用户名: 密码: 验证码:
Al-P系中间合金粉末冶金合成工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决熔铸法制备Al-P系中间合金含磷量低、AlP颗粒粗大和呈团簇状分布的问题,本文提出了粉末冶金法制备Al-P系中间合金的新工艺。利用光学显微镜(OM)及电子探针微成分分析仪(EPMA)等手段对粉末冶金法制备的Al-P系中间合金微观组织进行了研究,并对该中间合金的变质效果进行了检验。
     粉末冶金法制备Al-P系中间合金的主要工艺是将高磷合金(Cu-40Si-20P、Si-20Mn-20P和Cu-P)粉末与铝粉配料—混匀—压块—烧结,使之在500-660℃温度条件下发生扩散反应。
     研究了高磷合金/Al热扩散偶中AlP的形成与扩散行为,发现在较低的扩散温度下(500℃左右),AlP在高磷合金/Al界面处析出。Cu-8P中间合金与铝反应生成的AlP呈细小弥散分布;Cu-14P中间合金与铝反应生成的AlP呈小块状分布:Cu-40Si-20P三元合金与铝反应生成的AlP则在界面处呈小片状分布。
     在此基础上,系统研究了粉末冶金法制备Al-P系中间合金的新工艺:高磷合金粉末粒度、成形压力、烧结温度、烧结时间和真空度对生成的AlP形貌和分布的影响。结果表明:(1)成形压力过小,试块空隙率高,烧结过程易氧化膨胀;成形压力过大,烧结后加入Al-Si合金熔体中试块不易熔化。(2)高磷合金粉末的粒度大,反应生成AlP颗粒较大且呈团簇状;高磷合金粉末的粒度小,则生成的AlP颗粒较小而且呈弥散状分布。(3)烧结温度越高(在试块熔化温度以下),完全反应所需时间越短;烧结时间越长,反应越充分,在基体中可以看到初晶硅的析出。(4)真空度低,试块氧化严重,形成氧化膜使试块加入熔体中不易熔化。
     确定了粉末冶金法制备Al-P系中间合金的最佳工艺参数为:高磷合金粉末的粒度为50-75μm;压力为10MPa;烧结温度为650℃;烧结时间为40min。此工艺方法制备Al-P系中间合金其含磷量可以达到10%。
     与熔铸法制备的Al-P系中间合金相比,粉末冶金法制备的Al-P系中间合金具有AlP颗粒细小、分布均匀、含磷量高等优点。在加入相同量磷时,对Al-Si合金的变质效果可以与熔铸法制备的Al-P系中间合金的变质效果相当,但是变质时间缩短了近三分之一。
The disadvantages of the Al-P master alloy produced by casting are mainly as follows: AlP particles are coarse and present cluster-like morphology, their distribution is uneven in Al-P master alloy and phosphorus level is relatively low. A new technology preparing Al-P master alloy by powder metallurgy has been put forward. The microstructures of the Al-P master alloy fabricated by powder metallurgy were investigated, using optical microscopy (OM) and electron probe micro-analyzer (EPMA), etc. Moreover, the modification effect of the Al-P master alloy on hypereutectic Al-Si alloys was also investigated.
     The new technology of producing Al-P master alloy is as follows: the mixed powders of phosphorus-rich alloys (Cu-40Si-20P, Si-20Mn-20P and Cu-P) and aluminum are extruded into columned pallets, which are then put into a sintering furnace where the diffusion and reactions in pallets can occur at 500-660℃.
     The diffusion couples of phosphorus-rich alloys/Al was studied. At 500℃or so, phosphorus in phosphorus-rich alloys reacted with aluminum, which formed AlP. Specifically, AlP precipitated along the interface between phosphorus-rich and aluminum, dispersing distribution for Cu-8P master alloy, small block-like distribution for Cu-14P master alloy and fine flake-like distribution for Cu-40Si-20P master alloy.
     Based on the experiments mentioned above, the influences of such factors as the particle size of phosphorus-rich alloys, forming pressure, sintering temperature, sintering time and the degree of vacuum in furnace on the morphology and distribution of AlP particles were studied. It has been shown that if the forming pressure is low, the amount of ventage is large, so the samples are easily oxidized during the sintering process. On the other hand, if the forming pressure is high, the sintered samples is not prone to melt in the Al-Si alloy melts. In order to make AlP particles dispersed in the master alloy, the powder sizes of phosphorus-rich alloys should be controlled. The longer the sintering time is, the more sufficient the reaction is. When the reaction is sufficient, silicon phases can be observed. But at high temperature (below melting temperature of samples), the time of complete reaction is short. And the degree of vacuum is low, the severe oxidization prevents the samples from melting in the melt of Al-Si alloys.
