用户名: 密码: 验证码:
盾构隧道开挖面的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构隧道技术己成为近年来城市地下工程施工对周围地层扰动最小的施工方法,但由于地质条件和施工工艺的限制,很难避免盾构推进对周围环境的扰动,当隧道开挖面失稳破坏时,导致地面塌陷,给周边的环境带来了很大的破坏,造成巨大的经济损失,同时也妨碍了交通的正常运行,极其严重地影响了人们的生活。因此,盾构隧道开挖面稳定性成为该领域的重要课题,对其研究相对紧迫。然而,国内盾构隧道开挖面支持力的确定仍然处于过分依赖工程经验的阶段,对盾构施工开挖面稳定性研究在国内相对较少。
     本文针对以上所述,主要研究内容如下:
     (1)根据稳定性理论,确定开挖面支护压力在进行微小变化时,中心点水平位移发生突变时的支护压力为极限支护压力。通过盾构掘进原理分析及实际工程实测资料,并针对至今国内外还没有一个系统、简单而又直接地对渗流作用时复杂地质条件下盾构开挖隧道开挖面上极限支护压力的模拟预测,通过VB6.0与FLAC3D混合编程的接口实现方法,建立了对复杂地质条件下盾构隧道开挖面稳定时确定极限支护压力的集成可视化计算系统,简化了软件的可操作性和盾构施工力学建模,使一般工程技术人员能够方便地应用本软件对开挖面稳定进行模拟;
     (2)针对渗流作用时盾构穿越多层土开挖隧道时,开挖面支护压力施加在理论方面还不太完善,通过假定开挖面滑动块形状为一个梯形楔型体,采用太沙基有效松动土压力理论,利用极限分析上限法推导了渗流作用下盾构穿越多层土开挖面极限支护压力的计算分析公式,为开挖面支护压力的施加提供了依据;
     (3)将强度折减法应用于盾构隧道开挖面稳定性评价,建立了开挖面稳定安全系数的概念,并对影响开挖面稳定安全系数的隧道所在土层参数及开挖面支护压力、地下水位等进行了分析,为设计和施工时分析影响隧道开挖面稳定性主要因素提供依据;
     (4)运用遗传规划理论,选取盾构隧道开挖引起地表沉降的主要影响因素,如隧道埋深、盾构直径、盾构掘进时推力、盾构推进速率、注浆填充率、注浆压力、地层的粘聚力、摩擦角、压缩模量等,用地表最大沉降实测数据对网络进行训练,建立确定盾构隧道开挖引起地表最大沉降的遗传规划模型,为盾构隧道开挖引起地表最大沉降的预测开辟了一条新的途径。
Shield tunneling method is becoming the most primary method in underground excavation with the minimum soil disturbance, but because of the limit of geology conditions and construction technique, it is inevitable that shield constructions disturb circumjacent environment. Tunnel face instability leads to the surface collapse that destroys the surrounding environment badly, causes huge economic losses, hinders the normal operation of the traffic, and seriously affects people’s lives, so shield tunnel face stability is key point and becoming an important task. However shield tunnel face pressure depends on engineering experience mostly at present in native, the study of face tunneling shields is relatively less.
     The paper developed the following work and research according to the related circs:
     (1) According to the stability theory, the limit face pressure is that when face pressure is changed very small, displacement of the center at tunnel face increases large suddenly. Through the principle of shiled progress and the datums of measurement, and so far, there is no simple and direct software in simulating and forecasting the limit support pressure of shield tunnel face stability at home and abroad. By means of VB6.0 and FLAC3D, software analysis integration system about the face limit support pressure is founded under complex geology conditions, the calculations that simplify operation of software and modeling of tunnel construction mechanics are simple and convenient, ecumenical engineers simulate and predict tunnel face stability expediently using the system.
     (2) On the assumption that the shape of sliding block is a trapezoid wedge and introducing the Terzaghi’s effective relaxed soil pressure theory, limit support pressure of tunnel face under seepage by upper theorem are deduced. It is providing a basis for the setting of tunnel face pressure.
