山西中条山地区古元古代地壳演化的年代学和地球化学制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,华北地块古元古代构造单元划分和构造演化的研究取得了一些重要进展,识别出华北中部造山带,并尝试性从造山带理论解释古元古代构造演化。地处华北地块南缘中条山地区古元古代变质地层发育齐全,古元古代岩浆作用活动频繁,是研究古元古代地壳生长及演化十分理想的地区。通过对该区古元古代地质学、同位素年代学和地球化学进行深入的研究,提出该区古元古代地壳具幕式增生特点,2500Ma前后存在巨量地壳生长,识别出2300Ma构造-热事件,中条运动奠定了基底构造格架。
    涑水杂岩的时代归属问题是中条山地区长期争论的重大地质问题之一,时代归属在存在太古代和古元古代分歧。本文在详细的野外地质学研究的基础上,结合精确同位素测年研究,将传统的涑水杂岩解体为狭义的太古代涑水杂岩、古元古代冷口变质火山岩和3期古元古代变质花岗岩。在详细的锆石成因矿物学研究的基础上,使用颗粒锆石SHRIMP方法测定了绛县群铜矿峪组火山岩的时代,获得的成岩时代为2274Ma,表明绛县群的时代为古元古代,并非太古代。
    通过中条山地区古元古代变质岩浆岩的同位素地球化学和元素地球化学研究,识别出2300Ma前后弧岩浆岩建造,包括2333Ma的冷口变质火山岩和2321Ma的寨子英云闪长岩,前者为弱亏损岩石圈地幔部分熔融的产物,后者为较高压力条件下深部地壳分熔作用的产物。首次辨别出2274-2250Ma后造山伸展构造环境形成的岩浆岩组合,包括铜矿峪火山岩、横岭关钙碱性花岗岩和烟庄A-型花岗岩,提出铜矿峪火山岩为遭受交代作用改造的岩石圈地幔在较浅深度发生较高程度分熔作用的产物,而花岗质岩石为深部地壳TTG岩石分熔作用的产物。基于上述研究,提出中条山地区很可能存在2350-2250Ma汇聚造山事件。
    通过地球物理、地质学、地球化学和年代学综合研究,探索了中条山地区古元古代岩石圈组成、性质。提出中条山地区岩石圈地幔成分为弱亏损地幔-原始地幔,下地壳底部以麻粒岩相变质镁铁质岩石为主,夹麻粒岩相变质副变质岩,而中、上地壳主体由角闪岩相-绿片岩相变质的变质表壳岩和变质深成岩构成。通过综合性研究,建立了中条山地区有时间维标志用地质语言表述的岩石圈结构模式。利用单颗粒锆石测年工作中获得的继承和/或捕获锆石年龄信息以及岩浆岩的Nd模式年龄,提出中条山地区最早陆核可能形成于3.3-3.0Ga,晚太古代2.8-2.5Ga期间是中条山地区地壳的重要生长阶段,2350-2250Ma存在强烈地壳增生,中条运动(时限为1.9±0.lGa)是中条山地区的一次重要的造壳事件。
In the last few years, great progress has been made in understanding the tectonicdivision and evolution of the North China Craton. Collisional models have been applied tothe Craton, including recognition of a Paleoproterozoic collisional orogen, called theTrans-North China Orogen, which separates the Craton into two distinct blocks, called theEastern and Western Blocks. Zhongtiao Mountains is situated in southern margin of northChina Block where the Paleoproterozoic supracrustal rocks is well exposed and igneousrocks is well developed. Detail geological and geochronological studies suggest thatArchean and Paleoproterozoic custal growths in Zhongtiao have episodic characteristics.
    Controversy has surrounded the classification of Sushui Complex,with some peopleproposing that Sushui Complex should be Archean age, whereas others classified it intoPaleoproterozoic age. Detail structural, geochemical and geochronological investigationsindicated that the previous Sushui Complex contains both of Archean rocks andPaleoproterozoic rocks in which the Paleoproterozoic rocks consists of Lengkoumetamorphic volcanics and 3 suites of metamorphic granitoids. The age of Tongkuangyuvocanics is a controversial issue in Zhongtiao Mountains. Combining mineral studies,SHRIMP dating for zircon from acid volcanics is 2274±14Ma(1σ), inferring an age ofPaleoproterozoic nor Archean.
    2300Ma island arc igneous rocks has been identified from the geochemical studies,which includes Lengkou metamorphic volcanics with age of 2333Ma and Zhaizimetamorphic tonalitic gneisses with age of 2321Ma. Geochemical character indicates thatthe volcanics is derived by partial melting of weakly depleted mantle and the TTG isformed by partial melting of of mafic rock in deep crust at high pressure. Thepost-collisional magmas between 2274Ma and 2250Ma is recognized, includingTongkuangyu volcanics, Henglingguan calcalkaline granites and Yanzhuang A-typegranites. The Tongkuangyu vocanics is the products of partial melting from metasomaticlithosphere mantle at shallow depth. The granites were derived by partial melting of TTG indeep crust. The geological and geochemical of igneous rocks indicates that the orogenicevent may be occurred between 2350-2250Ma in Zhongtiao Mountains.
    The nature and compostions of Paleoproterozoic lithosphere of Zhongtiao Mountainshave been discussed from comprehensive studies on geology, geophysics and geochemistry.
    Geochemical evidences provided a new idea that the lithospheric mantle exhibits weaklydepleted to primitive nature in composition. The lower part of lower crust is composedchiefly of mafic granulites and minor metamorphic supracrustal rocks and the upper partcontains mainly intermediate granulites, whereas the middle and upper crust consisits ofmetamorphic supracrustal rocks and igneous plutons ranging metamorphism fromamphibolite to greenschist phases. Detail geological and geochronological studies indicatesthat the primary crust of Zhongtiao Mountains occurred at 3.3-3.0Ga, considerable crustformed between 2.8-2.5Ga, a great deal of crust grows with time span from 2350Ma to2250Ma and final cratonization(Zhongtiaonian Movement) occurred at the age of 1900±50Ma.
引文
1. 白瑾,黄学光,王惠初,郭进京,1996.中国前寒武纪地壳演化. 北京:地质出版社
    2. 白瑾,1959,中条山前寒武纪地层及其对比简述. 第一届全国地层会议论文.
    3. 白瑾,1962,中条山前寒武纪地层及其对比简述的初步补记,中条山科技,1976,第一期。
    4. 白瑾,黄学元,戴凤岩,等,1993, 中国早前寒武纪地壳演化.北京:地质出版社,36-38
    5. 白瑾、戴凤岩、颜耀阳,1993,中条山胡-篦型铜矿成矿区域地质背景.《大兴安岭及邻区铜多金属矿床论文集》,张德全、赵一鸣主编,地震出版社,65-78.
