用户名: 密码: 验证码:
复方壳多糖组织工程皮肤基底膜重建的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮肤基底膜是位于表皮与真皮之间的一条厚约0.5~1.0μm的重要结构,具有许多重要生物学功能,最明显的功能是紧密连接表皮与真皮,为表皮和真皮提供有力的结合力,避免生理条件下表皮的分离;另一个显著作用是确定表皮细胞的极性,提供表皮移行的屏障。在正常环境中,基底膜可抑制表皮细胞与真皮的直接接触。此外,还具有渗透和屏障等作用,在保持皮肤的完整性中起着不可替代的作用。
     皮肤基底膜主要由Ⅳ型和Ⅶ型胶原、LN(LN-5、6和10)、巢蛋白和基底膜蛋白多糖等多种成分组成。Ⅳ型胶原和LN是基底膜的两个主要组成成分,Ⅳ型胶原形成一级网络结构,提供显著的机械稳定性,LN结合到Ⅳ型胶原与巢蛋白等相互作用形成二级网络。在超微结构上,基底膜可大致分为三层,即透明板、致密板和纤维网层。透明板是位于致密板和形成高电子密度斑块即半桥粒的基底层细胞之间的区域。锚丝主要由LN-5聚集于透明板形成,与皮肤的半桥粒相对应。致密板主要由Ⅳ型胶原、LN和基底膜蛋白多糖组成的层状结构。纤维网层位于致密板下,含有原纤维,位于表真皮连接的主要由Ⅶ型胶原组成的锚原纤维。
     表真皮易于分离是目前双层组织工程皮肤的重要缺陷,其根本原因就是因为表真皮间没有构建完整的基底膜。即使形成了基底膜,其结构也不连续,表真皮结合能力不能适应操作需要。表真皮细胞的相互作用可以促进基底膜的成分蛋白如Ⅳ型、Ⅶ型胶原、巢蛋白、LN等大分子的合成,并形成多层次网络结构,共同维持表真皮连接的稳定性。
     皮肤替代物中致密层形成的形态学顺序如下:(1)沿着基底细胞内侧出现半桥粒结构;(2)局部出现与半桥粒以锚丝相连的致密板;(3)致密层侧向延长。其中,半桥粒结构可能会作为皮肤替代物的核心来促进基底膜的形成,并且半桥粒结构因加入LN-5而获得的增加量可以加速皮肤替代物的基底膜装配。
     LN-5是一种促进KC粘附非常有效的物质。LN-5定位于跨越透明板的锚丝。在体内,LN-5被证实是在真表皮连接中桥联基底层细胞和致密板的锚丝的的主要组成成分。目前已有学者利用在培养系统中加入外源性LN-5,促进表真皮间基底膜的形成,结果发现,在皮肤替代物中加入外源性LN-5的作用,可以促进致密板的形成,并呈浓度依赖性。
     本实验利用复方壳多糖组织工程皮肤技术平台,通过调节培养基的钙浓度影响KC与FB的相互作用,促进基底膜的形成;不同时相加入不同浓度的外源性LN,观察基底膜形成情况;首次将力学环境引入组织工程皮肤研究,模拟在体力学环境,对培养的组织工程皮肤进行垂直应力作用,观察种子细胞生物学行为改变后基底膜形成的情况;采用H.E.染色、PAS染色、Ⅳ型胶原、Ⅶ型胶原、CK14、LN等免疫组化染色、电镜等方法,观察基底膜构建情况;在此基础上,采用免疫印迹蛋白表达分析,测定陈旧培养基中游离LN-5的含量情况,探讨LN-5在构建组织工程皮肤基底膜中的作用;建立平板流动腔模型,对重建了基底膜的组织工程皮肤进行流体剪切力的作用,观察组织工程皮肤对剪切应力的耐受情况,初步评价组织工程皮肤的物理性能;将组织工程皮肤移植于动物全层创面,观察移植物覆盖创面情况。
     本实验获得如下主要研究结果:(1)通过调节培养基钙浓度和加入外源性LN,成功构建结构良好的基底膜,发现高钙环境和在培养7天后加LN更有助于基底膜的形成,加入高浓度的LN形成的基底膜要明显优于低浓度组;(2)首次建立组织工程皮肤的垂直应力作用模型,通过不同的应力作用,发现每天1次,持续15~30min的垂直应力作用,有助于基底膜体外重建;(3)构建了基底膜的组织工程皮肤,其表真皮间Ⅳ型胶原、Ⅶ型胶原及LN的免疫组化反应阳性,表皮下部分CK14染色呈阳性反应;(4)电镜下可见表真皮间有数目不等的半桥粒形成,尤以垂直应力作用后的组织工程皮肤明显;(5)陈旧培养基中游离LN-5的测定,结果提示垂直应力作用可促进KC分泌LN-5,低钙环境有利于KC增殖并合成LN-5,加入外源性LN可有效提高游离LN-5的浓度;(6)构建了基底膜的组织工程皮肤,可以抵抗一定的剪切应力,尤以经过垂直应力作用的组织工程皮肤为佳;(7)组织工程皮肤可有效修复动物全层皮肤缺损创面。
     本研究通过在培养系统中调节钙浓度,添加外源性LN,成功地构建了基底膜结构,利用H.E.染色、PAS染色、免疫组化、电镜等技术,评价基底膜的组织学结构及重建水平;对LN在组织工程皮肤基底膜重建中的中心作用进行了有益的探索,明确了LN在基底膜分子网络形成中的重要地位;模拟在体毛细血管压力的力学环境,观察了垂直应力作用对基底膜形成的影响,发现给予垂直应力有利于基底膜的重建,并在增加半桥粒的数目上有明显作用;利用平板流动腔模型,对获得的重建了基底膜的组织工程皮肤进行初步的力学评价。本实验结果提示,进行组织工程皮肤器官型培养,培养基钙浓度以1.95mM为宜,LN添加以20μg/ml为宜,且加入的最佳时间是在培养7天后,组织工程皮肤分层分化最好的时间在培养15天左右。本研究首次提出了优化培养条件的方案,证实了LN-5在重建基底膜中的中心作用;首次在组织工程皮肤研究中引入力学因素,证实了力学环境因素对体外构建基底膜的影响,将为皮肤组织工程的研究开辟新的方向,也为进一步理解体外构建基底膜结构的机制奠定了基础。
The skin basement membrane (BM) is a key structure with 0.5 to 1.0μm thickness that establishes the boundary between epidermis and dermis and has many important biological functions. Its most obvious function is to tightly link the epidermis to the dermis. Another obvious function of the BM is to determine the polarity of the epidermis and to provide a barrier to epidermal migration. Under normal circumstances, BM prevents the direct contact of epidermal cells with the dermis. Moreover, the BM has the ability of permeation and barrier, and plays the important exclusive role in supporting tissue integrity.
