44~48
    [19] 张励坚摘译自 Agricultural and Forest Meteorology(1989, 47: 349–371). 气象科技, 1991,1:73~83
    [20] Jones P D. Hemispheric surface air temperature variations:a reanalysis and an update to 1993. J. Climate, 1994, 7: 1794–1802
    [21] Jones P. D., Moberg A. Hemispheric and large–scale surface air temperature variations: An entensive revision and update to 2001. J. Climate, 2003, 16: 206–223
    [22] Hansen J, Ruedy R, Glascoe J, et al. GISS analysis of surface temperature change. J. Geophys. Res., 1999, 104(D24): 30997–31022
    [23] Hansen J, Ruedy R, Sato M, et al. A closer look at United States and global surface temperature change. J. Geophys. Res., 2001, 106: 23947–23963
    [24] Peterson T C, Vose R S. An overview of the global historical climatology network temperature database. Bull. Amer. Meteor. Soc., 1997, 78: 2837–2849
    [25] Smith T M, Reynolds R W. A global merged land and sea surface temperature reconstruction based on historical observations (1880–1997). J. Climate, 2005, 18: 2021–2036
    [26] 叶笃正,曾庆存,郭裕富主编. 当代气候研究. 北京:气象出版社,1991
    [27] 章基嘉,黄荣辉主编. 长期天气预报和日地关系研究. 北京:海洋出版社,1992
    [28] 么枕生主编. 气候学研究——气候与中国气候问题. 北京:气象出版社,1993
    [29] 丁一汇主编. 中国地气候变化与气候影响研究. 北京:气象出版社,1997
    [30] 王绍武主编. 现代气候学研究进展. 北京:气象出版社,2001
    [31] 秦大河总主编. 中国西部环境演变评估. 北京:科学出版社,2002
    [32] 秦大河,丁一汇,苏纪兰主编. 中国气候与环境演变. 北京:科学出版社,2005
    [33] 竺可桢. 中国近五千年来气候变迁的初步研究. 中国科学,1973, 2:168~189
    [34] 涂长望. 关于二十世纪气候变暖的问题. 见:陶诗言主编,涂长望文集,北京:气象出版社, 345~347
    [35] 张先恭,李小泉. 本世纪我国气温变化的某些特征. 气象学报,1982, 40 (2):198~208
    [36] 屠其璞. 近百年来我国气温变化的趋势和周期. 南京气象学院学报, 1984, 2: 151~162
    [37] 王绍武. 近百年我国及全球气温变化趋势. 气象, 1990, 16 (2): 11~15
    [38] 王绍武,叶瑾琳,龚道,等. 近百年中国年气温序列的建立. 应用气象学报, 1998, 9 (4): 392~401
    [39] 王绍武、董光荣. 中国西部环境特征及其演变. 秦大河主编. 中国西部环境演变评估(第一卷). 北京:科学出版社, 2002, 29~70
    [40] 唐国利,林学椿. 1921~1990 年我国气温序列及变化趋势. 气象,1992, 18 (7):3~6
    [41] 丁一汇,戴晓苏. 中国近百年来的温变化. 气象, 1994, 20 (12): 19~26
    [42] 施 能, 陈家其,屠其璞. 中国近 100 年来 4 个年代际的气候变化特征. 气象学报, 1995, 53 (4): 431~439
    [43] 林学椿,于淑秋,唐国利. 中国近百年温序列. 大气科学, 1995, 19 (5): 525~534
    [44] 唐国利,任国玉. 近百年中国地表气温变化趋势的再分析. 气候与环境研究,2005, 10 (4):791~798
    [45] 任国玉,周薇. 辽东半岛本世纪气温变化的初步研究. 气象学报,1994,52(4):493~498
    [46] 丁裕国,金莲姬,江志红. 近百年江苏中部和南部地区气温趋势及其变化率估计. 气象科学,1998,18(3):248~255
    [47] 涂方旭,李耀先,覃峥嵘,等. 广西气温的气候变化分析. 广西气象,2000,21(3):33~40
    [48] 徐家良. 近百年来上海两次增暖期的特征对比及其成因. 地理学报,2000,55(4):501~506
    [49] 张小丽, 张儒林. 二十世纪深圳气温变化特征及严重冷暖冬事件. 热带气象学报,2001,17(3):293~300