    6. 白瑾、余致信、戴凤岩、颜耀阳,1997,中条山前寒武纪地质.天津科学技术出版社,143 页。
    7. 白来旺,侯廷爱,1994,山西裂谷系的深部地球物理探测. 华北地震科学, 12 (3):27-35.
    8. 岑博雄,杨勇.山西中条山胡蓖型铜矿床时间结构分析及成矿演化规律.地球科学,1993;18 (2):203-210
    9. 陈文明,李树屏, 1998,条山铜矿峪斑岩铜矿金属硫化物的铼-锇同位素年龄及地质意义. 矿床地质,17(3): 224-229
    10. 程裕淇,张寿广,1982,中国变质带、变质幕及其相关问题. 中国区域地质,(2):1-14.
    11. 崔斌华.晋南中条山地区重要成矿元素区域地球化学特征.山西地质.1989,4(2):163
    12. 邓晋福,吴宗絮,杨建军等,1995,格尔木-额济纳旗地学断面走廊域地壳-上地幔岩石学结构与演化过程.地球物理学报,38(增刊 2):130-144.
    13 邓晋福,吴宗絮,赵国春.等.1999.华北地台前寒武纪花岗岩类陆壳演化与克拉通形成.岩石学报,15(2):190-198.
    14. 邓晋福,赵海玲,莫宣学,等,1996,中国大陆根柱构造----大陆动力学的钥匙。北京:地质出版社.
    15. 邓晋福, 吴宗絮,赵国春,等,1999,华北地台前寒武花岗岩类、陆壳演化与克拉通形成. 岩石学报, 15(2):190-198.
    16. 高山,骆庭川,张本仁,等,1999,中国东部地壳的结构和组成. 中国科学,29(3):204-213
    17. 耿元生,万渝生,沈其韩,等, 2000,吕梁山地质早前寒武纪主要地质事件的年代格架.地质学报,74(3):216-223.
    18. 关鸿,孙敏,徐平,1998,阜平杂岩中几种不同类型片麻岩的锆石激光探针等离子体质谱年代学. 岩石学报, 14(4):460-470.
    19. 桂林冶金地质研究所变质岩铜矿专题组,山西某变质岩铜矿的岩石特征及其与成矿关系.地质与勘探. 1974;(6)
    20. 郭敬辉,王松山,梁海清,等,2001,变斑晶石榴石 40Ar/"A;年龄的含义与华北高压麻粒岩变质时代.岩石学报,17(3)436-442.
    21. 郭敬辉,翟明国,2000, 华北克拉通桑干地区高压麻粒岩变质作用的 Sm-Nd 年代学.科学通报, 45(19): 2055-2061.
    22. 郭敬辉,翟明国,张毅刚,等,1993,怀安蔓曹沟早前寒武纪高压麻粒岩混杂岩带地质特征,岩石学和同位素年代学.岩石学报, 8(4):329-341.
    23. 国家地震局“鄂尔多斯周缘活动断裂系”课题组,1988,鄂尔多斯周缘活动断裂系.北京地震出版社,pp77-113.
    24. 国家地震局科技监测司编,1988,中国大陆深部构造的研究与进展. 北京:地震出版社, pp19-37.
    25. 洪大卫,王式洗,韩宝福,靳满元,1995,碱性花岗岩的构造环境分类及其鉴别标志. 中国科学(B 辑),25(4):418-426.
    26. 胡世玲,王松山,桑海清,等,1990,大庙斜长岩同位素地质年龄、稀土地球化学及其地质意义. 地质科学,(4):332-342
    27. 胡受奚,林潜龙等 1988,华北与华南古板块拼合带地质和成矿. 南京:南京大学出版社
    28. 胡维兴,1994,关于中条山胡-蓖型铜矿床成矿期和成矿时代问题。华北地质矿产杂志,9(2)
    29. 胡维兴,孙大中 1987, 中条山早元古代铜矿成矿作用与演化.地质学报. 61(2):152-165.
    30. 冀书楷、傅昭仁、李树坪等,1992,中条山铜矿成矿模式及勘查模式.地质出版社,115 页.
    31. 李继亮,王凯怡,王清晨,等, 1990, 五台山早元古代碰撞带初步认识. 地质科学,25(1):1-11.
    32. 李江海, 钱样麟,侯廷贵, 等, 2000,“吕梁运动”新认识.地球科学,25(l):15-20.
    33. 李江海,1997,早前寒武纪洋壳的地质记录及其板块构造意义. 地质科技情报, 16(1):10-16.
    34. 李江海,侯贵廷,钱祥麟,Halls H C, Davia D,2001,恒山中元古代早期基性岩墙的单颗粒锆石 U-Pb 年龄及其克拉通构造演化意义.地质论评,47(3):234-238.
    35. 李上森,1994,几个典型的陆壳出露剖面. 国外前寒武纪地质,(2):22-28.
    36. 李曙光,张宗清,1990,华北太古代上地幔釹同位素组成、演化及对该区岩石圈地幔不均一性的制约. 地球化学,(4):277-285.
    37. 陆松年,李怀坤,李惠民,等,2003,华北克拉通南缘龙王石童碱性花岗岩 U-Pb 年龄及 37.其地质意义. 地质通报,22(12):762-768.
    38. 陆松年,李怀坤,王惠初,陈志宏,2005,对国际地层委员会前寒武纪划分参考方案的简介及评述. 地质论评,51(2):169-173.
    39. 罗淑兰,吴宗絮,邓晋福,等,1997,太行-五台山区不同时代花岗岩类岩石学和地球化学的特征对比及陆壳演化. 岩石学报, 13(2):203-214.
    40. 李先福,谭少华,孔东军.山西中条山胡-蓖型铜矿蓖子沟组含矿岩系的解体与重建,现代地质,1990;(3)
    41. 梁庭祥,郭建华,2002,对胡家峪南和沟铜矿床控矿作用的认识. 矿产与地质,16(1):22-24.
    42. 刘敦一,伍家善,沈其韩,1994 中朝克拉通老于 38 亿年的残余陆壳──离子探针质谱锆石微区 U-Pb 年代学证据。地球学报-中国地质科学院院报, (1-2):3-11.
    43. 刘明清,祝治平,方盛明等,1999,山西中南部地区地壳深部地球物理场异常与地震. 地震学报,21(3):305-312.
    44. 刘庆生,高山,1990,东秦岭地区下地壳麻粒岩的地球化学与地球物理性质. 地球科学—中国地质大学学报,15(4):441-449.