     BMs of human skin are heterogeneous aggregates composed of type IV and VII collagens, several kinds of laminins (such as laminins 5, 6 and 10), nidogen and perlecan. Type IV collagen and laminin are two major components of BM. Type IV collagen forms a network that confers the distinct mechanical stability known to BM. Laminin binds to collagen IV and forms a second network by interacting with nidogen. Ultrastructurally, the BM may be morphologically divided into three layers: the lamina lucida, the lamina densa and the lamina fibroreticularis. The lamina lucida is a region between the lamina densa and the basal keratinocytes which forms electrondense plaques, called hemidesmosomes. Anchoring filaments composed primarily of LN-5 accumulate in the lamina lucida opposite to the hemidesmosomes in skin. The lamina densa is a sheet-like structure which is primarily composed of type IV collagen, laminins and perlecan. The lamina fibroreticularis underlies the lamina densa and contains fine fibrils, such as anchoring fibrils, which are composed primarily of type VII collagen at the dermal-epidermal junction.
     It is a common defect of the tissue-engineered skin substitute at present that epidermis separates from dermis easily for lacking of BM reconstruction between the dermis and epidermis. Keratinocyte-fibroblast interaction in organotypic skin culture can promote synthesis of these BM components such as collagen IV, collagen VII, nidogen and laminins, forming network to keep the stability of the dermal-epidermal junction.
     The morphological sequence of the lamina densa formation in skin equivalents is as follows: (1) the appearance of hemidesmosomal structures along the inner leaflet of the subepidermal cell membrane of basal keratinocytes; (2) the focal appearance of the lamina densa with anchoring filaments in apposition to the hemidesmosomes; (3) the lateral elongation of the lamina densa.
     LN-5 is the most efficient substrate for the attachment of keratinocytes. LN-5 has been located to the anchoring filaments that traverse the lamina lucida. In vivo skin, LN-5 was identified as one of the major components of these anchoring filaments, which bridge the basal keratinocytes and the lamina densa at the dermal-epidermal junction. LN-5 was exogenously added into the culture system to promote the assembly of the BM at the dermal-epidermal junctions. It was found that exogenously added LN-5 in skin substitute culture medium can accelerate the assembly of lamina densa in a concentration-dependent manner.
     In this experiment, keratinocyte-fibroblast interaction was influenced by regulation of calcium concentration in culture medium to promote the BM formation on the composite chitosan tissue-engineered skin model. LN-5 of different level was exogenously added in culture medium at different phase to observe the assembly of BM. Modelling in vivo mechanics environment, vertical stress was applied in the culture system of tissue-engineered skin to observe the biological behavior change of the seed cells and the BM formation.
     To survey the BM construction, staining with hematoxylin & eosin and PAS were adopted,while collagens IV and VII and LN-5 detected immunohistochemically at the dermal-epidermal junction. The sections were also examined with an electron microscope. Soluble LN-5 in conditioned culture medium was analyzed by western blot to investigate the role of LN-5 in BM construction in tissue-engineered skin. A kind of flow loop system of parallel plate flow chamber to employ gravitate of pouring was established to value the ability of tissue-engineered skin with reconstructing BM in resist to fluid shear stress. The skin was placed on full-thickness excised wound in New Zealand rabbit. The healing of wound was observed.
     The main results are as follows:
     (1) The BM was reconstructed successfully in vitro by regulation of calcium concentration in culture medium and addition of LN exogenously. The better circumstance for BM formation is high level calcium medium and added LN into system after 7 days culture, depending on the concentration of laminin supplemented. These results suggest that LN-5 accelerate formation of the lamina densa along the dermal-epidermal junction of the skin equivalents;
     (2)In model of stress on tissue-engineered skin, vertical stress applied for 15 to 30 minutes every day was helpful to restruct BM in vitro;
     (3)The major BM components such as collagens IV and VII and LN-5 were detected immunohistochemically at the dermal-epidermal junction in the skin;
     (4)Hemidesmosomes formation at the dermal-epidermal junction at different level were observed by electron microscopy. Hemidesmosomes in tissue-engineered skin with vertical stress were significant in quantity;
     (5)Soluble LN-5 was examined in conditioned medium. The vertical stress can promote keratinocyte to secret LN-5. Low level of calcium in medium was helpful for keratinocyte to proliferate and synthesis LN-5. Supplement with exogenous LN can obviously level the concentration of soluble LN-5 in medium;
     (6)The tissue-engineered skin with reconstruction of BM have better tolerance to shear stress in some degree, especially in skin under stress;
     (7)The composite chitosan tissue-engineered skin is good for recovery of full-thickness excised wound in rabbit.