     (3) Strength reduction method is used in stability analysis of shield tunnel face and the face safety factor is defined. And the effect of soil parameters, the support pressure and ground water level on face safety factor is analyzed,all these can provide useful reference to the setting of tunnel face support pressure in design and construction.
     (4) Using the genetic programming method and selecting the main influencing factors of the surface settlement by shield tunneling, including tunnel overburden, shield diameter, the thrust of shield tunneling, advancement rate of shield, fill factor of grouting, cohesive, friction angle and compression modulus of the soil et al. GP program is trained using practical maximum surface settlement data, and then the maximum surface settlement model of GP is set up, a new method of prediction of the maximum surface settlement by shield tunneling is provided.
引文
[1]刘建航,候学渊,盾构法隧道,中国铁道出版社,1991
    [2]张凤祥,朱合华,傅德明,盾构隧道,北京:人民交通出版社,2004
    [3]周文波,盾构法隧道施工技术及应用,北京:中国建筑工业出版社,2004
    [4]胡胜利,乔世珊,土压平衡式盾构机,建筑机械,2000(1):24~28
    [5] Hashimoto T, Kurihara K, Ohstsuka M, et al. Some aspect of round movement during shield tunneling in Japan[A].In :M air,Taylor.Geotechnical Aspects of Underground Construction in Soft Ground[M].Balkema:Roterdam, 1996:693~688
    [6]尹旅超,朱振宏,李玉珍,等译,日本隧道盾构新技术,湖北:华中理工大学出版社,1999
    [7] Maidl B, Herrenknetcht M, Anheuser L. Mechanised Shield Tunnelling[M]. Berlin: Emst&Sohn Verlag fur Architektur and techn, 1996
    [8]曾晓清,张庆贺,土压平衡盾构同步注浆浆液性能试验研究,中国市政土程,1995(01):46~51
    [9]朱合华,丁文其,李晓军,盾构隧道施工力学性态模拟及工程应用,土木工程学报,2000,33(3):98~102
    [10]邹羽,盾构隧道同步注浆技术,施工技术,2002,31(8):7~9
    [11] Brassing H E, Bezuijen A, Modelling the grouting process around a tunnel lining in a geotechnical centrifuge, Proceeding of the 15th Intenrational Conference on Soil Mechanics and Geotechnical Engineering,2001:1455~1458
    [12] G.E. Exadaktylosa, M.C. Stavropoulou.A closed-form elastic solution for stresses and displacements around Tunnels[J]. International Journal of Rock Mechanics & Mining Sciences, 2002,(39): 905~916
    [13]谢自韬,江玉生,刘品,盾构隧道壁后注浆压力对地表沉降及围岩变形的数值模拟研究,隧道建设,2007,27(4):12~15
    [14]张利民,李大勇,盾构掘进过程土体变形特性数值模拟,岩土力学,2004,(25): 75~78
    [15]韩月旺,钟小春,虞兴福,盾构壁后注浆体变形及压力消散特性试验研究,地下空间与工程学报,2007,3(6):1143~1175
    [16] Thomas Kasper, Gunther Meschke.On the influence of face pressure, groutingpressure and TBM design in soft ground tunneling. Tunnelling and Underground Space Technology,2006, (21): 160~171
    [17]钱家欢,殷宗泽,土工原理与计算[M],北京:中国水利水电出版社,1996
    [18] Broms,B.B.,Benermark,H. Stability of clayatvertical openings.ASCE Jounral of Soil Merchanical and Foundation Engineering Division SMI. (93):71~94.
    [19] Peck,R.B..Deep excavations and tunneling in soft ground.Proc. 7th Int. Contsoil Mechanical and Foundation Engineering.Mexico City.State of the Art. 1969 (93): 225~290
    [20] Peck,R.B.,Hendron, A.J.et al..State of the art of soft ground tunneling. Proc.1972 RETC(Chicago). 1972 (l):259~280
    [21] Davis E H,GunnM J,etal.The stability of shallow tunnels and underground openings in cohesive material[J].Geotechnique,1980,30(4):397~416
    [22] Leca B,Bormieux L.Upper and lower bound solutions for the stability of shallow circular tunnels in frictional material [J].Geotechnique,1990,40(4):581~606
    [23] Abdul H S.Three-dimensional face stability analysis of shallow circular tunnels[C]. In: International Conference on Geotechniacal and Geological Engineering Australlia: Melboume, 2000
    [24] Vermeer P A, Bonnier PG., M611er S C. On a smart use of 3D-FEM in tunneling[A]. In: The 8th Intenrational Symosium on Numerical Models in Geomechanics [C].Itality, 2002
    [25] Abdul-HamidS oubral.T hree-dimensional face stability analysis of shallow circular tunnels [A].In: International Conference on Geotechnical and Geological Engineering[C]. Melbourne, Australia, 2000.