    45. 刘庆生、高山、候渭等,1994,河南登封一鲁山地区地壳出露剖面岩石高压条件下地震波速特征的实验研究. 地球科学—中国地质大学学报, 19(1):109-112.
    46. 毛德宝,钟长汀,陈志宏,等, 1999,承德北部高压基性麻粒岩的同位素年龄及其地质意义.岩石学报, 15(4): 524-531.
    47. 齐进英,1992,东秦岭太华群变质岩系及其形成条件. 地质科学,1992,增刊:94-107.
    48. 钱样麟.华北北部太古宙克拉通化过程及地体拼贴和板块构造模式.见: 中国地质学会“七·五”地质科技成果学术交流会议论文集.北京:北京科学技术出版社,1992.93—97.
    49. 乔广生,王凯怡,郭起凤,张桂存,1987,冀东早太古岩石 Sm-Nd 同位素年龄测定. 地质科学, 01 期.
    50. 乔秀夫、张德全、王雪英、夏明仙,1985,晋南西阳河群同位素年代学研究及其地质意义。地质学报, 59(3): 258-268.
    51. 邱瑞照,李廷栋,邓晋福,等,华北地区三类岩石圈的壳幔岩石学结构与化学结构及其大陆动力学意义。岩石矿物学杂志,2004, 23(2):127-140.
    52. 山西地质矿产局,1989,山西省区域地质志.地质出版社,780 页.
    53. 沈其韩,钱祥麟, 1995, 中国太古代地质体成分、阶段划分和演化. 地质学报,(2): 113-120.
    54. 沈其韩,许惠芬,张宗清,等, 1992,中国早前寒武纪麻粒岩. 北京:地质出版社.
    55. 宋彪,1992,密云环斑花岗岩的同位录地质年代学、稀土地球化学特征及成因讨论.中国地质科学院地质研究所所刊,第 25 号:137-157.
    56. 孙大中、石世民,1959,山西省中条山前寒武纪地质及构造。地质学报,39(3):305-317.
    57. 孙大中,1990,前寒武纪地质年代学的探讨.中国区域地质,(4).
    58. 孙大中 胡维兴 张惠民 赵风清 唐敏 梅华林 ,1992. 中条山元古宙活动带(2.36-1.85Ga)地壳演化及其成矿作用关系, 见:”七?五”地质科技重要成果学术会议论文集. 北京科学出版社.
    59. 孙大中,胡维兴(主编),1993,中条山前寒武纪年代构造格架和年代地壳结构.北京:地质出版社.
    60. 孙大中,胡维兴主编.中条山前寒武纪年代构造格架和年代地壳结构.北京:地质出版社.1993.
    61. 孙大中,李惠民,林源贤等.中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究.地质学报,1991. 65(3):3-7.
    62. 孙海田,葛朝华,1990.中条山式热液喷气成因铜矿床. 北京:北京科学技术出版社.
    63. 孙海田,中条山地区双峰态钾质火山岩系 Sm-Nd 同位素年龄及意义. 科学通报, 39(14):1343-1344
    64. 孙勇,于在平,1988,涑水杂岩的地球化学特征. 地球化学,4:319.
    65. 孙勇, 河南鲁山太华群的多期变质作用.西北大学学报(前寒武纪地质专辑),1982: 44-65.
    66. 谭少华,1996,山西中条山铜矿区的剥离断层. 西南工学院学报, 11 (3):68-73.
    67. 谭少华,1997,山西中条群多期变形的厘定. 矿产与地质, 11(4):254-258.
    68. 唐立忠,1996,中条山西南段太古宙变质岩石单位的划分与对比. 华北地质矿产杂志, 11(3):463-468.
    69. 陶铨, 1985,中条山前寒武纪地层的时代.中国地质科学院天津地质矿产研究所所刊, 12:29-36.
    70. 郁建华,付会芹、张风兰、万方晓等,1996,华北地台北部非造山环斑花岗岩及有关岩石.北京:中国科学技术出版社,l-182.
    71. 解广轰,1980,大庙斜长岩杂岩体的岩石学特征.地球化学,(3): 263-277.
    72. 解广轰,王俊文,1988,大庙斜长岩杂岩体侵位年龄的初步研究. 地球化学,(1):13-l7.
    73. 王鸿祯、莫宣学,1996,中国地质构造述要. 中国地质,(8):4-9.
    74. 王建全,1998,浅析山西中南部重力测量及异常变化. 山西地震,1998,(2):13-17.
    75. 王凯怡,李继亮,郝杰,等,1997,山西五台山区晚太古代镁铁质一超镁铁质岩:一种可能的古蛇绿杂岩.岩石学报, 13(2): 139-151.
    76. 王植、闻广,1957,中条山斑岩铜矿. 地质学报,37(1):401-415.
    77. 王焰,钱青,刘良,张旗, 2000,不同构造环境中双峰式火山岩的主要特征. 岩石学报,16(2):169-173
    78. 魏东岩,辛石川,梁新试论中条山胡蓖型铜矿床之成因.河北地质学院学报,1984;(1).
    79. 吴昌华,李惠民,钟长汀,等, 2000,阜平片麻岩和湾子片麻岩单颗粒锆石 U-Pb 年龄---阜平杂岩并非统一太古宙基底的年代学证据. 前寒武纪研究讲展,23(3): 129-139.
    80. 吴宗絮,邓晋福,赵海玲等,1994.华北大陆地壳、上地幔岩石学结构与演化.岩石矿物学杂志,13(2):106~115.
    81. 徐启东,高山,刘庆生,1994,鲁山太华群麻粒岩相岩石形成的地球化学限制. 岩石矿物学杂志, 13( 3):214-226.
    82. 薛克勤,赵月凤,2002,中条山西南段与变基性岩有关的铜矿地质特征及成因浅析.前寒武纪研究进展,25(3-4):151-159.
    83. 叶发广,1994,下地壳深成变质作用的研究进展.国外前寒武纪地质,(1):l-9.
    84. 翟明国、卞爱国,2000,华北克拉通新太古代末超大陆拼合及古元古代末---中元古代裂解. 中国科学,30(增刊):129-137.
    85. 翟明国,郭敬辉,赵太平,2001,新太古-古元古代华北陆块构造演化的研究进展. 前寒武纪研究进展, 24(1):17-27.
    86. 张伯声,1958, 中条山的前寒武系及其大地构造发展. 西北大学学报,(2).
    87. 张东红,2003,中条山主要铜矿床的地质特征及找矿方向. 太原理工大学学报, 34(4):452-454.