     In conclusion, this experiment had established a model of reconstruction of BM in vitro by regulation of calcium concentration and supplement with exogenous LN in culture medium. To examine the histological analysis of BM, hematoxylin & eosin staining, PAS staining, immunohistochemistry and transmission electron microscopy were applied. The crucial role of LN in the reconstruction of BM in tissue-engineered skin had been explored, and the importance of LN in the formation of BM network was confirmed. By mimesis dynamics environment in vivo, the effect of vertical stress to BM formation was examined. It was revealed that the vertical stress applied was benefitial to the reconstruction of BM and there was significant increase in the hemidesmosome. By parallel-plate flow chamber, dynamic assessment of tissue engineering skin with BM reconstruction was obtained.
     It was concluded that the best organotypic culture environment for tissue-engineered skin was medium containing 1.95 mM Ca~(2+) and supplemented with laminin 5 at a concentration of 20ug/ml from day 7 culture. The keratinocytes formed a best stratified squamous epithelium within 15 days with the presence of basal, spinous, granular and corneal cell layers. This study revealed the key role of LN-5 in the reconstruction of BM and the effect of the dynamic factor to BM formation, and established the base for further insight into the mechanism of BM formation in vitro.
引文
1.Bruckner-Tuderman L.Biology and pathology of the skin basement membrane zone.Matrix Biol,1999;18:3-4
    2.Ray MC,Gately Ⅲ LE.Basement Membrane Zone.Clin in Dermatol,1996;14:321-330
    3.Amano S,Akutsu N,Matsunaga Y,et al.Importance of Balance between Extracellular Matrix Synthesis and Degradation in Basement Membrane Formation.Exp Cell Res,2001;271:249-262
    4.De Arcangelis A,Neuville P,Boukamel R,et al.Inhibition of laminin alpha 1-chain expression leads to alteration of basement membrane assembly and cell differentiation.J.Cell Biol,1996;133:417-430
    5.McMillan JR,Akiyama M,Shimizu H.Epidermal basement membrane zone components:ultrastructural distribution and molecular interactions.J Dermatol Sci,2003;31:169-177
    6.Ghohestani RF,Li K,Rousselle P,et al.Molecular Organization of the Cutaneous Basement Membrane Zone.Clin Dermatol,2001;19:551-562
    7.Rheinwald JG,Green H.Serial cultivation of strains of human epidermal keratinocytes,the formation of keratinizing colonies from single cells.Cell,1975;6:331-334
    8.Gallico GG,O'connor NE,Compton CC,et al.Ⅲ.Permanent coverage of large burn wounds with autologous cultured human epithelium.N Eng J Med,1984;311:448-451
    9.Phillips TJ.New skin for old-developments in biological skin substitutes.Arch Dermatol,1998;134:344-349
    10.Berthod F,Damour O.In vitro reconstructed skin models for wound coverage in deep burns.Br J Dermatol,1997;136:809-816
    11.Hansbrough JF,Franco ES.Skin replacement.Clin Plast Surg,1998;25:407-423
    12.Spiclvogel RL.A histologic study of Dermagraft-TC in patients' burn wounds.J Burn Care Rehabil,1997;18:S16-S21
    13.朱堂友,伍津津,胡浪,等.壳多糖-胶原-糖胺聚糖凝胶人工皮肤的初步研究.中国修复重建外科杂志,2003;17:113-116
    14.鲁元刚,伍津津,朱堂友,等.复合壳多糖人工皮肤修复家兔全层皮肤缺损的实验研究.中华烧伤杂志,2002;18:19-22
    15.雷霞,伍津津,朱堂友,等.复方壳多糖人工皮肤促进创面愈合的作用.中国临床康复2004,8:3300-3302
    16.Spirito F,Chavanas S,Prost-Squarcioni C,et al.Reduced expression of the epithelial adhesion ligand laminin 5 in the skin causes intradermal tissue separation.J Biol Chem,2001;276:18828-18835
    17.鲁元刚,伍津津,朱堂友,等.复合壳多糖人工皮肤组织学特征研究.中国临床康复,2002;6:518-519
    18.Nolte CJ,Oleson MA,Hansbrough JE,et al.Ultrastructural features of composite skin cultures grafted onto athymic mice.J Anat,1994;185:325-333
    19.Borradori L,Sonnenberg A.Structure and function of hemidesmosomes:more than simple adhesion complexes.J Invest Dermatol,1999;112:411-418
    20.Osawa T,Nozaka Y.Mouse epidermal basement membrane fixed by microwave irradiation,with special reference to half desmosomes.Connect Tissue Res,1992;23:65-70
    21.Tsunenaga M,Adachi E,Amano S,et al.Laminin 5 Can Promote Assembly of the Lamina Densa in the Skin Equivalent Mode.Matrix Biol,1998;17:603-613
    22.Nagatom iJ,Arulanandam BP,Metzger DW,et al.Frequency and duration dependent effects of cyclic pressure on select bone cell functions.Tissue Eng,2001;7:717-728
    23.李彬,张西正,张永亮,等.骨组织工程中的应力与生长.国外医学生物医学工程分册,2003;26:129-134
    24.FreedL E,Hollander AP,Martin I,et al.Chondrogenesisin a cell polymer bioreactor systerm.Exp Cell Res,1998;240:58-65
    25.Sodian R,Lemke T,FritscheC,et al.Tissue-engineering bioreactors:a new combined cell seeding and perfusion system for vascular tissue engineering.Tissue Eng,2002;8:863-870.