    [26] Anagnostou G, Kov'ari K. The face stability of slury shield driven tunnels. Tunneling and Underground Space Technology, 1994, 9(2):165~174.
    [27] Anagnostou, G. and Kovari, K.Face stability in slurry and EPB shield tunneling. In: Mair R J, Taylor R N .Geotechnical Aspects of Underground Construction in Soft Ground [M], Roterdam:Balkema,1996:453~458
    [28] G.Anagnostou and K.Kovári.Face Stability Conditions with Earth-Pressure- Balanced Shields [J].Tunneling and Underground Space Technology, 1996,11(2): 165~173
    [29] Atkinson,J.H.,Potts,D.M.. Subsidence above shallow tunnels in soft ground. Proc. ASCE Geotechanical Eng. Div., 1997, 103(4):307~325
    [30] Atkinson,J.H.,Potts,D.M.et a1. Centrifugal model tests on shallow tunnel in sand.Tunnels and Tunneling. 1997, 9(1):59~64.
    [31] W. BROERE. Face Stability Calculation for a Slurry Shield in Heterogeneous Soft Soils[J].Tunnels and Metropolises,1998: 215~218
    [32]魏纲,贺峰,砂性土中顶管开挖面最小支护压力的计算,地下空间与工程学报, 2007,3(5):903~908
    [33] Pierre Chambon, Jean-Francois Corté.Shallow Tunnels in Cohesionless Soil, Stability of Tunnel Face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148~ 1165
    [34] Hisatake M,Eto Murakami. Stability and failure mechanisms of a tunnel face wih a shallow depth[A]. In: T. Fujii. Proceedings of the 8th Congress of the International Society for Rock Mechanics[C]. Intenrational Society for Rock Mechanics, 1995:587~591
    [35] Atkinson J H, Pots D M. Stability of a shallow circular tunnel in cohesionless soil [J].Geotechnique,1977, 27(2):203~215
    [36] Mair,R.J..Settlement efects of bored tunnels.Session Report,Proc. Geotechnical Aspects of Underground Construction in Soft Ground.(eds Mair,R,J.& Taylor, R.N).Balkema,pp.43~53
    [37] Komiya, K., Shimizu, E., et al.(2000).Earth pressure exerted on tunnels due to the subsidence of sandy ground. Proc. Geotechnical Aspect of Underground Construction in soft Ground.(eds Kusakabe, Fujita &M iyazaki). Balkema. pp. 397~ 402
    [38] Argyle D N. An investigation into the collapse of tunnel headings in dense sand [R].England: Cambridge University Engineering Tripos, 1976
    [39] Aspden R. Collapse of unline tunnels with headings in dense sand{R}. England: Cambridge University Engineering Tripos, 1976
    [40] Sharma J S, Bolton M D. A New Technique for Simulation of Collapse of a Tunnel in a Drum Cenrtifuge[R].CUED/D-SoildTRZ86, 1995
    [41] KonigD. An inflight excavator to model a tunneling process[A]. In: ISSMFE Centrifuge 98[M].Roterdam: B alkema, 1998:707~712
