用户名: 密码: 验证码:
Mg及稀土Nd元素对A380.0铝合金组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要以A380.0铝合金为研究对象,研究Mg元素及稀土Nd元素对A380.0铝合金组织及性能的影响,向合金中加入不同含量的Mg或Nd元素,通过对抗拉强度、硬度以及延伸率的测试,得出Mg及Nd元素的最佳加入量,并且对加入合金元素的A380.0合金进行T6热处理,寻求合适的热处理工艺,并通过XRD.SEM.EDAX分析材料的相组成、微观形态和断口形貌,以进一步分析Mg元素及Nd元素在Al-Si-Cu系铝合金中与各合金元素的交互作用以及其对A380.0铝合金微观形貌和宏观性能的影响。
     实验结果表明:在A380.0铝合金中加入Mg元素后,与基体合金相比,合金的铸态组织得到了一定程度的细化,合金中出现了一定数量的Mg2Si相,该相沿晶界呈不连续状分布。Mg元素在α(Al)中较大的固溶度所引起的固溶强化作用,Mg2Si在基体中的弥散强化作用、热处理强化相的沉淀强化作用以及Mg元素富集于固液界面前沿所造成的成分过冷作用会细化α(Al)二次枝晶臂间距,这些因素综合起来较大程度地提高了基体的力学性能。随Mg含量的增加,合金的抗拉强度和硬度呈现先上升后下降的趋势。当合金中的含Mg量达到0.9%时,抗拉强度达到最大值,为195MPa,与基体合金的抗拉强度175MPa相比,提高了11.43%;Mg含量为1.5%时,硬度最高,为81.9HV,相对基体合金68.4HV提高了19.74%。热处理后各合金的力学性能得到了显著的提高。基体合金经T6处理后,抗拉强度为207 MPa,硬度为86.4HV。随着Mg含量的增加,合金的抗拉强度和硬度在呈现先上升后下降的变化趋势,当Mg含量为0.9%时,抗拉强度达到最大值,为292MPa,比基体合金经同样的热处理工艺提高了41.06%;Mg含量为1.5%时合金的硬度最大,为153HV,比基体合金提高了77.08%。
     在A380.0合金中加入Nd元素后,合金的组织得到了显著的细化,Nd元素还对合金中的共晶Si.Al9FeSi3相,Al3.21 Si0.47相形貌有了显著的改变,使其针片状的形貌改变为短棒状,尖锐的棱角变得较为圆滑,晶界处的化合物分布均匀,这些都降低了原合金中针片状化合物对基体的割裂作用,因此较大幅度地提高了合金的强度和硬度。Nd元素所具有的活泼化学性质和降低表面张力的作用,一方面对合金基体中的针片状共晶硅起到变质作用,改善了这些相在基体中的分布形态;另一方面,其在α(Al)中非常小的固溶度使其富集于固液界面前沿中的液相边界层中,阻碍了Al原子的扩散,其引起的成分过冷作用也细化了晶粒。随Nd含量的增加,合金的抗拉强度和硬度呈现先上升后下降的趋势。当合金中添加0.5%的稀土元素Nd时,合金的抗拉强度和硬度均达到最大值,分别为217MPa和99HV,相比基体合金175MPa和68.4HV,提高了24%和44.74%,随着Nd添加量的进一步增加,其力学性能开始下降。热处理后各合金的力学性能得到了显著的提高,抗拉强度和硬度呈现先上升后下降的变化趋势,当合金中的Nd含量为0.5%时,抗拉强度达到最大值,为301MPa,与A380.0基体的强度207MPa相比,增加了45.4%,合金的硬度此时也最好,为197HV,相对于基体合金86.4HV提高了128%。
A380.0 aluminum alloy is the main subject investigated in this paper, and the influnces of Mg and Nd elements seperately on the microstructures and mechanical properties under as-cast and T6 treatment conditions are studied by means of tensile strength,hardness,and elongation of the specimens.,he appropriate amount of Mg or Nd element is pursued. Phases composition,microstructures and fractography are studied by means of XRD,SEM,EDAX, which is heplful to study the interaction of the constituents in the A380.0 aluminumalloywith Mg or Nd element through the microstructures and macro-properties.