    88. 张宏福, 郑建平,2003, 华北中生代玄武岩的地球化学特征与岩石成因:以辽宁阜新为例.科学通报,48(6):603-609.
    89. 张兆琪,薛文彦,柴金钟,魏云峰,2003,中条山西南段基底岩系的地质特征. 地质调查与研究,26(4):193-199.
    90. 徐朝雷,徐有华,张忻,1994,中条山变质岩系的层序和年代讨论. 中国区域地质, (3):268-273.
    91. 赵风清,1994,山西中条山涑水杂岩中冷口变质火山岩的地球化学和构造环境.西安地质学院学报,16(2).
    92. 赵风清,1995a,大陆深部地壳研究进展综述.国外前寒武纪地质,(2):4l-48.
    93. 赵风清,1995b,大陆深部地壳研究中的地质-地球化学方法概述.国外前寒武纪地质,(4):27-34.
    94. 赵风清,1996,构造岩浆地球化学辨别图解中高强场元素亏损的成因及辨别图解的局限性讨论.国外前寒武纪地质,(73):56-64.
    95. 赵风清,1997,山西中条山地区北峪奥长花岗岩的同位素年龄和同位素地球化学特征.前寒武纪研究进展,20(1).
    96. 赵风清,金文山,甘晓春,等, 1995,华夏地块前加里东期变质基底的特征以及深部地壳性质.地球学报,(3):235~245.
    97. 赵风清、林源贤、李惠民、周惠芳、孙大中,1992.山西中条山北段涑水杂岩地质及年代学新证据. 山西地质,7(4).
    98. 赵风清、唐敏.1994.山西中条山地区北峪奥长花岗岩的地球化学.华北地质矿产杂志,9(3).
    99. 赵风清.1989.山西中条山涑水杂岩中花岗质岩石地球化学.前寒武纪地质,No.4,地质出版社.
    100.赵国春,孙敏,2002,华北克拉通基底构造单元特征及早元古代拼合. 中国科学,32(7):538-549.
    101.赵太平,金成伟,翟明国,夏斌,周美夫,2002,华北陆块南部熊耳群火山岩的地球化学特征与成因. 岩石学报, 18( 1):59-69.
    102 赵太平,翟明国,夏斌,等,2004,熊耳群火山岩锆石 SHRIMP 年代学研究:对华北克拉通盖层发育初始时间的制约. 科学通报,49(22):2342-2349.
    103. 赵太平,陈福坤,翟明国,等,2004,河北大庙斜长岩杂岩体锆石 U-Pb 年龄及其地质意义. 岩石学报, 20(03):685-690.
    104. 赵宗溥.中朝准地台前寒武纪地壳演化.北京:科学出版社,1993. 357-364.
    105. 真允庆,1997, 论中条裂谷铜矿床的形成时代. 桂林工学院学报, 17(4):307-315.
    106.真允庆,杜继盛,刘丽玲等.中条裂谷与落家河铜矿床.武汉:中国地质大学出版社,1993. 96-99.
    107. 真允庆.杜继盛.刘丽玲等.中条裂谷铜矿床的“四代同‘堂'成矿模式.地质与勘探.1992 (7):36-77.
    108. 中条山铜矿地质编写组,1978,中条山铜矿地质。地质出版社,190 页.
    109. 朱勤文,叶德隆,叶松,1997,中条山北段元古宙岩浆活动与陆壳生长机制. 地质论评,43(3):257-263
    110. 祝冶平,张建狮,周雪松,朱晚霞,1994,山西临汾震区地壳上地幔构造的研究.华北地震地质,12(1):77-84.
    111. 祝治平,张先康,盖玉杰,等,1995,邢台震源区及相邻地区地壳上地幔速度结构研究.地震学报,17(3): 328-334.
    112. 祝冶平,张建狮,张成科,等,1999,山西中南部壳幔结构的研究. 地震学报,21(1):43-49.
    113. Barbarin B. 1990. Granitoids : main petrogenetic classifications in relation to origin and tectonic setting [J ] . Geol. J . , 25 : 227~238.
    114. Barbarin B. 1996. Genesis of the two main types of peraluminous granitoids [J ] . Geology , 24 : 295~298.
    115. Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos,1999,Vol.46:605-626
    116. Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos,1999,Vol.46:605-626
    117. Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 2002, 143: 602-622
    118. Bohlen S R. 1987. Pressure-temperature-time paths and a tectonic modal for the evolution of granulites. J. Geol., 95: 617-632.
    119. Brophy J G, 1991, Composition gaps, critical crystallinity, and fractional crystallization in orogenic (calc-alkaline) magmatic systems. Contrib. Mineral petrol., 109:173-182.
    120. Brouxel M, Lapierre H, Michard A, Albrede F, 1987, The deep layers of a Paleozoic arc: geochemistry of the Copley-Blaklala series, northern California. Earth Planet. Sci. Lett., 85:386-400.
    121. Carswell D A ,O′ Brien P J. Therm obarometry and geotectonic significance of high-pressure granulites: example from the Moldanubian Zone of the Bohemian Massifin Lower Austria [J]. J Petrol, 1993, 34:427-459.
    122. Champion, D.C., Smithies, R.H., 2003. Slab melts and related processes—Archaean versus Recent. In: Arima, M., Nakajima, T., Ishihara, S. (Eds.), Hutton Symposium V, The Origin of Granites and Related Rocks. Geological Survey of Japan, pp. 19.
    123. Chappell B W, White A J R. 1974. Two contrasting granite types[J ] . Pacific Geol., 8:173-174.
    124. Chappell B W, White A J R. 1974. I-and S-type granites in Lachlan Fold Belt. Transactions of Royal Society of Edingburgh, 83:1-12.
    125. Christensen N I,Mooney W D, Seismic velocity structure and composition of the continental crust:A global view.J Geophys Res, 1995,100:9761-9788
    126. Collins WJ . 1998. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids : implications for crustal architecture andtectonic models[J ] . Australian Journal of Earth Sciences, 45:483-500.
    127. Condie K C,2005. TTGs and adakites: are they both slab melts? Lithos,80:33-44
    128. Condie K C, Episodic continental growth:afterthoughts and extensions. Tectonphysics, 322:153-162
    129. Defant M J , Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere [J ] .Nature , 347 : 602-665.
    130. Defant MJ.许继峰,Kepezhinsksa P 等.2002. Adakites:some variations on a theme .岩石学报, 18(2): 129-142
    131. Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665.
    132. De Paolo D J, 1981. A neodymium and syrontium isotopic study of the Mesozoic calcalkaline granitic batholiths of the Sierra Nedava and Penisular Ranges, California. J. of Geophysical Research, 86(B11):10470-10488.