    26.Langer R,Vacanti JP.Tissue engineering.Science,1993;260:920
    27.ZacchiV,SoranzoC,Cortivo R,etal.In vitro engineering of human skin like tissue.J Biomed Mater Res,1998;40:187
    28.周宏祁,谭谦.皮肤组织工程学研究进展.中华烧伤杂志,2001;17:56-59
    29.Nishiyama T,Amano S,Tsunenaga M.The importance of laminin 5 in the dermal-epidermal basement membrane.J Dermatol Sci,2000;25:S51-S59
    30.Vacanti CA,Upton J.Tissue-engineering morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices.Bone Rep and Reg,1994;12:445-452
    31.Pollok JM,Vacanti JP.Future materials for foot surgery.Semin Pediatr Surg,1996;5:191-196
    32.Kirsner RS.The use of Apligrafin acute wounds.J Dermatol,1998;25:805-811
    33.Kim DS,Mooney D.Development of biocompatible synthetic extracellular matrices for tissue engineering.Tibtech,1998;16:224-231
    34.Arase S,Sadamoto Y,Katoh S.Coculture of human hair follicles and dermal papillae in type Ⅰ collagen gel.Ann NY Acad Sci,1991;642:454-456
    35.Jahoda CAB,Reynolds AJ.Dermal-epidermal interactions:Adult follicle-derived cell populations and hair growth.Dermatol Clin,1996;14:573-583
    36.Hintermann E,Quaranta V.Epithelial cell motility on laminin-5:regulation by matrix assembly,proteolysis,integrins and erbB receptors.Matrix Biol,2004;23:75-85
    37.O'Tool EA,Marinkovich MP,Hoeffler WK,et al.Laminin-5 Inhibits Human Keratinocyte Migration.Exp Cell Res,1997;233:330-339
    38.Salo S,Haakana H,Kontusaari S,et al.Laminin-5 promotes adhesion and migration of epithelial cells:identification of a migration-related element in the γ2 chain gene (LAMC2) with activity in transgenic mice.Matrix Biol,1999;18:197-210
    39.Amano S,Nishiyama T,Kobayashi T.Possible Relationship Between MMP-9Induction and Increased Release of Laminin 5 in Human Keratinocytes.J Dermatol Sci,1998;16:S80
    40.Kawakita T,Espana EM,He H,et al.Calcium-induced abnormal epidermal-like differentiation in cultures of mouse corneal-limbal epithelial cells,Invest Ophthalmol Vis Sci,2004;45:3507-3512
    41.王伯云主编.病理学技术.北京:人民卫生出版社,2000:150-151
    42.孙勇,张其清.组织工程在病损组织替代中的作用.国外医学生物医学工程分册,1999;22:31-36
    43.潘君,王远亮,蔡绍皙.组织工程中的优化设计.生物医学工程学杂志,2000;17:461-463
    44.Smola H,Stark HJ,Thiekotter G,et al.Dynamics of Basement Membrane Formation by Keratinocyte-Fibroblast Interactions in Organotypic Skin Culture. Exp Cell Res, 1998; 239:399-410
    45. Sasaki H, Itoh T, Akamatsu H,et al.Effects of calcium concentration on the SOD activity and UVB-induced cytotoxicity in cultured human keratinocytes. Photodermatol Photoimmunol Photomed,2005;21:9-14
    46. Poumay Y, Dupont F, Marcoux S, et al.A simple reconstructed human epidermis: preparation of the culture model and utilization in in vitro studies. Arch Dermatol Res, 2004;296:203-211.
    47. Ma¨kela¨M, Larjava H, Pirila¨E,et al.Matrix Metalloproteinase 2 (Gelatinase A) Is Related to Migration of Keratinocytes. Exp Cell Res, 1999; 251:67-78
    48. Ura H, Takeda F, Okochi H. An in vitro outgrowth culture system for normal human keratinocytes.J Dermatol Sci,2004;35:19-28.
    49. Timpl R. Macromolecular organization of basement membranes.Curr Op Cell Biol,1996;8:618-624.
    50. Aumailley M,Smyth N.The role of laminins in basement membrane function. J Anat, 1998;193:-21.
    51. Cheng YS, Champliaud MF, Burgeson RE, et al.Self-assembly of laminin isoforms. J Biol Chem, 1997;272:31525-31532.
    52. Champliaud MF, Lunstrum GP, Rousselle P,et al.Human amnion contains a novellaminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelialstromal attachment. J Cell Biol, 1996; 132:1189-1198
    53. Aumailley M, Rousselle P. Laminins of the dermo-epidermal junction. Matrix Biol, 1999;18:19-28.
    54. Sasaki T, Gohring W, Mann K, et al. Short arm region of laminin-5 gamma2 chain: structure, mechanism of processing and binding to heparin and proteins. J Mol Biol, 2001 ; 314:751-763
    55. Chen M, Marinkovich MP, Jones JC,et al. NCI domain of type VII collagen binds to the beta 3 chainof laminin5 via a unique subdomain within the fibronectin-like repeats. J Invest Dermatol, 1999; 112:177-183.
    56. Yamane Y, Yaoita H, Couchman JR. Basement membrane proteoglycans are of epithelial origin in rodent skin.J Invest Dermatol, 1996; 106: 531-537.
    57. Birchmeier C, Birchmeier W. Molecular aspects of mesenchymal-epithelial interactions. Annu Rev Cell Biol, 1993; 9: 511-540
    58. Wu Y, Nan L, Bardag-Gorce F,et al.The role of laminin-integrin signaling in triggering MB formation.An in vivo and in vitro study. Exp Mole Pathol,2005;79:1-8
    59. Arlian LG, Morgan MS, Neal JS. Modulation of cytokine expression in human keratinocytes and fibroblasts by extracts of scabies mites.Am J Trop Med Hyg, 2003;69:652-656.