     Results indicate that with the addition of Mg between a certain amount, the phenomenon of grain refinement is obvious, Mg2Si phase is generated and distributed discontinuous in the grain boundary. Solution strengthening of the solid solution of Mg element in theα(Al) matrix,dispersion strengthening of the Mg2Si phase in theα(Al) matrix,precipitation strengthening of the intensified phases which can be under heat treatment,and the decrease of distance between secondary dendritic of the constitutional supercooling function of the enrichment of the Mg element in the interface of the liquid phase,all of these factors dramaticly improve the properties of the matrix alloys jointly. Tensile strength and hardness rise first and attain a peak and then descent according with the increment of Mg element.With the addition of 0.9%(wt)Mg,Tensile strength of the as-cast alloy get to the peak,is 195MPa,improved about 11.43% compared with the A380.0 aluminum alloy; Hardness is 81.9HV with the addition of 1.5% Mg, improved about 19.74% compared with the A380.0 aluminum alloy. After T6 treatment, tensile strength of the alloy is 207 MPa,Hardness is 86.4HV. Tensile strength.and hardness rise first and attain a peak and the descent according with the increment of Mg element,with the amount of 0.9%Mg, tensile strength gets to the peak,is 292MPa,improved about 41.06% compared with the matrix alloy under the same T6 treatment; with the amount of 1.5%Mg,hardness gets to the peak,is 153HV,improved about 77.08% compared with the matrix alloy under the same T6 treatment.
     With the addition of Nd element, not only did the microstructures of the alloys refined dramatically, but also the morphologies of the eutectic Si, Al9FeSi3 and Al3.21Si0.47 changed a lot, the needle and flake-liked phases changed to rod-liked phases, the edge of the intermetallic compounds changed to a round-liked morphology. The grain boundary scattered with the average arranging intermetallic compounds, all of this descend the stress concentration of the needle and flake-liked phases, which also dramatically rise the tensile strength and hardness of the alloy. With the addition of 0.5%Nd, tensile strength and hardness attain a peak of 217MPa and 99HV, which arise about 24% and 44.74% separately compared with A380.0 alloy. Mechanical properties descend with more Nd element. T6 heat tretment also improves mechanical properties dramatically, the trend of tensile strength and hardness of the alloys with the conditions of as-cast and T6 heat treatment remains the same, rise first and attain a peak and after then,a descent arrives.The active chemical property and the reduction function of the surface tension of the Nd element,which act as a modification effect of the eutectic Si,improve the morphology of the phases in the matrix alloys; On the other hand,the low solid solution of Nd element in theα(Al),which makes the element in the interface of the liquid phase,it prevent the diffusion of the Al atom,and all of this makes the refinement of the grain addition with the constitutional supercooling. Tensile strength and hardness rise first and attain a peak and then descent according with the increment of Nd element. With the addition of 0.5%(wt)Nd, tensile strength and hardness attain a peak,about 217MPa and 99HV respetively,improve 24% and 44.74% compared with matrix alloy.With the increment of Nd,the mechanical properties descend. Properties of the alloys improved dramatically after T6 treatment.Tensile strength and hardness rise first and attain a peak and then descent,with the addition of 0.5%Nd, tensile strength and hardness reached a peak about 301MPa and 197HV respectively, improved about 45.4% and 128%.