    133. David K, Schiano P, Allegre C J,2000, Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. EPSL, 2000,178:285-301
    134. Doe B R, Leeman W P, Christiansen R L and HedgeCE, 1982. Lead and Strontium isotopes and related trace elements as genetic tracers in the Upper Cenozoic rhyolite-basalt association of the Yellow stone plateau volcanic field. J. Geophys. Res., 87:4785-4806
    135. Duncan A R, Erlank A J and Marsh J S, 1984, Regional geochemistry of the Karoo igneous province. Spec. Publ. Geol. Soc. Afr., 13:355-388
    136. Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite –tonalite–dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. J. Geophys. Res.95, 21503– 21521.
    137. Ferré E. C.and Leake, B. E. Geodynamic significance of early orogenic high-K crustal and mantle melts: example of the Corsica Batholith, Lithos 2001,59 :47-67
    138. Ferré E. C.and Leake, B. E. Geodynamic significance of early orogenic high-K crustal and mantle melts: example of the Corsica Batholith, Lithos 2001,59 :47-67
    139. Frey F A, Gerlach D C, Hickey R L, et al, 1984. Petrogenesis of the Lagunael Maule volcanic comlex, Chile(36°S). Contrib. Mineral. Petrol., 88:133-149
    140. Fountain D M, Arculns R, Kay R W. 1992. Continental lower crust. Elsevier: Amsterdam.Griffin W L, 139. 139. O′Reilly S Y. 1987. Is the continental Moho the Crust-mantle boundary7. Geology, 15:241-244.
    141. Foley S,Peccerillo A,1992, Potassic and ultrapotassic amgma and their origin. Lithos,28:181-185.
    142. Fountain D M, Salisbury M H. 1981. Exposed cross-section through the continental crust, implications for crustal structure, petrology and evolution. Earth Planet. Sci. Lett., 56: 263-277.
    143. Fourcade S. Capdevila R, Ouabadi A. and Martineau F. The origin and geodynamic significance of the Alpine cordierite-bearing granitoids of northern Algeria. A combined petrological, mineralogical, geochemical and isotopic (O, H, Sr, Nd) study. Lithos, 2001, 57:.187-216
    144. Garland F, Hawkesworth C J and Mantovani M S M, 1995. Description and petrogenesis of the Parana Rhyolites, Southern Brazil. J. Petrol., 36:1193-1227
    145. Gao S,Rudnick R L, Carlson R W M, et al,2002, Re-Os evidence for replacement of ancientment mantle lithosphere beneath the north China Craton. Earth Planet Sci. Lett., 148:307-322
    146. Geist D, Howard K A, Larson P, 1995. The generation of oceanic Rhyolites by crystal fractionation: the basalt-rhyolite association at Volcan Alcedo, Galapagos Archipelago. J. Petrol., 36:965-982
    147. Glebovitsky V.A. 2001. Ptrcambrian collision orogen formation and supercontinents tectonic, petrologic and isotope geochronological evidence .Gondwana Research pp621
    148. Glebovitsky V.A. 2001.Ptrcambrian collision orogen formation and supercontinents tectonic, petrologic and isotope geochronological evidence .Gondwana Research pp621
    149. Gradstein F M,Ogg J G, SmithA G, et al 2004,New Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes, 27:83~100.
    150. Griffin T J , White A J R , Chappell B W. 1978. The Moruya Batholith and geochemical contrasts between the Moruya and Jindabyne suites[J ] . Journal of the Geological Society of Australia , 25 : 235~247.
    151. Griffin W L, O' Reilly S Y. 1987. The Composition of the lower crust and the nature of the continental Moho-Xenolith evidence. In: Nixon P H, ed. Mantle Xenolith. John Wiley Sons Ltd., 413-431.
    152. Griffin W L, Win Ryan T T, 1995, Mapping the erath mantle in 4D using the proton microprobe. Nuclear Instruments and Methods in Physics Research, B, 104:456-463.
    153. Griffin W L,Zhang A D, O'Reilly S Y,1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton, in:Flower M,Chung S L, (ed.): Mantle Dynamics and Plate Interactions in East Asia.American Geophysical Union,Washington, DC,107-126.
    154. Grove T L and Donnelly-Nolan J M, 1986. The evolution of young silicic lavas at Medicine Lake Volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas.Contrib. Mineral. Petrol., 92:281-302
    155. Guan H, Sun M, Wilde S A, et al. SHRIMP U-Pb zircon geochronology of the Fuping complex: Implications for formation and assembly of the North China craton. Precambrian Research, 2002, 113: 1~18
    156. Hamilton P J, Evensen N M, OfNions R K, Tarney J. 1979. Sm-Nd systematics of Lewisian gneisses, implications for the origin of granulites. Nature, 277..25-28.
    157. Harris N B W, Pearce J A , Tindle A G. 1986. Geochemical characteristics of collision-zones magmatism[A] . Coward M P , Ries A C. Collision Tectonics[C] . Geol. Soc. Spec. Publ. , 19 : 67-81.
    158. Heier K S. 1973. Geochemistry of granulite facies rocks and problems of their origin. Publ. Trans. R. Soc. , A273:429-442.
    159. Hine R H , Williams I S , Chappell B W, et al . 1978. Geochemical contrasts between I-and S-type granitoids of the Kosciusko Batholith[J ] . Journal of the Geology Society of Australia , 25 : 235~247.
    160. Hochstaedter A G,Gill J B and Morris J, 1990, Volcanism in the Sumisu Rift. II. Subduction and non-subduction related components. Earth Planet. Sci. Lett., 100:195~209
    161. Hoffman P F. United plates of America, the brith of a craton: early Proterozoic assembly and growth of Laurentia Ann Rev Earth Planet Sci,1988,16:543-603
    162. Hoffman P F. United plates of America, the brith of a craton: early Proterozoic assembly and growth of Laurentia Ann Rev Earth Planet Sci,1988,16:543-603
    163. Hoffman P.F., Did the breakup of Laurentia turn Gondwana inside out? Science, 1991, 252:1409-1412.
    164. Huppert H E and Sparks R S J, 1988. The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol., 29:599~624
    165. Irvine T N and Barager W R A, 1971,A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8:523-548.
    166. Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks[J ] . Mining Geology , 27 : 293~305. Ishihara S. 1981. The granitoid series and mineralization[J ] . Economic Geology , 75 : 458-484.
    167. Jacobsen, S B, and Wasserburg J, 1984, Sm-Nd Isotopic evolution of chondrites and achondrites, II. Earth Sci. Planet Lett., 67:137-150.