    [50] 郑祚芳,祁文,张秀丽. 武汉市近百年气温变化特征. 气象,2002,28(7):18~37
    [51] 林学椿,于淑秋. 近 40 年我国气候趋势. 气象,1990,16(10):16~21
    [52] 陈隆勋,邵永宁,张清芬,等. 近四十年我国气候变化的初步分析. 应用气象学报,1991,2(2):164~173
    [53] 唐国利. 我国气温标准序列的趋势变化分析. 见:气候变化规律及其数值模拟研究论文(第一集). 北京:气象出版社,1996,196~199
    [54] 陈隆勋,朱文琴,王文,等. 中国近 45 年来气候变化的研究. 气象学报,1998,56(3):257~271
    [55] 任国玉,郭军,徐铭志,等. 近五十年来中国地面气候变化基本特征. 气象学报,2005,63(6):942~956
    [56] 吴增祥. 中国近代气象观测特点分析. 天气与气候(国家气象中心),2003,2(2):178~183
    [57] 中央气象局和中国科学院地球物理研究所联合资料室. 北京气象资料,1954,12
    [58] 吴增祥. 中国近代气象台站史略. 中国近代气象史资料(续编),1~15
    [59] 中央气象局和中国科学院地球物理研究所联合资料室. 中国气温资料. 1954,1~862
    [60] Jones P D, Hulme M. Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int. J. Climatol, 1996, 16: 361–377
    [61] 唐国利,任国玉. 近百年中国地表气温变化趋势的再分析. 气候与环境研究,2005, 10(4):792~798
    [62] A.Austin Miller. Climatology. London: Methuen & CO. LTD., 1950, 9
    [63] 叶芝菡,谢元,刘宝元. 日平均气温的两种计算方法比较. 北京师范大学学报(自然科学版),2002,38(3):421~426
    [64] M Dallamico and M Hornsteiner. A simple method for estimating daily and monthly mean temperatures from daily minima and maxima. Int. J. Climatol. 2006, 26: 1929–1936
    [65] 唐国利,丁一汇. 由最高最低气温求算的平均气温对中国年平均气温序列的影响分析. 应用气象学报,2007, 18(1)
    [66] 魏凤英编著. 现代气候统计诊断与预测技术. 北京,气象出版社,1999,43~47
    [67] 翟盘茂,任福民. 中国近四十年最高最低温变化. 气象学报,1997,55(4):418~429
    [68] 江志红,丁裕国. 近百年上海气候变暖过程的再认识——平均温与最低、最高温的对比. 应用气象学报,1999,10(2):151~159
    [69] 林学椿. 70 年代末、80 年代初气候跃变及其影响. 见:王明星主编,东亚季风和中国暴雨,北京:气象出版社,1998,240~249
    [70] 彭加毅,孙照渤,朱伟军. 70 年代末大气环流及中国旱涝分布的突变. 南京气象学院学报,1999,22(3):300~304
    [71] 陈辉,施能,王永波. 北半球 500hpa 高场趋势变化与突变. 热带气象学报,2000,16(3):273~281
    [72] Wang Huijun (王会军). The weakening of the Asian Monsoon Circulation after the End of 1970’s. Advance in Atmospheric Sciences, 2001, 18 (3): 376–386
    [73] 胡增臻,石伟. 子波变换在大气科学中的应用研究. 大气科学,1997,21(1):58~72
    [74] Hengyi Weng, K M Lau. Wavelets period doubling and time-frequency localization with application to organization of convection over the tropical Western Pacific. Journal of the Atmospheric Sciences, 1994, 51(17): 2523–2541
    [75] 戴新刚,丑纪范,朱妹. 甘肃“5.5”黑风暴小波分析,气象,1995,21(2):10~15
    [76] 江剑民,张德二. 对我国东部近千年干湿气候序列的小波分析. 见:符淙斌,严中伟主编,《我国未来 20~50 年,生存环境变化趋势的预测研究》项目论文集(1),全球变化与我国未来的生存环境,北京:气象出版社,1996,45~51
    [77] 邓自旺,尤卫红,林振山. 子波变换在全球气候多时间尺变化分析中的应用. 南京气象学报,1997,20(4):505~510
    [78] 尤卫红,段旭,邓自旺,等. 全球、中国及云南近百年气温变化的层次结构和突变特征. 热带气象学报,1998,14(2):173~180
    [79] 韦志刚,黄荣辉,董文杰. 青藏高原气温和降水的年际和年代际变化. 大气科学,2003,27(2):157~170