    60. Breitkreutz D,Mirancea N,Schmidt C, et al. Inhibition of basement membrane formation by a nidogen-binding laminin gamma1 -chain fragment in human skin-organotypic ocultures. J Cell Sci, 2004; 117:2611 -2622
    61. Stark HJ, Willhauck MJ, Mirancea N,et al. Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic. Eur J Cell Biol, 2004;83:631-645
    62. El Ghalbzouri A, Jonkman MF, Dijkman R,et al.Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Invest Dermatol,2005;124:79-86
    63. Boxman I, Lowik C, Aarden L,et al. Modulation of IL-6 production and IL-1 activity by keratinocyte-fibroblast interaction. J Invest Dermatol,1993;101:316-324.
    64. Kessler-Becker D, Krieg T, Eckes B. Expression of pro-inflammatory markers by human dermal fibroblasts in a three-dimensional culture model is mediated by an autocrine interleukin-1 loop.Biochem J, 2004;379:351-358
    65. Cerezo A, Stark HJ, Moshir S, et al. Constitutive over expression of human telomerase reverse transcriptase but not cmyc block sterminal differentiation in human HaCaT skin keratinocytes. J Invest Dermatol, 2003; 121:110-119
    66. Hudson BG, Reeders ST, Tryggvason K. Type IV collagen: structure, gene rganization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem,1993; 268:26033-26036
    67. Bix G, Iozzo RV.Matrix revolutions: 'tails' of basement-membrane components with angiostatic functions. Tren Cell Biol, 2005;15:52-60
    68. Ali L, Bradley DA, Green E.The structure and organisation of type-IV collagen in normal and glycated basement membrane. Rad Phy Chem, 2004;71: 953-956
    69. Rousselle P, Keene DR, Ruggiero F, et al. Laminin-5 binds the NC-1 domain of type VII collagen. J Cell Biol,1997;138:719-728
    70. Brittingham R, Uitto J, Fertala A.High-affnity binding of the NC1 domain of collagen VII to laminin 5 and collagen IV. Biochem Biophy Res Commun, 2006;343:692-699
    71. Utani A, Nomizu M, Yamada Y. Fibulin-2 binds to the short arms of laminin-5 and laminin-1 via conserved amino acid sequences. J Biol Chem, 1997;272:2814-2820
    72. Sitaru C,Mihai S,Otto C,et al.Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen. J Clin Invest, 2005; 115:870-878
    73. Burgeson RE, Lunstrum G.P, Rokosova B, et al. The structure and function of type VII collagen. Ann NY Acad Sci, 1990;580: 32-431 .
    74. Rousselle P, Lunstrum GP, Keene DR,et al. Kalinin: an epithelium specific basement membrane adhesion molecule that is a component of anchoring filaments.J Cell Biol, 1991;114:567-576
    75. Ryan MC, Lee K, Miyashita Y, et al. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 1999;145:1309-1323
    76. Smyth N, Vatansever HS, Murray P, et al. Absence of basement membranes after targeting the LAMCl gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol,1999;144:151-160
    77. Baker SE,Hopkinson SB,Fitchmun M,et al. Laminin-5 and hemidesmosomes: role of the alpha 3 chain subunit in hemidesmosome stability and assembly. J Cell Sci, 1996; 109:2509-2520
    78. Amano S, Akutsu N, Ogura Y, et al. Increase of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids. Br J Dermatol, 2004; 151: 961-970
    79. Kariya Y, Miyazaki K.The basement membrane protein laminin-5 acts as a soluble cell motility factor. Exp Cell Res, 2004;297:508-520
    80. Kikkawa Y, Umeda M, Miyazaki K. Marked stimulation of cell adhesion and motility by ladsin, a laminin-like scatter factor. J Biochem, 1994; 116:862-869
    81.Hormia M,Falk-Marzillier J,Plopper G,et al.Rapid spreading and mature hemidesmosome formation in HaCaT keratinocytes induced by incubation with soluble laminin-5.J Invest Dermatol,1995;105:557-561
    82.Baker SE,DiPasquale A,Stock EL,et al.Morphogenetic effects of soluble laminin-5on cultured epithelial cells and tissue explants.Exp Cell Res,1996;228:262-270
    83.Delwel GO,de Melker AA,Hogervorst F,et al.Distinct and overlapping ligand specificities of the alpha 3A beta 1 and alpha 6A beta 1 integrins:recognition of laminin isoforms.Mol Biol Cell,1994;5:203-215
    84.Niessen CM,Hogervorst F,Jaspars LH,et al.The α6β4 integrin is a receptor for both laminin and kalinin.Exp Cell Res,1994;211:360-367
    85.Valencia IC,Falabella AF,Eaglstein WH.Skin grafting.Dermatol Clin,2000;18:521-532
    86.Eaglstein WH,Falanga V.Tissue engineering and the development of Apligraf,a human skin equivalent.Cutis,1998;62S:1-8
    87.雷霞,伍津津,朱堂友,等.复方壳多糖真皮替代物体外抗菌作用的研究.中华皮肤科杂志,2005;38:220-221
    88.鲁元刚,伍津津,朱堂友,等.复合壳多糖人工皮肤生物安全性研究.中国临床康复,2002,6:2695-2696
    89.鲁元刚,伍津津,朱堂友,等.复合壳多糖人工皮肤毒副作用评价.中国临床康复,2002,6:3363-3364
    90.Tetsu Y,Noriko Y,Yoji Y,et al.Regulation of extracellular matrix production and degradation of endothelial cells by shear stress.Intern Congr Series,2004;1262:407-410