    168. Jahn, B.M., Glikson, A.Y., Peucat, J.-J., Hickman, A.H., 1981. REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara Block, western Australia: implications for the early crustal evolution. Geochim. Cosmochim. Acta 45:1633– 1652.
    169. Jahn B.M.,F.Y. Wu, Capdevila R. Martineau F., Z.H. Zhao and Y.X. Wang.Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59:171-198
    170. Jayananda, M., Martin, H., Peucat, J.-J., Mahabaleswar, B., 1995. Late Archaean crust-mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, Southern India. Contrib. Miner. Petrol. 199:314–329.
    171. Kalsbeek F. Jepsen H. F. and Jones K. A.. Geochemistry and petrogenesis of S-type granites in the East Greenland Caledonides, Lithos, 57:91-109
    172. Kalsbeek F. Jepsen H. F. and Jones K. A.. Geochemistry and petrogenesis of S-type granites in the East Greenland Caledonides, Lithos 57: 91-109
    173. Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C., McDonald, G.D., 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archean crustal growth models. Contributions to Mineralogy and Petrology 144:38–56.
    174. Kamei A, Owada M, Nagao T., et al. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Janpan arc: evidence from clinopyroxene and whole rock compositions. Lithos, 75:359-371
    175. Karl E. Karlstrom et al., Long-lived (1.8-1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia, Precambrian Research,2001,Vol.111(1-4) pp. 5 – 30
    176. Kay, R.W., 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J. Volcanol. Geotherm. Res. 4:117-132
    177. Kroner, Gompston W, Zhang G, et al, 1988, Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 16: 211-215.
    178. Kr?ner, A, Wilde, A.S., O'Brien, P.J.O., Li, J.H., 2001. The late Archaean to Palaeoproterozoic Hengshan and Wutai complexes of northern China. In: Cassidy, K.F., Dunphy, J.M., Kranendonk, M.J.V. (Eds.), Proceedings of the 4th International Archaean Symposium (Extended Abstract), SGSO-Geoscience Australia, Perth, p. 327.
    179. Kr?ner, A., Zhao, G.C., Wilde, S.A., Zhai, M.G., Passchier, C.W., Sun, M., Guo, J.H., O'Brien, P.J., Walter, N., 2002. Guidebook for Penrose Conference Field Trip: A Late Archean to Paleoproterozoic Lower to Upper Crustal Section in the Hengshan-Wutaishan Area of North China. Beijing, China, p. 63.
    180. Kroner A., Wilde S.A., Li J.H, Wang K.Y,2005,Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences 24:577–595.
    181. Kusky T M., Li Jiang-Hai, Tucker R D., 2001, The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 292:1142-1145.
    182. Kusky, T.M., Li, J.H., 2003. Paleoproterozoic tectonic evolution of the North China craton. Journal Asian Earth Sciences 22, 23–40.
    183. Le Maitre R W, Bateman P, Dudek A, et al, 1989, A classification of igneous rocks and glossary of terms. Blackwell, Oxford.
    184. Li, Z X., Zhang, LH., Powell, C.M., 1995, South China in Rodinia: part of the missing link between Australia—East Antarctic and Laurentia? Geology, 23:407-410.
    185. Li, Z X., Zhang, L H., Powell C. M., 1996, Positions of the East Asian cratons in the Neoproterozoic super-continent Rodinia. Australia J Earth Science, 43:593-604.
    186. Li Z.X., Li X.H., Kinny P.D. et al, 2003, Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122: 85–109
    187. Liégeois J P,Black R, Naves J and Njanko T, 1994. Early and late pan-African orogenies in the air assembly of Terranes(Tuareg Shield, Niger). Precam. Res., 67:59-88.
    188. Liégeois J.P. (Edited). Post-Collisional Magmatism. Lithos, 1998, 45: 1-560
    189. Liu Shuwen, Pan Yuanming , Xie Qianli , Zhang Jian , Li Qiugen, 2004, Archean geodynamics in the Central Zone, North China Craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes. Precambrian Research, 130 :229–249.
    190. Luo Yan, Sun Min , Zhao Guochun,2004,LA-ICP-MS U–Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134:349–371
    191. Martin J. W. and David B.2001, Geochronological constraints on Paleoproterozoic crustal evolution and regional correlations of the northern Outer Hebridean Lewisian complex, Scotland, Precambrian Research, 105 : 227-245
    192. Martin, H., 1999. The adakitic magmas: modern analogues of Archaean granitoids. Lithos ,46:411– 429.
    193. Martin, H., Moyen, J.-F., 2002. Secular changes in TTG composition as markers of the progressive cooling of the Earth. Geology, 30:319– 322.
    194. Martin H. ,Smithies R.H.,Rapp R., Moyen J.-F. and Champion D.C,2005. An overview of adakite, tonalite–trondhjemite– granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Litho,79:1-24
    195. McMenamin, M.A.S., McMenamin, D.L.S., The Emergence of Animals: the Canbrian Breakthrough. New York: Columbia University Press, 1990.
    196. Menzies M A,Fan W M,Zhang M,1993. Paleozoic and Cenozoic Lithoprobes and the loss of>120km of Archean lithosphere, Sino-Korean craton,China.In:Prichard H M,Alabaster T, Harris N B W (ed.):Magmatic Processes and Plate Tectonics. Geological Society,London, 76:71-81.
    197. Mezger K, 1992. Temporal evolution of regional granulite terranes: implication for the formation of lowermost continental crust. In: Fountain D M, Arculus A, Kay R W, ed. Continental Lower Crust. Elsevier, 447-478.
    198. Mishra, D.C. Singh, B. Tiwari, V.M. Gupta S.B. and Rao, M.B.S.V. Two cases of continental collisions and related tectonics during the Proterozoic period in India -insights from gravity modelling constrained by seismic and magnetotelluric studies, Precambrian Research,2000, 99 :149-169
    199. Moyen, J.-F., Martin, H., Jayananda, M., Auvray, B., 2003. Late Archaean granites: a typology based on the Dharwar Craton (India). Precambrian Res. 127 :103– 123.
    200. Moyen, J.-F., Nedelec, A., Martin, H., Jayananda, M., 2003. Syntectonic granite emplacement at different structural levels: the Closepet granite, South India. J. Struct. Geol. 25:611 –631.
    201. Muller D,Rock N M S,Groves D I,1992,Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic setting: A pilot study. Mineral Petrol., 46:259-285.
    202. Muller D,Groves D I,2000, Potassic igneous rocks and associated Gold-Copper mineralization(3rd Ed.). Beilin: Springer-Verlag.
