用户名: 密码: 验证码:
航天继电器可靠性评价及寿命试验方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天继电器是国防武器系统和航天型号不可缺少的关键元器件,主要完成系统配电、信号传递、电路隔离及负载切换等功能。航天继电器可靠性寿命试验是产品出厂前必做的一项抽样试验。现行的试验方法只监测触点压降和开路电压,获取的信息有限,很难分析产品的退化过程和失效机理,无法评价不同试验条件和产品结构对继电器可靠性的影响,对指导产品可靠性设计、加速产品可靠性增长贡献有限。
     为全面分析和评价航天继电器可靠性,本文提出一种基于性能退化的航天继电器可靠性寿命试验方法。通过分析寿命试验过程中的航天继电器多个退化参数,在分析接触失效机理的基础上,对航天继电器退化轨迹建模、寿命预测和可靠性评估方法进行了深入研究。
     目前航天继电器失效机理分析往往采用事后分析法,通用性不强,易发生软失效漏判。本文提出一种基于退化参数的航天继电器接触失效模式和失效机理判别方法。该方法通过分析继电器的超程时间、弹跳时间、燃弧时间等多个参数的变化规律,检测时间参数异常、持续燃弧、弹跳时间过高等触点软失效;采用主元分析和距离判别分析方法从退化参数中提取触点间隙的变化特征,实现继电器触点断开和粘接等硬失效机理的分类和判别。失效触点表面形态和化学成分分析结果证明了该方法的有效性。
     通过深入剖析产品失效物理、化学规律建立其退化模型已成为产品可靠性预计的主要方法。本文采用Fisher判别准则确定了航天继电器的接触性能退化敏感预测变量。提出了基于小波变换和平稳时间序列分析的预测变量预处理方法,减少预测变量的干扰信号对模型精度的影响。采用累积损伤理论建立了航天继电器失效物理退化模型。该模型充分考虑了燃弧能量、产品结构、触点材料属性以及样品分散性对触点间隙退化的影响。采用回归分析方法对继电器失效物理退化模型参数进行估计。利用所建模型进行航天继电器寿命预测,其平均预测精度达到70%以上。
     现有可靠性评估方法假定继电器失效率恒定,分布类型为指数分布,并不符合产品的真实情况。本文提出基于模糊综合评判的航天继电器最佳失效分布类型确定方法。通过分析继电器触点失效机理,提出基于失效统计模型和基于随机过程的航天继电器退化失效可靠性评估方法。根据建立的多维退化参数统计模型,分别对发生不同失效机理的样品进行了可靠性评估,其可靠度与实际值误差小于5%。
     最后,本文设计并实现了航天继电器可靠性评价及寿命试验系统。采用集散控制方式设计基于CAN总线的同步、高速、多通道、多样品的继电器动态波形采集单元,根据采集的波形数据设计并实现退化参数计算的软件算法。采用VC++与Matlab混合编程方法完成上位机软件编写,实现失效机理判别、退化轨迹建模、寿命预测及可靠性评估等方法。
     本研究充分利用航天继电器的退化参数对其可靠性进行全面分析和评价,相关方法也可推广应用到其他类似结构的开关电器中。
Space relays are the indispensable key components used in defense weapon systems and aerospace products for completing power distribution, signal transmission, circuit isolation and load switching. Life test for space relays is a compulsory sampling test before the products go out. Generally, contact voltage drop and open-circuit voltage are observed during the current life test. Because the information obtained from the two parameters is too limited, it is difficult to further reveal the degradation process and failure mechanisms of the products, and it is hard to describe the influences of different test conditions and product structures on the reliability of the relays. These disadvantages result in the inapplicability of the current life test for guiding product design and accelerating product reliability growth.
     To comprehensively analyze and evaluate the reliability of space relays, a new reliability life test method for space relays based on performance degradation is proposed in this paper. Based on the analysis of failure mechanisms, the modeling degradation trace, life prediction and reliability assessment methods of space relays are extensively investigated by analyzing the variations of several parameters recorded during life test.
     Currently, post-analysis method is applied to analyze the failure mechanisms of space relays, which is lack of generality and easy to overlook soft failures. A method for discriminating contact failure modes and failure mechanisms based on degradation parameters is proposed in this paper. Many kinds of contact soft failures, such as abnormal time parameters, sustained arcing and excessive rebound duration, are detected by analyzing the variations of several degradation parameters including overtravel time, rebound duration, closing time, etc. The principal component analysis method and distance discriminant analysis method are adopted to extract variations of contact gap from these degradation parameters. After that, the classification and discrimination of contact failure mechanisms of hard failures are accomplished. The surface morphologies and chemical compositions of the failure contacts are also analyzed, and the results indicate the discriminant methods used in this paper are valid.
     Degradation trace modeling method based on the thorough analysis of failure physical and chemical law has become a main reliability prediction method of products. The Fisher discriminant criterion is employed to determine prediction variables that are very sensitive to contact performance degradation of space relays. Furthermore, a preprocessing method based on wavelet transform and stationary time series analysis is introduced to reduce the impact of interference of the prediction variables on the accuracy of the model. To fully consider the influence of arcing energy, product structure, contact material and sample dispersion on degradation of contact gap, the physical-of-failure degradation model of space relays is established according to cumulative damage theory. The parameters of the model are estimated by regression analysis method and the average prediction accuracy of this model is up to 70%.
     The current reliability assessment method of space relays assumes the product distribution is subject to exponential distribution which means a constant failure rate at any time. However, the assumption is not very reasonable. Consequently, a fuzzy comprehensive evaluation method is introduced to determine the most appropriate distribution type. With the consideration of the contact failure mechanisms, the reliability assessment methods for degradation failure of space relays are proposed based on failure statistical model and stochastic process. Then the assessment of various samples in different failure mechanism is realized according to the multi-parameters statistical model, and the error between the assessment results and the practical reliability value is less than 5%.