    91.Askari M,Gabbay JS,Tahernia A,et al.Favorable morphologic change of preosteoblasts in a three-dimensional matrix with in vitro microdistraction.Plast Reconstr Surg,2006;117:449-461
    92.张英,崔磊,刘伟,等.力学环境对软骨基质代谢的影响.中国生物工程杂志,2003;23:80-83
    93.Glogauer M,Arora P,Yao G,et al.Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching.J Cell Sci,1997;110:11-21
    94.张西正,匡震邦,蔡绍皙,等.一种平板流动腔重力灌流系统的力学分析.医用生物力学,1998;13:129-134
    95.姜伟元,李惜惜,覃开荣.平行平板流动腔的合理设计和使用.医用生物力学,1996;11:97-102
    1. Ellison J, Garrod DR. Anchoring filaments of the amphibian epidermal-dermal junction transverse the basallamina entirely from plasma membranes of hemidesmosomes to the dermis. J Cell Sci,1984;72:163-172
    2. Borradori L, Sonnenberg A. Structure and function of hemidesmosomes: more than simple adhesion complexes.J Invest Dermatol, 1999;112:411-418
    3. Green KJ, Jones JCR. Desmosomes and hemidesmosomes: structure and function of molecular components.FASEB J, 1996; 10:871-881
    4. Christiano AM, Uitto J. Molecular complexity of the cutaneous basement membrane zone. Revelations from the paradigms of epidermolysis bullosa. Exp Dermatol, 1996;5:1-11
    5. Rabinovitz I, Mercurio AM. The integrin [alpha]6[beta]4 and the biology of carcinoma. Biochem Cell Biol, 1996;74:811-821
    6. Wiche G. Role of plectin in cytoskeleton organization and dynamics. J Cell Sci, 1998;111:2477-2486
    7. Wiche G, Becker B, Luber K, et al. Cloning and sequencing of rat plectin indicates a 466-kD polypeptide chain with a three domain structure based on a central alpha-helical coiled-coil. J Cell Biol, 1991;114:83-99
    8. McLean WHI, Pulkkinen L, Smith FJD, et al. Loss of plectin causes epidermolysis bullosa with muscular dystrophy: cDNA cloning and genomic organization. Genes Dev, 1996;10:1724-1735
    9. Niessen CM, Hulsman EHM, Oomen LCJM, et al. A minimal region on the integrin [beta]4 subunit that is critical to its localization in hemidesmosomes regulates the distribution of HD1/plectin in COS-7 cells. J Cell Sci ,1997;110:1705-1716
    10. Rezniczek GA, de Pereda JM, Reipert S, et al. Linking integrin [alpha]6[beta]4-based cell adhesion to the intermediate filament cytoskeleton: direct interaction between the [beta]4 subunit and plectin at multiple molecular sites. J Cell Biol, 1998; 141:209-225
    11. Foisner R, Malecz N, Dressel N, et al. M-phase specific phosphorylation and structural rearrangement of the cytoplasmic cross-linking protein plectin involve p34cdc2 kinase. Mol Biol Cell,1996;7:273-288
    12. Malecz N, Foisner R, Stadler C,et al. Identification of plectin as a substrate of p34cdc2 kinase and mapping of a single phosphorylation site. J Biol Chem, 1996;271: 8203-8208
    13. Proby C, Fujii Y, Owaribe K,et al. Human autoantibodies against HD1/plectin in paraneoplastic pemphigus. J Invest Dermatol ,1999; 112:153-156
    14. Ruhrberg C, Watt FM. The plakin family, versitile organizer of cytoskeletal architecture. Curr Opin Gen Dev, 1997;7:392-397
    15. Yang Y, Dowling J, Yu Q-C, et al. An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell, 1996;86:655—665
    16. Leung CL, Zheng M, Prater SM, et al. The BPAGl locus : alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol, 2001; 154:691-697
    17. Favre B, Fontao L, Koster J, et al. The hemidesmosomal protein bullous pemphigoid antigen 1 and the integrin beta 4 subunit bind to ERBIN. Molecular cloning of multiple alternative splice variants of ERBIN and analysis of their tissue expression. J Biol Chem, 2001;276:32427-32436
    18. DiPersio CM, van der Neut R, Georges-Labouesse E, et al. alpha3betal and alpha6beta4 integrin receptors for laminin-5 are not essential for epidermal morphogenesis and homeostasis during skin development. J Cell Sci, 2000;l 13: 3051-3062
    19. Brakebusch C, Grose R, Quondamatteo F, et al. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on eratinocytes. EMBO J, 2000; 19:3990-4003
    20. Tamura RN, Rozzo C, Starr L, et al. Epithelial integrin[alpha]6[beta]4: complete primary structure of [alpha]6 and variant forms of [beta]4. J Cell Biol, 1990;111:1593-1604
    21. Sonnenberg A, Calafat J, Janssen H, et al. Integrin [alpha]6/[beta]4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol, 1991 ;113:907-917
    22. Hertle MD, Adams JC, Watt FM. Integrin expression during human epidermal development in vivo and in vitro. Development, 1991 ;112:193-206
    23. Giancotti FG. Signal transduction by the [alpha]6[beta]4 integrin: charting the path between laminin binding and nuclear events. J Cell Sci ,1996; 109:1165-1172.