    [42] Nomoto T, Ueno K, OKusakabe, et al. centrifuge modeling of construction processes of shield tunnel [A].In: Mair, Taylor. Geotechnical Aspects of Underground Construction in Soft Ground [M].Roterdam: Balkema, 1996: 567~582
    [43] Brassinga H E, Bezuijen A .Modelling the grouting process around a tunnellining in a geotechnical centrifuge [A].In: Proceeding15th Intemation. Conference on Soil Mechanics and Foundation Engineering [C]. Tokyo: Balkema, 2001:1455~1458
    [44] Nomoto T, Ueno K, OKusakabe, et al. centrifuge modeling of construction processes of shield tunnel [A].In: Mair, Taylor. Geotechnical Aspects of Underground Construction in Soft Ground [M]. Roterdam: Balkema, 1996: 567~572
    [45] Bolton M D, Lu Y C, Sharma J S. Centrifuge models of tunnel construction and compensation Geotechnical Aspects of Underground Construction in Soft Balkema, 1996:471~477
    [46] Taylor R N. Panel contribution: Interplay between physical and numerical models as applied in engineering practice [A]. In: Proceeding 15th Interation. Conference on Soil Mechanics and Foundation Engineering[C].Tokyo: Balkema, 2001: 2207~2208
    [47]徐东,黄广军,上海粘土的成拱能力探讨,上海铁道大学学报,1999,20(6): 49~54
    [48]程展林,吴忠明,徐言勇,砂基中泥浆盾构法隧道施开挖面稳定性试验研究,长江科学院院报,2001,18(5):53~55
    [49]朱合华,徐前卫,郑七振,等,软土地层土压平衡盾构施工参数的模型试验研究,土木工程学报,2007,40(9):87~94
    [50] Bernat S, Cambou B, Dubois P. Assessing a soft soil tunneling numerical model using field[J].Geotechnique,1999(4):427~452
    [51]易宏伟,张庆贺,朱忠隆,静力触探在盾构施工对土体扰动研究中的应用,世界隧道,2000(2):7~10
    [52]易宏伟,孙钧,盾构施工对软粘土的扰动机理分析,同济大学学报,2000,28 (3):277~281
    [53]蒋洪胜,侯学渊,盾构掘进对隧道周围土层扰动的理论与实测分析,岩石力学与工程学报,2003,22(9):1514~1520
    [54]徐永福,陈建山,傅德明,盾构掘进对周围土体力学性质的影响,岩石力学与工程学报,2003,22(7):1174~1179
    [55] Mair R, Setlement effect of bored tunnels, In: Fernandes. Application of Computational Mechanics in Geotechnical Engineering [M].Lisse:Swets& Zeitlinger, 2001:43~53
    [56]况龙川,盾构隧道数值模拟及其受环境施工影响的安全问题研究:[博士后研究工作报告],南京;河海大学,2000
    [57] Chan A H C, Sharpe L, Chapman DN, et al. Prediction of subsurface settlements and lining response due to a new tunnelling operations using finite element analyses [A].In: Proc. 15th Ira.Conf. on Soil Mechanics and Foundation Engineering[C].Tokyo: Balkema,2001:1383~1386
    [58] Alan Graham Bloodworth. Three-dimensional analysis of tunnelling effects on structures to develop design methods [D].Oxford: College of Oxford University, 2002
    [59]裴洪军,城市隧道盾构法施工开挖面稳定性研究:[硕士学位论文],南京;河海大学,2005
    [60] Lee K M, Rowe R K. Analysis of three-dimensional ground movements: the Thunder Bay Tunnel [J] .Canadian Geotechnical Jounral, 1991, 28(1):25~41