引文
[1]刘静安,谢水生.铝合金材料的应用与技术开发[M].广州:冶金工业出版社,2004,1:1-7
    [2]潘复生.铝合金及应用[M].北京:化学工业出版社,2002:1-3
    [3]武恭,姚良均,李震夏等.铝及铝合金材料手册[M].北京:科学工业出版社,1994:1-2
    [4]罗启全.铝合金铸造与熔炼[M].广州:广东科技出版社,2002,9:5-7
    [5]黄伯云,李成功,石力开等.中国材料工程大典.第四卷.有色金属材料工程(上)[M].北京:化学工业出版社,2005,8:128-142
    [6]武恭,姚良均,李震夏等.铝及铝合金材料手册[M].北京:科学工业出版社,1994:380-381
    [7]L.Wang,M.Makhlouf and D.Apelian,Aluminum Die CastingAlloys:Alloy composition,microstructure,and properties performance relationships,InternationalMaterialsreviews,1995,Vol.40,No.6,221-238
    [8]F.KLEiN:Giesserei,19-March 1979,66,(6):138-142
    [9]M.Richard:Fonderie,October 1978,(382),281-285 and Flores A.Flores:in Proc16thInt.DieCastingCong.AndExposition,Dertoit,MI,USA,Septemb er-October1991, North American Die Casting Association:293-297
    [10]左秀荣,李立祥,孙海斌等.稀土对铝合金微观组织的影响[J].铸造技术,2008,28(11):1473-1476
    [11]吴炳乾.稀土冶金学[M].湖南:中南工业大学出版社,2001,9:1-4
    [12]于谋,季诚昌,李建国等.稀土镧对铝合金的去氢作用的机理分析[J].铸造技术,2002,23(6):390-392
    [13]肖亚庆,唐桂林.稀土在6063铝合金中存在的形式和对组织性能的影响[J].轻合金加工技术,1996,24(11):33-35
    [14]杨军军,聂乍仁,金头男等.稀土铒在Al-Zn-Mg合金中的存在形式与细化机理[J].中国有色金属学报,2004,14(4):620-627
    [15]孙伟成,张淑荣,侯爱芹等.稀土在铝合金中的行为[M].北京:兵器工业出版社,1992,3:228-298
    [16]罗启全.铝合金的熔炼与铸造[M].广东:广东科技出版社,2002
    [17]樊东黎,潘健生,徐跃明等.中国材料工程大典[M].北京:化学工业出版社,2002,:631-633
    [18]武恭,姚良均,李震夏等.铝及铝合金材料手册[M].北京:科学出版 社,1994:380
    [19]武恭,姚良均,李震夏等.铝及铝合金材料手册[M].北京:科学出版社,1994:80
    [20]吴炳乾.稀土冶金学[M].中南工业大学出版社,2001,9:1-10
    [21]孙伟成,张淑荣,侯爱琴等.稀土在铝合金中的行为[M].北京:兵器工业出版社,1992,3:48-74
    [22]WANG Xu,CHEN Guoqin,LI Bing,etc.Effect of Sc,Zr and Ti on the microstructure and properties of Al alloys with high Mg content[J].RARE METALS:2010,1(24):66-72
    [23]郑志强,熊新根,易荣喜等.稀土元素在ZL101合金中的偏聚状态及对α相生长的影响[J].有色金属,2010,2(62):6-10
    [24]张向宇,熊计,赵国忠等.稀土La对6063铝合金组织与时效性能的影响[J].有色金属,2010,2(62):1-5
    [25]李德荣,何昌国,李润霞等.稀土对Al-Si-Cu-Mg合金组织和性能的影响[J].铸造,2008,8(57):818-823
    [26]王经涛,王海波,许育中等.稀土铝合金的枝晶间距[J].稀有金属材料与工程,1995,2(24):38-43
    [27]李桂荣,王宏明,赵玉涛等.稀土钇对7055铝合金熔炼和凝固过程的作用机制[J].稀有金属材料与工程,2010,1(39):80-85
    [28]张德恩,卢锦德,张晓燕等.稀土元素Ce在新型铸造铝合金中作用的研究[J].湖南科技大学学报(自然科学版),2009,9(24):39-43
    [29]韩剑,戴起勋,李桂荣等.稀土钇对7055铝合金铸态组织的影响[J].材料工程,2009,4:67-71