    [80] 刘洪滨,邵雪梅,黄磊,等. 青海省海西州德令哈地区近千年来年降水量变化特征分析. 第四纪研究,2005,25(2):176~182
    [81] Gao Xin Quan and Zhang Wen. Nonlinear evolution characteristics of the climate system on the interdecadal-centennial timescale. Chinese physics, 2005, 14(11):2370–2378
    [82] 林振山. 子波气候诊断技术的研究. 北京:气象出版社,1999
    [83] 杨梅学,姚檀栋. 小波气候突变的检测——应用范围及应注意的问题. 海洋地质与第四纪地质,2003,23(4):73~76
    [84] 符淙斌,王强. 气候突变的定义和检测方法. 大气科学,1992,16(4):482~493
    [85] 符淙斌. 气候突变现象的研究. 大气科学,1994,18(3):373~384
    [86] 柳崇健,陶诗言. 副热带高压向北跳跃与突变论. 中国科学(B 辑),1983,26:1065~1074
    [87] 严中伟,季劲钧,叶笃正. 60 年代北半球夏季气候跃变Ⅰ:降水和气温变化. 中国科学(B 辑),1990,(1):97~103
    [88] 李月洪,张正秋. 百年来上海、北京气候突变的初步分析. 气象,1991,17(10):15~20
    [89] 严中伟. 六十年代夏季气温跃变过程的初步分析. 大气科学,1992,16:111~118
    [90] 刘雅芳. 60 年代夏季海平面跃变及其与我国夏季温降水的相关分析. 气象科学,1995,15(1):36~44
    [91] 刘雅芳,董谢琼,王玲玲. 60 年代我国夏季气候跃变及其与海温的相关联系. 南京气象学院学报,1995,18(2):300~306
    [92] 王宇. 本世纪昆明气温异常及其突变分析. 高原气象,1997,16(1):73~80
    [93] 朱乾根,徐建军. 赤道东太平洋海温长期变化中的突变现象及其与全球增温的同步性. 南京气象学院学报,1998,21(3):354~362
    [94] 李崇银,李桂龙. 北大西洋涛动的演变与 20 世纪 60 年代的气候突变. 科学通报,1999,44(16):1765~1769
    [95] 徐建军,朱乾根,周铁汉. 近百年东亚冬季风的突变性和周期性. 应用气象学报,1999,10(1):1~8
    [96] 孙继松,李晓艳,丁德平. 华北地区的季节变化特征与季风. 大气科学,1999,23(4):487~496
    [97] 方之芳,张丽,程彦杰. 北极海冰的气候变化与 20 世纪 90 年代的突变.干旱气象,2005,23(3):1~11
    [98] 刘太中,荣平平,刘式达,等. 气候突变的子波分析. 地球物理学报,1995 38(2):158~162
    [99] 李建平,史久恩. 一百年来全球气候突变的检测与分析. 大气科学,1993,17(增刊):132~140
    [100] 魏凤英,曹鸿兴. 中国、北半球和全球的气温突变分析及其趋势预测研究.大气科学,1995,19(2):141~148
    [101] Goswami B N. The Asian monsoon: Interdecadal variability. In: The Asian monsoon. Ed. By Bin Wang. Proxing Publishing, Chichester, UK. 2006,295–328
    [102] Schlesinger M E and N Ramankutly. An oscillation in the global climate system of period 65–70 years. Nature, 1994, 367: 723–726
    [103] Jones P D, Groisman P Ya, Coughlan M et al. Assessment of urbanization effects in time series of surface air temperature over land. Nature, 1990, 347: 169–172
    [104] 唐国利,丁一汇. 近 44 年南京温变化的特征及其可能原因的分析. 大气科学,2006,30(1):56~68
    [105] 龚道,王绍武. 西伯利亚高压的长期变化及全球变暖可能影响的研究.地理学报,1999,54(2):125~133
    [106] 张人禾,刘晶淼,等. 海洋和陆地过程对中国气候与环境的作用. 见:秦大河,丁一汇,苏纪兰主编,中国气候与环境演变(上卷),北京:科学出版社,2005,319~357
    [107] 李清泉, 丁一汇. 1991~1995 年 El Ni no 事件的特征及其对中国天气气候异常的影响. 气候与环境研究, 1997,2(2):163~177
    [108] 丁一汇,董文杰,何金海,等. 亚洲季风及其与中国气候环境变化的关系. 见:秦大河,丁一汇,苏纪兰主编,中国气候与环境演变(上卷),北京:科学出版社,2005,398~454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700