    [61] Swoboda G, Mansour M. Three dimension numericalling of slury shield tunneling, In Wanger H ,Schulter A .Tu nnel Boring Machines[M].Roterdam: Balkema.1996: 27~41
    [62]朱合华,刘庭金,超浅埋盾构法隧道施工方案三维有限元分析,现代隧道技术,2001,38(6):14~18
    [63]孙钧,刘洪洲,交叠隧道盾构法施工土体变形的三维数值模拟,同济大学学报,2002,30(4):379~385
    [64]裴洪军,孙树林,吴绍明,等,隧道盾构法施工开挖面稳定性研究方法评析,地下空间与工程学报,2005,1(2):117~119
    [65] Komiyak, Soga K, A kagi H, et al .Finite element modeling of excavation and advancement process of a shield tunneling machine[J].Soils and Foundations, 1999,39 (3):37~52
    [66] Wongsaroj J, Soga K ,Mair R J ,et al .Three-dimensional finite element analysis of shield tunneling on ground deformation change in pore pressure and development of lining loads[R].Cambridge: University of Carnbridge,2002
    [67]刘招伟,王梦恕,董新平,地铁隧道盾构法施工引起的地表沉降分析[J].岩石力学与工程学报,2003,22(8): 1297~1301
    [68] P. A. Cundall. Distinct element methods of rock and soil structure, Analytical &Computational Methods in Engineering Rock Mechanics, 1987:129~163
    [69]杨新安,黄宏伟,FLAC程序及其在隧道工程中的应用,上海铁道大学学报,1996,17(4):39~44
    [70]谢和平,周宏伟,王金安,FLAC在煤矿开采沉陷预测中的应用及对比分析,岩石力学与工程学报,1999,18(4):397~401
    [71]刘波,韩彦辉,FLAC原理、实例与应用指南,北京:人民交通出版社,2005
    [72] Itasca Consulting Group,Inc.FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)User Manuals, Version 2.1,Minneapolis,Minnesota,2002,06
    [73]杜守继,职洪涛,高速公路软岩隧道复合支护机理的FLAC解析,中国公路学报,2003,16(2):70~77
    [74] In-Mo Lee& Seok-W00 Nam. The study of seepage forces acting on the tunnelling and tunnel face in shallow tunnels[J].Tunnelling and Underground Space Technology,2001(16):31~40
    [75] In-Mo Lee, Seok-W00 Nam, Jae-Hum Alm. Effect of seepage forces on tunnel face stability [J]. Canadian Geotechnical Journal, 2002, 40(2):342~350
    [76] IN-MO LEE, JAE-SUNG LEE, SEOK-WOO NAM. Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting [J]. Tunnelling and Underground Space Technology, 2004(19):551~565
    [77]王敏强,陈宏胜,盾构推进隧道结构三维非线性有限元仿真,岩石力学与工程学报,2002,21(2):228~232
    [78] Sagaseta C. Analysis of undrained soil deformation due to ground loss, Geotechnique, 1987, 37(3):301~320
    [79]朱忠隆,张庆贺,盾构法施工对地层扰动的试验研究,岩土力学,2000,21(1): 49~52
    [80]朱忠隆,张庆贺,易宏传,软土隧道纵向地表沉降的随机预测方法,岩土力学,2001,22(1):56~59
    [81]施成华,彭立敏,刘宝琛,盾构法施工隧道纵向地层移动与变形预计,岩土工程学报,2003,25(5):585~589
    [82]张冬梅,黄宏伟,地铁盾构推进引起周围土体附加应力分析,地下空间,1999, 19(5):379~382
    [83]张云,殷宗泽,徐永福,盾构法隧道引起的地表变形分析,岩石力学与工程学报,2002,21(3):388~392
    [84]于宁,朱合华,盾构隧道施工地表变形分析与三维有限元模拟,岩土力学, 2004, 25(8):1330~1334
    [85]姜忻良,崔奕,李园,等,天津地铁盾构施工地层变形实测及动态模拟,岩土力学,2005,26(10):1612~1616