    [30]Junsheng Wang,Peter D.Lee,Richard W.Hamilton,et al.The kinetics of Fe-rich intermetallic formation in aluminum alloys:In situ observation[J].ScienceDircet,2008,10(19):44-48
    [31]胡德林.金属学原理[M].西安:西北工业大学出版社,127
    [32]L.F.蒙多尔福.铝合金的组织与性能[M].北京:冶金工业出版社,690
    [33]孙常明,史志铭,李志芳.利用富铈混合稀土改善工业纯铝中富铁相形貌的研究[J],中国稀土学报,2007,25(3):318-323
    [34]李慧中,张新明,陈明安等.钇对2519铝合金铸态组织的影响[J].中南大学学报(自然科学版),2005,36(4):545-550
    [35]高爱华,张建新,谢玉芬.微量Sc对6063铝合金组织性能的影响[J].热加工工艺,2006,35(10):1-3
    [36]阮海琼,金头男,杨军军等.含稀土Er的Al-Zn-Mg合金的组织与性能 [J].北京工业大学学报,2004,30(4):483-488
    [37]林清华,王佳夫,陆建生.稀土La对Ai-Si共晶合金性能的影响[J]轻合金加工技术,2003,31(1):35-37
    [38]GUO Feng,ZHOU Chen-en.Effect of Ce on the structure of Al-Mg-Si wrought aluminum alloy[J].Journal of Inner Mongolia Polytechnic University,1996,(4):10-14
    [39]C.Moreno Molina,A.Flores Valdes,R.Muniz Valdez,et al. Modification of Al-Si alloys by metallothermic reduction using submerged SrO powders injection,[J].Materials Letters,2009(63):815-818
    [40]ZHANG Zhuo,CHEN Kang-hua,FANG Hua-chan,etc.Effect of Yb addition on strength and fracture toughness of Al-Zn-Mg-Cu-Zr alumiunm alloy[J].Transactions of Nonferrous Metals Socity of China,2008(18):1037-1042
    [41]LI Hui-zhong,ZHANG Xin-ming,CHEN Ming-an,et al.Effect of yttrium on as-cast microstructure of 2519 aluminum alloy[J].Journal of Central South University.Science and Technology,2005,36(4):545-549
    [42]LI Rong-de,XU Guo-yu,LI Rui-Xia.Effect of Nd addition on the mechanical property of Al-Si-Cu-Mg cast alloy[J]. Foundry,2006,55(4):390一392
    [43]孙伟成,张淑荣,侯爱琴等.稀土在铝合金中的行为[M].北京:兵器工业出版社,1992:200-203
    [44]魏伯康,林汉同,刘俊明.稀土在过共晶Al-Si合金中的变质作用[J].特种铸造及有色合金,1993(3):6-9
    [45]段海丽,张恒华.铈对过共晶Al-Si合金组织和力学性能的影响[J].铸造,2004,54(12):1265-1268
    [46]王群骄.有色金属热处理技术[M].北京:化学工业出版社,200:23-25
    [47]李润霞,李荣德.高强铸造Al-Si-Cu-Mg合金时效特性的研究[J].铸造,2003,52(6):390-394
    [48]王群骄.有色金属热处理技术[M].北京:化学工业出版社,2004:26-27
    [49]余永宁.材料科学基础[M].北京:高等教育出版社,2006:630-631
    [50]冯端等.金属物理学[M].北京:科学出版社,1998:167
    [51]徐瑞主.材料热力学与动力学[M],哈尔滨:哈尔滨工业大学出版社,2003,8:205
    [52]胡德林.金属学原理[M].西安:西北工业大学出版社,1998:254-256
    [53]崔忠圻.金属学及热处理[M].北京:机械工业出版社,2005,6(1):180-181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700