    24. Murgia C,Blaikie P,Kim N,et al.Cell cycle and adhesion defects in mice carrying a targeted deletion of the integrin [beta]4 cytoplasmic domain. EMBO J,1998;17:3940-3951
    25. Kurpakus MA, Stock EL, Jones JC. Analysis of wound healing in an in vitro model:early appearance of laminin and a 125× 10(3) Mr polypeptide during adhesion complex formation. J Cell Sci, 1990;96:651-660
    26. Georges-Labouesse E, Messaddeq N, Yehia G, et al. Absence of integrin [alpha]6 leads to epidermolysis bullosa and neonatal death in mice. Nature Genet, 1996;13:370-373
    27. Dowling J, Yu Q-C, Fuchs E. [beta]4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol, 1996; 134:559-572
    28. Marchisio PC, Bondanza S, Cremona O, et al. Polarized expression of integrin receptors (alpha 6 beta 4, alpha 2 beta 1, alpha 3 beta 1, and alpha v beta 5) and their relationship with the cytoskeleton and basement membrane matrix in cultured human keratinocytes.J Cell Biol, 1991;112:761-773
    29. DiPersio CM, Hodivala-Dilke KM, Jaenisch R, et al. alpha3 beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol, 1997; 137:729-742
    30. Hodivala-Dilke KM, DiPersio CM, Kreidberg JA, et al. Novel roles for alpha3betal integrin as a regulator of cytoskeletal assembly and as a trans-dominant inhibitor of integrin receptor function in mouse keratinocytes.J Cell Biol, 1998;142:1357—1369
    31. Fleischmajer R, Utani A, MacDonald ED, et al. Initiation of skin basement membrane formation at the epidermo-dermal interface involves assembly of laminins through binding to cell membrane receptors. J Cell Sci, 1998;111:1929-1940
    32. Aumailley M, Pesch M, Tunggal L, et al. Altered synthesis of laminin 1 and absence of basement membrane component deposition in (beta)1 integrin-deficient embryoid bodies. J Cell Sci, 2000; 113:259-268
    33. Gonzales M, Haan K, Baker SE, et al. A cell signal pathway involving laminin-5, alpha3 betal integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. Mol Biol Cell, 1999; 10:259-270
    34. Goldfinger LE, Hopkinson SB, deHart GW, et al. The alpha3 laminin subunit, alpha6beta4 and alpha3betal integrin coordinately regulate wound healing in cultured epithelial cells and in the skin. J Cell Sci, 1999;112:2615- 2629
    35. Vidal F, Aberdam D, Miquel C, et al. Integrin beta 4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat Genet, 1995; 10:229-234
    36. Burgeson RE, Christiano AM. The dermo-epidermal junction. Curr Opin Cell Biol ,1997;9:651-658
    37. Timpl R. Macromolecular organization of basement membranes. Curr Op Cell Biol, 1996;8:618-624
    38. Yurchenco PD, Tsilibary EC, Charonis AS, Furthmayr H. Laminin polymerization: Evidence for a two-step assembly with domain specificity. J Biol Chem ,1985;260: 7636-7644
    39. Yurchenco PD, Cheng YS, Colognato H. Laminin forms an independent network in basement membranes. J Cell Biol ,1992;117:1119-1133
    40. Ghohestani RF, Li K, Rousselle P, et al. Molecular organization of the cutaneous basement membrane zone. Clin Dermatol, 2001; 19:551-562
    41. Poschl E, Mayer U, Stetefeld J, et al. Site-directed mutagenesis and structural interpretation of the nidogen binding site of the laminin gammal chain. Embo J,1996;15:5154-5159
    42. Battaglia C, Mayer U, Aumailley M, et al. Basement membrane heparan sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by sites in the protein core. Eur J Biochem ,1992;208:359-366
    43. Reinhardt D, Mann K, Nischt R, et al. Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. J Biol Chem, 1993;268:10881-10887
    44. Aumailley M,Smyth N.The role of laminins in basement membrane function. J Anat, 1998;193:1-21
    45. Champliaud MF, Lunstrum GP, Rousselle P, et al. Human amnion contains a novel laminin variant, laminin 7,which like laminin-6, covalently associates with laminin-5 to promote stable epithelial-stromal attachment. J Cell Biol, 1996; 132:1189-1198
    46. Utani A, Nomizu M, Yamada Y. Fibulin-2 binds to the short arms of laminin-5 and laminin-1 via conserved amino acid sequences. J Biol Chem, 1997;272:2814-2820
    47. Sasaki T, Gohring W, Mann K, et al. Short arm region of laminin-5 gamma2 chain: structure, mechanism of processing and binding to heparin and proteins. J Mol Biol, 2001 ;314:751-763
    48. Chen M, Marinkovich MP, Jones JC, et al. NC1 domain of type VII collagen binds to the beta 3 chainof laminin5 via a unique subdomain within the fibronectin-like repeats. J Invest Dermatol ,1999; 112:177-183
    49. Ryan MC, Lee K, Miyashita Y, et al. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol ,1999;145:1309-1323
    50. Smyth N, Vatansever HS, Murray P, et al. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol ,1999;144:151-160
    51. Baker SE, Hopkinson SB, Fitchmun M, et al. Laminin-5 and hemidesmosomes: role of the alpha 3 chain subunit in hemidesmosome stability and assembly. J Cell Sci, 1996; 109:2509-2520
    52. Maecker HT, Todd SC, Levy S. The tetraspanin superfamily:molecular facilitators. FASEB J, 1997; 11:428-442
    53. Sincock PM, Mayrhofer G, Ashman LK. Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9,CD63, and alpha5betal integrin. J Histochem Cytochem, 1997;45:515-525
    54. Sterk LMT, Geuijen AW, Oomen LJM, et al. The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin a6b4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol ,2000; 149:969-982
    55. Sterk LM, Geuijen CA, van den Berg JG, et al. Association of the tetraspanin CD151 with the laminin-binding integrins alpha3betal,alpha6betal, alpha6beta4 and alpha7betal in cells in culture and in vivo. J Cell Sci ,2002; 115:1161-1173