    [86] Trckova Jirina, Prochazka Petr. Experimental and numerical modelling of the tunnel face stability[J].Technology Roadmap for Rock Mechanics, 2003(5):1247~ 1250
    [87] Konishi, Shinji. Evaluation of tunnel face stability by rigid plasticity finite element method [J].Railway Technology Advalanche, 2004(5): 29~29
    [88]秦建设,盾构施工开挖面变形与破坏机理研究:[博士学位论文],南京;河海大学,2005
    [89]黄正荣,朱伟,梁精华,等,浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究,岩土工程学报,2006, 28(11): 2005~2009
    [90]黄正荣,朱伟,梁精华,等,盾构法隧道开挖面极支护压力研究,土木工程学报,2006,39(10):112~116
    [91]杨洪杰,傅得明,葛修润,盾构周围土压力的试验研究与数值模拟,岩石力学与工程学报,2006,25(8):1652~1657
    [92]杨会军,王梦恕,深埋长大隧道渗流数值模拟,岩石力学与工程学报,2006,25(3):511~519
    [93]李地元,李夕兵,张伟,等,基于流固耦合理论的连拱围岩稳定性分析.岩石力学与工程学报,2007,26(5):1065~1064
    [94]胡广良,李思明,神经网络在结构优化设计中的应用,工程建设与设计,2003,(6):16~17
    [95]王庆利,康清梁,曹平周,人工神经网络与劲性混凝土柱截面设计,河海大学学报,1999,27(6):48~51
    [96] P C Pandey ,S V Barai1 Multilayer perceptron in damage detection of bridge structures[J],Computers and Structures1 1995,94:597~608
    [97]李守巨,刘迎曦,吴玉良,等,基于神经网络的建筑结构节点损伤识别方法,大连理工大学学报,2003,43(3):270~273
    [98]瞿伟廉,陈超,魏文辉,基于应变模态的钢结构构件焊缝损伤定位方法的研究,世界地震工程,2002,18(2):1~7
    [99]瞿伟廉,陈伟,多层及高层框架结构地震损伤诊断的神经网络方法,地震工程与工程振动,2002,22(1):43~48
    [100] Cao X, Sugiyama Y, Mitsui Y,Application of artificial neural networks to load identification[J],Computers &Structures,1998,69:63~78
    [101]吴大宏,赵人达,基于神经网络的混凝土桥梁荷载识别方法研究,中国铁道科学,2002,23(1):25~28
    [102] Yi-cherng Yeh&Yau-Hwaug Kuo, et al, Building KBES for Diagnosing PC Pile with Artificial Neural Network, Journal of Computing in Civil Eng.,1993,7(1).
    [103]冯夏庭,王泳嘉,林韵梅,地下工程力学综合集成智能分析的理论和方法,岩土工程学报,1997,19(1):30~35
    [104]袁金荣,地下工程施工变形的智能预测与控制,博士学位论文,上海:同济大学,2001
    [105]黄修云,曹国安,张清,人工神经网络在地下工程预测中的应用,北方交通大学学报,1988,22(1):39~43
    [106]孙海涛,吴限,深基坑工程变形预报神经网络法的初步研究,岩土力学,1998,19(4):63~68
    [107]袁金荣,池毓蔚,刘学增,深基坑墙体位移的神经网络动态预测,同济大学学报,2000,28(3):282~286
    [108]夏元友,李新平,基于人工神经网络的边坡稳定性工程地质评价方法,岩上力学,1996,17(3):27~33
    [109] C.Y. Kim, G.J. Bae, S.W. Hong, et al, Neural network based prediction of ground surface settlements due to tunneling, Computers and Geotechnics 2001 (28): 517~547
    [110]刘启中,施一萍,白英彩,基于BP神经网络的盾构施工变形预测,计算机应用与软件,2005,22(4):3~5
    [111] Suchatvee Suwansawat, Herbert H. Einstein,Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling,Tunnelling and Underground Space Technology 2006(21):133~150
    [112] Ovidio J. Santos Jr., Tarc?′sio B. Celestino, Artificial neural networks analysis of Sao Paulo subway tunnel settlement data, Tunnelling and Underground Space Technology,2007(7):1~11
    [113] David E. Goldberg. Genetic Algorithm in Search Optimization and Machine Learning. Addision-wesley Publishing Company, Inc. 1989