     The optimum parameters of fabricating Al-P master alloys by powder metallurgy are as follows: paricles size of phosphorus-rich alloys are 50-75um, the forming pressure is 10MPa, the sintering temperature is 650℃and the sintering time is 40 minutes. The content of phosphorus in Al-P master alloys fabricated by powder metallurgy can reach up to 10%.
     Comparing with the Al-P master alloy produced by casting, the size of AlP particle is finer, the distribution is more homogeneous and the content of phosphorus is higher in the Al-P master alloy prepared by powder metallurgy. Adding the same amount of phosphorus into Al-Si alloy, the modification effects of these two kinds Al-P master alloys are equivalent. However, the modification time is reduced by 1/3 with adding the Al-P master alloy fabricated by power metallurgy.
引文
[1]《铸造有色合金及熔炼》联合编写组.铸造有色合金及熔炼,国防工业出版社,1980
    [2]白木,周洁.铝材令汽车制造技术焕然一新,世界有色金属,2001,(10):47-49
    [3]刘达利,齐丕襄.新型铝活塞,国防工业出版社,1999,8:418
    [4]Pacz.USA Patent,1387900,13Feb.1920
    [5]铝硅合金新的变质方法,上海交通大学,1976
    [6]张忠华,张景祥,边秀房等.新型高效PM磷变质剂,特种铸造及有色合金,2000,(2):13-15
    [7]龚建森,李元元,胡城立.国内外Al-Si合金磷变质剂及变质工艺的研究,机械工程材料,1984,(1):1-8
    [8]轻金属(日)Vol.20,No5,1970
    [9]L.F.蒙多尔福著,王著堂,张振录,郑旋等译.铝合金的组织与性能,冶金工业出版社,1988
    [10]Lu shu-zu,A Hellawell.Modification of Al-Si alloys:microstructure,thermal analysis and mechanisms.,JOM.1995,47(2):38-40
    [11]M.Ravi,U.T.S.Pillai,B.C.Pai.A study of the influence mish metal additions to Al-7Si-0.3Mg(LM 25/356)alloy,Metallurgical and materials Transactions A.1996,27A(5):1283-1292
    [12]Lu Shu-Zu,A.Hellawell.Mechanical of silicon modification in aluminum-silicon alloys:impurity induced twinning,Metallurgical Transactions A.1987,18A(10):1721-1733
    [13]M.O.Pekguleryuz,J.E.Gruzleski.Conditions for strontium master alloy addition to A390 metals,AFS Trans,1988,96:55-64
    [14]H.Peumler,B.Wieting,R.D.Gupta.Analysis of modified 319 aluminum alloy,AFS Trans,1988,96:1-12
    [15]B.Closset,S.Kitaoka.Evaluation of strontium modifier for Al-Si alloys,AFS Trans,1987,95:233-240
    [16]N.Handiak,J.E.Gruzleski,D.Argo.Sodium,strontium and antimony interactions during modification of ASTG03(A356)alloys,AFS Trans,1987,95:31-38
    [17]G.Chai,L.Backrud.Factors affecting modification of Al-Si alloys by adding Sr-containing master alloys,AFS Trans,1992,100:847-854
    [18]T.J.Hurley,R.G.Atkison.Effects of modification practice on aluminum A356alloys,AFS Trans,1985,93:291-296
    [19]B.Kulunk,D.J.Zulianj.Applications for the strontium treatment of wrought and die-cast Al,JOM,1996,(10):60-63
    [20]武恭,姚良均,李震夏,彭如清,赵祖德.Al及Al合金材料手册.科学出版社,1994
    [21]姚书芳,毛卫民,赵爱民,钟雪友.铸造Al-Si合金细化变质处理的研究进展,铸造,2000,49(9):512-515
    [22]刘秉毅.钠、锶变质Al-Si合金机理的研究,铸造,1991,(2):18-21
    [23]徐振湖.对旋转磁场作用下的Al-18%Si合金的研究,铸造,2000,49(2):115-117
    [24]廖恒成,丁毅,孙国雄.Sr对近共晶Al-Si合金中α枝晶生长行为的影响,金属学报,2002,38(3):245-249