    203. Munksgaard,N C, 1984, high 18O and pre-eruptional Rb-Sr isochrones in cordierite-bearing Negene volcanics from SE Spain. Contrib. Min. Petrol., 87:351-358
    204. Newton R C, Perkins D. 1982. Thermodynamics calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene(clinopyroxene)-quartz. Am. Mineral., 67: 203-222.
    205. Newton R C. 1985. Temperature, pressure and metamorphic fluid regions in the amphiDolite facies to granulite facies transition zones. In: Tobi A C, Touret L R, ed. The Deep Proterozoic Crust in the North Atlantic Province. D Redial Publishing Company, 75-104.
    206. Nironen M. Elliott B.A. and R?m? O. T. 1.88-1.87 Ga post-kinematic intrusion of the Central Finland Granitoid Complex: a shift from C-type to A-type magmatism during lithospheric convergence . Lithos, 2000,53:37-58
    207. Nironen M. Elliott B.A. and R?m? O. T. 1.88-1.87 Ga post-kinematic intrusion of the Central Finland Granitoid Complex: a shift from C-type to A-type magmatism during lithospheric convergence . Lithos, 2000,53:37-58.
    208. O′Connor J T,1965,A classification forquartz-rich igneous rock based on feldspar ratios. U.S. Geol. Surv. Prof. Paper 525B, B79-B84
    209. O'Reilly S Y, Griffin W L, 1996, 4D lithosphere mapping: methodology and examples. Tectonophisics, 262:3-18.
    210. O'Nions R K, Gronvold K,1973, Petrogenetic relationships of acid and basic rocks in Iceland: Sr-isotopes and rare earth elements in late and postglacial volcanics. Earth Planet Sci. Lett., 19: 397-409
    211. Peacock S. M.,Rushmer,T., and Tomposon, A. B.,1994,Partial melting of subducting occeanic crust: EPSL, 121:227-244
    212. Pearce J A, Harris N B W,and Tindle A G, 1984,Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25:956-983.
    213. Percival J A, et al. 1989. Seismic reflection profiles across deep continental crust exposed in the Kapuskasing uplift structure. Nature, 342-420.
    214. Percival J A, Fountain D M, Salisbury M H. 1992. Exposed crustal cross sections as windows on the lower crust. In: Fountain D M, Arculus R, Kay R W, ed. Continental Lower Crust. Elsevier, Amsterdam, 317~362.
    215. Percival J A, Fountain D M. 1989. Metamorphism and melting at an exposed example of the Conard discontinuity, Kapuskasing Uplift, Canada. In: Bridgwate D, ed. Fluid Movement-Element Transport and the Composition of the Deep Crust. Kluwer, Dordrecht, 51~60.
    216. Percival J A, McGrath P H. 1986. Deep crustal structure and tectonic history of the northern Kapuskasing uplift of Ontario: An intergreted petrological-geophysical study~ Tectonics, 5: 553-552.
    217. Percival J A. 1990. Archean tectonic settings of granulite terranes of Superior Province, Canada, A view from bottom. In, Vielzeuf D, Vidal Ph, ed. Granulites and Crustal Evolution. Kluwer Academic Publishers, Netherlands 171-193.
    218. Rapp R P, Shimizu N., Norman M D, et al, 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8GPa. Chemical Geology, 160:335-356.
    219. Robberts M P and Clemens J D,1993. Origin of High-potassium calcalkaline I-type granites. Geology, 21:825-828.
    220. Rogers J J W, Santosh M. Configuration of Columbia, a Mesoporterozoic Supercontinet. Gondwana Research, 2002,5:5-22
    221. Rogers, J.J.W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res. 5:5-22.
    222. Rollinson H, Martin H, 2005Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation Introduction to the Special Issue. Lithos, 79: ix – xii
    223. Rudnick R L, Presper T. 1990. Geochemistry of intermediate-to high-pressure granulites. In: Vielzeuf D, Vidal Ph, ed. Granulites and Crustal Evolution. Kluwer, Dordrecht, 523-550.
    224. Rudnick R L. 1992. Xenoliths-Samples of the lower continental crust. In: Fountain D M, Arculus R, Kay R W, ed. Continental Lower Crust. Elsevier: Amsterdam, 269-316.
    225. Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Rew. Geophys. , 33:267-309.
    226. Salisbury M H, Fountain D M, ed. Exposed Cross-Section of Continental Crust. Kluwer Acad. Publ..
    227. Samsonov A V, Bogina M M , Bibikova E V et al. 2005. The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: implications for the tectonic setting of the Karelian greenstone belts, Baltic Shield. Lithos 79:83-106
    228. Sen, C., Dunn, T., 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib. Mineral. Petrol. 119, 422– 432
    229. Shirey, S.B., Hanson, G.N., 1984. Mantle-derived Archaean monzodiorites and trachyandesites. Nature 310:222–224.
    230. Smithies, R.H., Champion, D.C., 1999. High-Mg diorite from the Archaean Pilbara Craton: anorogenic magmas derived from a subduction-modified mantle. Geol. Surv. West. Aust. Annu. Rev. 1998-1999, 45-59.
    231. Smithies, R.H., 2000a . The Archaean tonalite – trondhjemite – granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett. 182: 115– 125.
    232. Smithies, R.H., Champion, D.C., 2000b, The Archaean high-Mg diorite suite: links to tonalite– trondhjemite– granodiorite magmatism and implications for early Archaean crustal growth. J. Petrol. 41: 1653-1671.
    233. Smithies, R.H.2002. Archaean boninites-like rocks in intracratonic setting. Earth and Plantetary Science Letters, 197:19-34
    234. Smithies, R.H., Champion, D.C., Cassidy, K.F., 2003. Formation of Earth's early Archaean continental crust. Precambrian Res. 127 Dacites and Related Rocks. Elsevier, Amsterdam, pp. 275-299.