    [114]赵衍刚,江近仁,一个以遗传算法为基础的钢结构可靠性分析,地震工程与工程震动,1995,15(3):47~56
    [115]陈秋南,张永兴,任伯帜,改进浮点编码遗传算法在非线性地表沉降模型参数优化中的应用,公路交通科技,2005,22(2):75~78
    [116]王黎,马光文,基于遗传算法的水电站优化调度新方法,系统工程理论与实践,1997(4):65~82
    [117]王泽华,孙颖娜,张菊蓉,遗传算法在边坡稳定分析中的应用,东北水利水电,2002,20(11):1~4
    [118]崔茂玉,隧道动态施工增量反演分析与变形预测,岩土工程界,2003,6(6):64~66
    [119]张永兴,陈秋南,任伯帜,基于加速混合遗传算法的非线性地表沉降模型参数优化研究,工程力学,2005(4):43~47
    [120]吴振君,施斌,亓军强,软土大变形固结计算中参数识别的遗传算法,水文地质工程地质,2003(4):35~38
    [121]周文波,胡珉,盾构法隧道施工主要参数控制方法研究,岩石力学与工程学报,2003,22(增1):2430~2433
    [122]夏江,严平,庄一舟,等,基于遗传算法的软土地基沉降预测,岩土力学,2004,25(7):1131~1134
    [123]熊静,喻钢,胡珉,等,遗传算法在双圆隧道工程智能咨询系统DT_DSS中的应用,现代计算机,2006(8):32~34
    [124]姜德义,任松,刘新荣,等,隧道拱顶下沉时序遗传算法神经网络预测模型,地下空间与工程学报,2006,2(4):547~550
    [125]任松,姜德义,杨春和,基于遗传算法的浅埋隧道开挖地表沉降神经网络预测,郑州大学学报(工学版),2006,27(3):46~48
    [126]张向东,刘国明,基于遗传算法的软土施工动态预测,福州大学学报(自然科学版),2006,34(3):745~750
    [127]朱一飞,杨成祥,陈晓梅,遗传算法在建筑物沉降预测中的应用,辽宁工程技术大学学报,2007,26(2):225~227
    [128]潘正君,康立山,陈毓屏,演化计算,北京:清华大学出版社,1998
    [129]云庆夏,进化算法,北京:冶金工业出版社,2000
    [130]云庆夏,王占权,黄光球,遗传算法和遗传规划,北京:冶金工业出版社,1997
    [131]李敏强,寇纪淞,林丹,遗传算法的基本理论与应用,北京:科学出版社,2002
    [132] Sette S, Boullart L, Genetic programming principles and applications. Engineering Application of Artificial Intelligence 2001, 14(6):727~736
    [133]陈文伟,智能决策技术,北京:电子工业出版社,1998
    [134]吴少岩,基于遗传与进化原理的搜索、优化技术:[博士学位论文],长沙;国防科技大学,1996
    [135]李书全,李敏强,寇纪凇,遗传规划及其在地基设计中的应用,系统工程学报,1997(4): 85~91
    [136] Kishore J K,Patnaik L M,Mani V,et al, Application of genetic programming for multi category pattern classification, IEEE Transactions on Evolutionary Computation, 2000,4(3):242~258
    [137]袁晓辉,张勇传,袁艳斌,基于遗传规划的径流预测新方法,水力发电,2006(8):11~13
    [138]林文修,林泽全,齐学平,模糊调适性遗传程序规划在认购权证评价模式之应用,管理学报,2005(S2):131~137
    [139]王广,钱啸,基于改进遗传算法的地区电网优化规划,江西电力职业技术学院学报,2007(4):3~5
    [140]马艳南,程千里,一种基于遗传算法的电力系统无功优化规划,工矿自动化,2007(4):33~35
    [141]郑伟,齐洁,姜伟,基于遗传规划的飞机跑道参数辨识,计算机测量与控制,2007(7):909~912
    [142]王战权,云庆夏,遗传程序设计在岩石力学性能预测中的应用研究,地质与勘探,1999,35(6):74~76
    [143]李文秀,侯晓兵,郭玉贵,等,遗传规划方法用于确定岩体移动参数,岩石力学与工程学报,2006,25(增1):2794~2798
    [144]段鹏,岳建平,马保卫,基于遗传规划模型的大坝变形监测预测模型,水电自动化与大坝监测,2007,31(5):66~68
    [145] QUNFANG HU and HONGWEI HUANG. Numerical Analysis and Risk Assessment on Face Stability of Large-Diameter Tunnels,Lecture Notes in Computer science. 2007, Part III: 1180~1187
    [146]赵尚毅,时卫民,郑颖人,边坡稳定性分析的有限元法,地下空间,2001,21(5):450~454
    [147] W. BROERE. Face Stability Calculation for a Slurry Shield in Heterogeneous Soft Soils[J]. Tunnels and Metropolises, 1998: 215~218
    [148] Onq K.Y., Yamata M O, A study of arching effects of sand around a tunnel[A]. Proceeding of JSCE[C],1983:137~146