    [25]X.F.Bian,W.M.Wang,S.J.Yuan,J.Y.Qin.Structure factors of liquid Al-Si alloys,Science and Technology of Advanced Materials,2001(2):19-23
    [26]盛险峰,李伟等.国内外Al-Si合金变质处理的研究现状,机械,1997,6:48-50
    [27]刘玉先,刘相法,张刚,肖莉美.Al-Si合金中共晶硅生长形态的研究,山东工业大学学报,1995,4:306-311
    [28]周虹,康积行,邵宜重,廖锦明.锑对共晶硅形貌变质作用的研究,特种铸造及有色合金,1990,3:2-14
    [29]曾松岩,张虎,李庆春.加Sb变质对Al-12.7%Si合金共晶硅生长的影响,铸造技术,1993,5:46-48
    [30]Ben Heshmatpour.Modification of silicon in eutectic and hyper-eutectic Al-Si alloys,Light metals 1997,Orlando,Florido:The Mineral,Metals & Society, 1997:801
    [31]M.B.Altman,G.I.Eskin,I.S.Gotsev,N.P.Stromskaya,S.I.Borovikova.A complex method of silumin modification legirovanie obrabotka legkikh splavov,Alloying and Treatment of Light Alloys,1981:30-35
    [32]D.Y.Ding,Z.M.Sun,Z.H.Chen.Characteristics of rapidly solidified Al-22Si alloy powders,J.Cent.South Univ.Tech.,1995,26(1):92-96
    [33]O.V.Presnyakova,O.G.Pivkina,A.Shinyaev.Structural transformation in hypereutectic alloy Al-Si during crystallization under high pressure,Metallofizika,1987,9(4):34-39
    [34]徐振湖.对旋转磁场作用下的Al-18%Si合金的研究,铸造,2000,49(2):115-117
    [35]坚增运,杨根仓,周尧和.Al-18%Si合金的温度处理,中国有色金属学报,1995,5(4):133-135
    [36]T.Ohmi,K.Matsuura,M.Kudoh,Y.Itoh.Undercooling and primary solidification behavior in mixture of hypereutectic and another Al-Si alloy melt.Journal of Japan Institute of Light Metals 1998,48(1):42-47
    [37]毛卫民,李树索,赵爱民等.电磁搅拌对过共晶Al-Si合金初生硅长大过程和形貌的影响,材料科学与工艺,2001,9(2):117-121
    [38]齐丕骥.挤压铸造,国防工业出版社,1984
    [39]张志国,于溪凤,王向阳等.超高压下凝固Al-Si合金的非平衡组织,金属学报,1999,35(3):285-288
    [40]R.Sterner,C.Rainer.US Patent 1940922,26 Dec.1933
    [41]高科,戴恩泰.二元过共晶Al-Si合金的组织与性能研究.,轻金属,1998,3:43-46
    [42]乐秀伟.Al-Si合金的变质处理,新技术新工艺,1993,6:12-16
    [43]B.Cantor.Impurity effects on heterogeneous nucleation.Materials Science and Engineering A,226-228,1997:151-156
    [44]龚建森,李元元,胡城立.国内外Al-Si合金P变质剂及变质工艺的研究,机械工程材料,1984,1:14-18
    [45]C.R.Ho,B.Cantor.Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys,Acta.Metal.Mater.,1995,43(8):3231-3246
    [46]X.Liu,G.J.Chen,L.Li,Y.P.Zhang,J.H.Ding,D.F.Ma.The effect of modification on the microstructure,resistivity and mechanical properties of hypereutectic Al-Si alloy,Foundry Technology,1993,2(3):40-44
    [47]H.X.Zhao,C.M.Xu,F.X.Huang,J.Cai.Inoculation of Al—20Si alloy with phosphorus and rare earth,Light Metals,1993:825-827
    [48]赵恒先,伍灿伟.用P和硫细化变质Al-26%Si合金,轻金属,1994,1:55-57
    [49]W.D.Griffiths,M.R.Jolly,A.M.Niblett,W.Kattlitz,R.Kendrick.The effect of simultaneous additions of sodium and strontium on the modification of aluminium silicon alloy.Light Metals,1991:1047-1055
    [50]L.I.El-Menawati,A.A.Hussein,I.S.El-Mahallawi,A.E.El-Mehairy.Chemical and vibration modification of Al—Si cast alloys,Current Advances in Mechanical Design and Production,1986:231-237