    235. Smithson S B, Brown S K. 1977. A model for lower continental crust. Earth Planet. Sci. Lett. , 35:134-144.
    236. Sylvester P J . 1998. Post-collisional strongly peraluminous granites . Lithos , 45 : 29-44
    237. Tchameni R., Mezger K., Nsifa N.E. and Pouclet A..Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon.Lithos, 2001,57:23-42
    238. Thompson R N,1982, Magmatism of the British Tertiary Provinoe.Scott. J. Geol.,18:49-107.
    239. Tubi B, Taylor H P J, 1976, Oxygen isotope studies of potassic volcanic rocks of the Roman Province, Central Italy. Contrib Min. Petrol., 59:1-33
    240. Thurston P C, Fryer B J ,1983, The geochemistry of repetitive cyclical volcanism from basalt through rhyolite in the Uchi-Confederation Greenstone Belt, Canada. Contrib MineralPetrol, 83: 204-226
    241. Turner J,S ,1980,A fluid-dynamical model of di.erentiation and layering in magma chambers. Nature, 285: 213-215
    242. Vaisanen M. Manttari I. Kriegsman L.M. and Holtta P.Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos, 2000, 54:61-83
    243. Vaisanen M. Manttari I. Kriegsman L.M. and Holtta P.Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos, 2000, 54:61-83
    244. Varne R., 1985, Ancient subcontinental mantle: A source for K-rich orogenic volcanics. Geology, 13:405-408
    245. Wang H Z,Mo X X 1995, An outline of the tectonic evolution of China. Episodes, 1995, 19(5):6-16.
    246. Wedepohl K H, 1995, The composition of the continental crust. Geochim Cosmochim Acta, 59:1217-1232
    247. White A J R , Willams I S , Chappell B W. 1977. Ultrametamorphism and granitoid genesis. Tectonophysics , 43 : 7-12.
    248. Wilde S A , Zhao G C, Sun M. Development of the North China Craton during the Archae and its final a malgamation at 1.8 Ga: some speculations on its position within a global Paleoproterozoic supercontinent Gondwana Research, 2002,5:85-94
    249. Wilde Simon A, Cawood Peter A, Wang Kaiyi, Nemchin Alexander A,2005,Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24: 597–613
    250. Wilde, S. A., 1998, SHRIMP U–Pb zircon dating of granites and gneisses in the Taihangshan-Wutaishan area: Implications for the timing of crustal growth in the North China craton. The 9th International Conference on Geochronology, Cosmochronology and Isotope Geology, Abstract, Beijing, Chinese Science Bulletin, v. 43, p. 144.
    251. Wilde, S. A., Cawood, P., Wang, K. Y., and Nemchin, A., 1997, The relationship and timing of granitoid evolution with respect to felsic volcanism in the Wutai Complex, North China craton: Proceedings of the 30th International Geological Conference: Precambrian Geology and Metamorphic Petrology, 17: 75–88.
    252. Williams I S. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks W C, Ridley W I, eds. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 1998, 7: 1-35
    253. Winchester J A and Floyd P A, 1977, Geochemical discrimination of different Magma series and their differentiation products using immobile elements. Chem. Geol., 20:325-343.
    254. Wu F Y, Jahn B M , Wilde S A et al. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 2003, 66:191-204
    255. Wu F Y, Jahn B M ,Lo,C H et. al . Highly foretionated I-type granlites in NE China(I):geochronology and petrogenesis. Lithos, 2003, 66:241-273
    256. Wu Fuyuan, Zhao Guochun, Wilde Simon A, Sun Deyou,2005,Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24:523–545
    257. Wyellie P J . 1977. Crustal anatexis : An experimental review[J ] . Tectonophysics , 43 : 41-71.
    258. Wyman, D., Ayer, J., Devaney, J., 2000. Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters 179: 21-30.
    259. Yoder H S,1973,Contemporaneous basaltic and rhyolitic magmas. Am Mineral, 58: 153-171
    260. Zhai M G, Guo J H, Li Y G. et.al . Two linear granlite belts in the central-western North China Craton and their implication for Late Neoarchaean-Palaoproterozic continental evolution. Precambrain Research,2003, 127:267-283
    261. Zhai Mingguo , Liu Wenjun, 2003, Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Research, 122 :183–199.
    262. Zhai, M.G., Zhao, G.C., Zhang, Q., 2002. Does the Dongwanzi 2505 Ma ophiolite exist? Comment on ‘The Archean Dongwanzi ophiolite complex, North China craton: 2.505-billion-year-old oceanic crust and mantle' by T.M. Kusky et al. (2001). Science 295, 923a.
    263. Zhai, M G and Liu W J. Palaeoptroterozoic tectonic history of North China craton: a review. Precambrain Research, 2003, 122:183-199
    264. Zhai Mingguo, Guo Jinghui, Liu Wenjun,2005,Neoarchean to Paleoproterozoic continental evolution and tectonic historyof the North China Craton: a review Journal of Asian Earth Sciences 24:547–561
    265. Zhang H F,Sun M,Zhou X H,et al, 2002. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-,trace-element and Sr-Nd-Pb Isotope studies of Fangchengbasalts. Contrib. Mineral Petrol. 144:241-253.
    266. Zhang H F, Sun M, 2002. Geochemistry of Mesozoic basalts and Mafic dikes in southeastern North China craton, and tectonic implication. Int. Geol. Rev., 44:370-382.
    267. Zhao G C, Wilde S A, Cawood P A, et al, 1998, Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Inter Geol Rev, 40: 706~721
    268. Zhao G. C., Cawood, P. A., and Lu, L. Z., 1999, Petrology and P–T history of the Wutai amphibolites: implications for tectonic evolution of the Wutai Complex, China. Precambrian Research, 93:181–199.
    269. Zhao G C, Wilde S A, Cawood P A, et al, 1999, Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310: 37~53
    270. Zhao, G. C., Wilde, S. A., Cawood, P. A., and Lu, L. Z., 1999a, Thermal evolution of two types of mafic granulites in the North China craton: evidence for both mantle plume and collisional tectonics. Geological Magazine, 136:. 223–240.
    271. Zhao G. C., Peter A. Cawood, Simon A. Wilde, Min Sun, Liangzhao Lu, 2000, Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution, Precambrian Research, 103 :55-88
    272. Zhao, G. C., 2000, Petrology and P–T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China Craton. Journal of Metamorphic Geology, 18:375–391.
    273. Zhao G C, Cawood P A, Wilde S A, et al, 2001, Polymetamorphism of Archean mafic granulites from the Trans-North China Orogen: textural and thermobarometric evidence and tectonic implications. In: J Miller I S Buick, eds. Continental Reworking and Reactivation. Geol Soc Spec Publ, The Geological Society, London, 184: 323~342
    274. Zhao G C, Wilde S A, Cawood P A, et al, 2001,. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45~73
    275. Zhao G C, 2001, Paleoproterozic amalgamation of the North China Craton. Geological Magazine, 138:87-91
    276. Zhao, G. C., Cawood, P. A., Wilde, S. A., and Lu, L. Z., 2001b, High-pressure granulite (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonic implications. Journal of Petrology, 42:1141–1170.
    277. Zhao G C, Cawood P A, Wilde S A et. al. 2002, Review of global 2.1-1.8Ga orogens:implications for a pre-Rodinia supercontient. Earth-Science Reviews, 59:125-162
    278. Zhao Guochun, Sunin, Wilde S A, Li Sanzhong, 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136:177–202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700