    [149]周小文,濮家骝,包承钢,隧洞拱冠砂土位移与破坏的离心模型试验研究,岩土力学,1999,20(2):32~36
    [150]日本土木学会编,隧道标准规范(盾构篇)及解说,朱伟译,北京:中国建筑工业出版社,2001
    [151]尹旅超,朱振宏,李玉珍,等译,日本隧道盾构新技术,湖北:华中理工大学出版社,1999
    [152]朱永全,宋玉香,隧道工程,北京:中国铁道出版社, 2005
    [153]肖树芳,岩石力学,北京:地质出版社,1987
    [154]铁道部第二勘察设计院,铁路工程设计技术手册—隧道[M].北京:中国铁道出版社,1995
    [155]铁道第二勘察设计院著译,铁路隧道设计规范(TB10003-2005,J449-2005)[S].北京:中国铁道出版社,2006
    [156] Dawson E M, Roth W H, Drecher A. Slope stability analysis by strength reduction [J]. Geotechnique, 1999,49(6):835~840
    [157]马建勋,赖志生,蔡庆娥,等,基于强度折减法的边坡稳定性三维有限元分析,岩石力学与工程学报,2004, 23 (16): 2690~2693
    [158]赵尚毅,郑颖人,时卫民,等,用有限元强度折减法求边坡稳定安全系数,岩土工程学报, 2002, 24(3): 343~346
    [159]连镇营,韩国城,孔宪京,强度折减有限元法研究开挖边坡的稳定性,岩土工程学报, 2001, 23(4): 407~411
    [160] Maosong Huang, Cang-Qin Jia. Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage. Computers and Geotechnics, 2008(6): 1~9
    [161] W.B. Wei, Y.M. Cheng, L. Li. Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods. Computers and Geotechnics, 2008(3): 1~11
    [162] Zulfu Gurocak, Selcuk Alemdag, Musharraf M. Zaman,Rock slope stability and excavatability assessment of rocks at the Kapikaya dam site, Turkey,Engineering Geology, 2008 (96):17~27
    [163] Zienkiewicz. OC, Humpheson. C, Lewis, RW. A associated and non-associated visco-plasticity and plasticity in soil mechanics, Geotechnique,1975,25(4): 671~ 689.
    [164]张国祥,刘宝琛著,潜在滑移面理论及其在边坡分析中的应用[M].长沙:中南大学出版社,2003
    [165]林丹,寇纪淞,李敏强,遗传规划研究与应用中的若干问题,管理科学学报,1999,2(4):62~68
    [166]赵新显,陈文伟,牛晓丽,遗传算法和遗传规划对比研究,系统工程与电子技术,2000,22(12): 84~87
    [167]刘大有,卢奕南,王飞,等,遗传程序设计方法综述,计算机研究与发展,2001,38(2):213~222
    [168]周园春,佟强,吴开超,等,遗传规划模式理论的研究进展,计算机工程, 2006,32(3): 1~4
    [169]黄樟灿,陈思多,李亮,等,遗传程序设计—计算机自动程序设计的新途径,武汉汽车工业大学学报,2001,22(5):17~21
    [170] Koza J R. Genetic programming: on the programming of computer by means of nature selection [M]. Cambridge: the MIT Press, 1992.
    [171] Koza J R. Genetic programming II: automatic discovery of reusable programs [M]. Cambridge: the M IT Press, 1994.
    [172] Silva S, Costa E. Dynamic limits for bloat control– variations on size and depth. In Deb K, et al. (eds), Proceedings of GECCO-2004, 666~677
    [173] Silva S, Silva PJN, Costa E. Resource- limited genetic programming: replacing tree depth limits. In Ribeiro B, et al. (eds), Proceedings of ICANNGA,2005, 243~246
    [174]曲永玲,城市地下工程地面变形预测神经网络模型研究:[硕士学位论文],南京;南京工业大学,2006
    [175]周文波,盾构法隧道施工对周围环境影响和防治的专家系统,地下工程与隧道,1993,(4):120~128
    [176]孙钧,易宏伟,地铁隧道盾构掘进施工市区环境土工安全的地基变形与沉降控制,地下工程与隧道,2001,(2):11~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700