    [51]E.N.Pan,J.F.Hu.Study on fluidity of Al-Si alloys,Transactions of the American Foundrymen's Society,1998,105:413-418
    [52]柳连舜,徐小飞,赵恒先.过共晶Al-Si合金的细化变质处理,轻金属,1996,3:55-57
    [53]潘青林,王雪锋,尹志民.过共晶Al-Si合金用P复合变质剂的研制,轻金属,1996,11:53-55
    [54]赖华清,毛高波.Ce-P对过共晶Al-Si合金的双重变质作用,热加工工艺,1998,4:44-45
    [55]陈文松.过共晶Al-Si合金的的变质处理,轻合金加工技术,1998,26(8):12-15
    [56]H.S.Park,J.H.Kim,K.M.Kim,E.P.Yoon.A study on the simultaneous refinement of primary and eutectic Si and the mechanical properties in B390alloys,Journal of the Korean Institute of Metals and Materials,1997,35(10):1332-1340
    [57]J.M.Lee,S.B.Kang.A study on the change of microstructures with phosphorus and/or strontium treatment in A390 alloy,Journal of the Korean Institute of Metals and Materials,1995,33(11):1406-1413
    [58]J.I.Park,B.J.Yoo,Y.S.Kim,G.Kim.Effects of melt treatment conditions on the simultaneous refinement of primary and eutectic silicon in hypereutectic Al-Si alloys,J.Korean Inst.Met.Mater.,1994,32(6):665-672
    [59]姚书芳,毛卫民,赵爱民,钟学友.过共晶Al-Si合金细化变质剂的研究,特种铸造及有色合金,2000,5:1-3
    [60]任书坤,张英才.过共晶Al-Si合金双相变质剂及变质工艺的研究,汽车工艺与材料,1993,8:9-12
    [61]唐多光.铸造Al合金精炼变质的好材料—稀土合金,特种铸造及有色合金,1999.5:42-44
    [62]H.X.Zhao,J.Cai.Inoculating an aluminum-silicon alloy with phosphorus,rare earths,and sulfur,JOM,1994,46(11):42-47
    [63]Y.Wang,S.Yu,D.Jin,B.Gin.Rare earth modified hypereutectic Al—Si alloy of high strength for piston,J.Chin.Rare Earth Soc.,1989,7(1):44-48
    [64]宫手敏男.铸造,1972,46(3)
    [65]Katto Haruyasu.Hashimoto Akio.Kitaoka Sanji.Sayashi Mamoru.Shioda Masahiko.Critical temperature for grain refining of primary Si in hypereutectic Al-Si alloy with phosphorus addition,Jounal of Japan Institution of Light Metals.2002,52(1):18-23
    [66]王汝耀,鲁薇华.国外内燃机铝活塞金相组织及断口分析,机械工业出版社,1900
    [67]魏朋义,傅恒志,Reif W.熔体搅拌Al-20.0%Si合金的组织细化,中国有色金属学报,1996,6(1):98-102
    [68]甄子胜,赵爱民,毛卫民等.喷射沉积Al-30Si组织及其半固态保温转变规律,材料科学与工艺,2001,9(2):162-165
    [69]陈文松.过共晶Al-Si合金性能和细化工艺概述,热加工工艺,1998,6:44-46
    [70]王德满,郑子樵等.熔铸法生产的磷变质剂对过共晶铝-硅合金组织和性能的影响,轻合金加工技术,1995,23(9):9-12
    [71]尹卓湘.过共晶Al-Si合金的变质处理,轻金属,1994,1:55-57
    [72]S.Wolfgang.A new method for the refinement of primary Si of hyper-eutectic Al-Si alloy in direct chill and ingot casting,Light Metal,1993:815-820
    [73]冈一嘉,吉田政博.过共晶Al-Si合金连续铸造における初Siの微细化,住友轻合金科技报,1987,1:1-6
    [74]赵永治,高泽生.过共晶Al-Si合金连续铸造中初晶硅细化的新方法,轻合金加工技术,1995,10:5-8
    [75]王德满,赵海英,孙兆霞等.一种新型过共晶Al-Si合金变质剂,轻金属,1997,7:50-53
    [76]D.W.Mason.A new approach to the control of silicon particle size in hypereutectie aluminium silicon alloys,Light Metal,1995:1019-1023
    [77]W.J.Kyffin,W.M.Rainforth,H.Jones.Effect of Treatment Varuables on Size Reinfinement by Phosphide Inoeulants of Primary Silicon in Hypereuteetie Al-Si Alloys,Materials Science and Technology,2001,17(8):901-905

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700