    56. Zhang XA, Kazarov AR, Yang X, et al.Function of the tetraspanin CD151-alpha6betal integrin complex during cellular morphogenesis. Mol Biol Cell, 2002;13:1-11
    57. Zillikens D, Giudice GJ. BP180/type XVII collagen: its role in acquired and inherited disorders of the dermal-epidermal junction. Arch Dermatol Res, 1999;291:187-194
    58. Mayne R, Brewton RG. New members of the collagen superfamily. Curr Opin Cell Biol, 1993;5:883-890
    59. Ishiko A, Shimizu H, Masunaga T, et al. 97-kDa linear IgA bullous dermatosis (LAD) antigen localizes to the lamina lucida of the epidermal basement membrane. J Invest Dermatol, 1996;106:739-743
    60. Balding SD,Diaz LA,Giudice GJ.Are combinant form of the human BP180 ectodomain forms a collagen-like homotrimeric complex. Biochemistry ,1997;36: 8821-8830
    61. Borradori L, Koch PJ, Niessen CM, et al. The localization of bullous pemphigoid antigen 180 (BP180) in hemidesmosomes is mediated by its cytoplasmic domain and seems to be regulated by the [beta]4 integrin subunit.J Cell Biol, 1997;136:1333-1347
    62. Masunaga T, Shimizu H, Yancey KB, et al. Altered ultrastructural localization of the C-terminus of bullous pemphigoid antigen (BPAG2) in human skin lacking laminin-5. J Invest Dermatol, 1998; 110:508
    63. Hudson BG, Reeders ST, Tryggvason K. Type IV collagen: structure, gene rganization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem,1993; 268:26033-26036
    64. Peissel B, Geng L, Kalluri R, et al. Comparative distribution of the alpha 1(IV), alpha 5(IV), and alpha 6(IV)collagen chains in normal human adult and fetal tissues and in kidneys from X-linked Alport syndrome patients.J Clin Invest, 1995;96:1948-1957
    65. Ghohestani R, Hudson BG, Claudy A, et al. The a5chain of type IV collagen is the target of IgG auto-antibodies in a novel autoimmune disease with subepidermal blisters and renal insufficiency. J Biol Chem,2000;275:16002-16006
    66. Burgeson RE. Type VII collagen, anchoring fibrils and epidermolysis bullosa. J Invest Dermatol, 1993;101:252-255
    67. Rousselle P, Keene DR, Ruggiero F, et al. Laminin-5 binds the NC-1 domain of type VII collagen. J Cell Biol ,1997; 138:719-728
    68. Heinonen S, Mannikko M, Klement JF, et al. Targeted inactivation of the type VII collagen gene (Col7a1) in mice results in severe blistering phenotype: a model for recessive dystrophic epidermolysis bullosa. J Cell Sci ,1999;112:3641-3648
    1. Aumailley M, Rousselle P. Laminins of the dermo-epidermal junction. Matrix Biol, 1999;18:19-28
    2. Garbe JH, Gohring W, Mann K, et al. Complete sequence, recombinant analysis and binding to laminins and sulfated ligands of the N-terminal domains of laminin α3B and a5 chains. Biochem J, 2002;362: 213-221
    3. Colognato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Dev Dyn, 2000; 218:213-234
    4. Tsubota Y, Mizushima H, Hirosaki T, etal. Isolation and activity of proteolytic fragment of laminin-5 α3 chain. Biochem. Biophys. Res Commun, 2000;278: 614-620.
    5. Marinkovich MP, Lunstrum GP, Burgeson RE. The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J Biol Chem, 1992; 267:17900-17906.
    6. Amano S, Scott IC, Takahara K, et al. Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 γ2 chain. J Biol Chem , 2000; 275:22728-22735
    7. Sasaki T, Gohring W, Mann K, et al. Short arm region of laminin-5 γ2 chain: structure, mechanism of processing and binding to heparin and proteins. J Mo. Biol, 2001;314:751-763
    8. Nievers MG, Schaapveld RQ, Sonnenberg A. Biology and function of hemidesmosomes. Matrix Biol, 1999; 18:5-17
    9. Talts JF, Andac Z, Gohring W, et al. Binding of the G domains of laminin α1 and α2 chains and perlecan to heparin, sulfatides, α-dystroglycan and several extracellular matrix proteins. EMBO J, 1999; 18:863-870
    10. Talts JF, Sasaki T, Miosge N,et al. Structural and functional analysis of the recombinant G domain of the laminin α4 chain and its proteolytic processing in tissue. J Biol Chem, 2000;275:35192-35199
    11. Utani A, Nomizu M, Yamada Y. Fibulin-2 binds to the short arms of laminin-5 and laminin-1 via conserved amino acid sequences. J Biol Chem, 1997;272:2814-2820
    12. Tunggal L, Ravaux J, Pesch M, et al. Defective laminin 5 processing in cylindroma cells. Am J Pathol, 2002; 160:459-468
    13. Aumailley M, Pesch M, Tunggal L, et al. Altered synthesis of laminin 1 and absence of basement membrane component deposition in β1 integrin-deficient embryoid bodies. J Cell Sci, 2000; 113:259-268
    14. Li S, Harrison D, Carbonetto S, et al. Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J Cell Biol, 2002; 157: 1279-1290
    15. Gagnoux-Palacios L, Allegra M, Spirito F, et al The short arm of the laminin γ2 chain plays a pivotal role in the incorporation of laminin 5 into the extracellular matrix and in cell adhesion. J Cell Biol, 2001 ; 153:835-850
    16. Rousselle P, Keene DR, Ruggiero F, et al. Laminin 5 binds the NC-1 domain of type VII collagen. J Cell Biol, 1997,138:719-728
    17. Ekblom P, Ekblom M, Fecker L, et al. Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development, 1994; 120:2003-2014
    18. Fleischmajer R, Utani A, MacDonald ED, et al. Initiation of skin basement membrane formation at the epidermo-dermal interface involves assembly of laminins through binding to cell membrane receptors. J Cell Sci, 1998; 111:1929-1940

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700