     Finally, a reliability evaluation and life test system for space relays is designed and accomplished in this paper. A synchronous, high-speed, multi-channel, multi-sample dynamic waveform acquisition unit is developed based on CAN-bus.
     According to the waveform data of the tested relays, the software algorithms for calculating each degradation parameter are designed and implemented. The PC software is developed to carry out these methods including failure mechanism discrimination, degradation trace modeling, life prediction and reliability assessment of space relays.
     The degradation parameters are fully utilized for analyzing the reliability of space relays, and the proposed methods also can be applied to other switching devices with similar structures.
引文
[1]朱永庆,吴世湘.军用继电器的发展态势[J].电子科学技术评论,2005,(1):55-56.
    [2]姚致清,李金伴,张喜玲.继电器与继电保护装置实用技术手册[M].北京:化学工业出版社,2008:1-9.
    [3]朱煜,曹军.对国军标GJB1513中“寿命”试验方法的探讨[J].机电元件,2004,24(1):51-55.
    [4]武一,陆俭国,李志华,等.过载继电器的可靠性及试验方法[J].江苏电器,2008(4):49-53.
    [5]郑天丕.一种新型电磁继电器寿命试验台[J].机电元件,2000,20(3):29-32.
    [6] Pecht M,Dasgupta A. Physics-of-failure:An Approach to Reliable Product Development[J]. Journal of the Institute of Environmental Sciences,1995,38:30-34.
    [7]李永红,徐明. MIL-HDBK-217可靠性预计方法存在的问题及其替代方法浅析[J].航空标准化与质量,2005(4):40-43.
    [8] Zhang Y,Pecht M,Lantz L. A Case Study of IC Storage Failures in Taipei Trains[J]. Microelectronics Reliability,1998,38:1811-1816.
    [9] Sun M,Pecht M,Marjorie A E N. A Comparative Assessment of Gold Plating Thickness Required for Stationary Electrical Contacts[J]. Microelectronics Journal,1999(30):217-222.
    [10] Sinnadurai N,Anand A S,Pecht M. A Critique of the Reliability- Analysis- Center Failure-Rate-Model for Plastic Encapsulated Microcircuits[J]. IEEE Transactions on Reliability,1998,47(2):110-113.
    [11] Martens R,Pecht M. Effects and Interactions of Design Parameters for Gold-plated Electric Contacts[J]. Journal of Materials Sciences : Material in Electronics,2000(11):209-218.
    [12] Kimseng K,Hoit M,Tiwari N,Pecht M. Physics-of-Failure Assessment of a Cruise Control Module[J]. Microelectronics Reliability,1999(39):1423-1444.
    [13] Pecht M. Prognostics and Health Management of Electronics[J]. John Wiley &Sons,Inc,2008:1-20.
    [14] Pecht M,Gu J. Physics-of-failure-based Prognostics for Electronic Products[J]. Transactions of the Institute of Measurement and Control,2009,31:309-322.
    [15] Nishad P , Dogamta D , Goebel K. Identification of Failure Precursor Paramteters for Insulated Gate Boipolar Transistors (IGBTs)[C]. International Conference on Prognostics and Health Management (PHM),2008:1-5.
    [16]韩国泰.航空电子的故障预测与健康管理技术[J].航空电子技术,2009,40(1):30-38.
    [17]张宝珍.预测与健康管理技术的发展及应用[J].测控技术,2008,27(2):5-7.
    [18] Lee J,Ni J,Djurdjanovic D,et al. Intelligent Prognostics Tools and E-maintenance[J]. Computers in Industry,2006(57):476-489.
    [19] Liao L X,Lee J. A Novel Method for Machine Performance Degradation Assessment Based on Fixed Cycle Features Test[J]. Journal of Sound and Vibration,2009(326):894-908.
    [20] Huang R Q,Xi L F,Li X L,et al. Residual Life Predictions for Ball Bearings Based on Self-organizing Map and Back Propagation Neural Network Methods[J]. Mechanical Systems and Signal Processing,2007(21):193-207.
    [21] Yan J H,Lee J. Degradation Assessment and Fault Modes Classification Using Logistic Regression[J]. Transactions of the ASME,2005(127):912-914
    [22] Liu J B , Djurdjanovic D , Ni J , et al. Similarity Based Method for Manufacturing Process Performance Prediction and Diagnosis[J]. Computers in Industry,2007(58):558-566.
    [23] Zhou X J , Xi L F , Lee J. Reliability-centered Predictive Maintenance Scheduling for a Continuously Monitored System Subject to Degradation[J]. Reliability Engineering and System Safety,2007(92):530-534.
    [24] Liao L X,Lee J. Design of a Reconfigurable Prognostics Platform for Machine Tools[J]. Expert Systems with Applications,2010,37(1):240-252.
    [25] Chinnam R B. On-line Reliability Estimation of Individual Components,Using Degradation Signals[J]. IEEE Transactions on Reliability,1999,48(4):403-412.
    [26] Lu H , William J K , Susan S L. Real-Time Performance ReliabilityPrediction[J]. IEEE Transactions on Reliability,2001,50(4):353-357.
    [27] Crk V. Reliability Assessment from Degradation Data[C]. Proceedings Annual Reliability and Maintainability Symposium,2000:155-161.
    [28] Wei H,Ronald G Askin. Reliability Analysis of Electronic Devices with Multiple Competing Falure Modes Involving Performance Aging Degradation[J]. Quality and Reliability Engineering International , 2003(19):241-254.
    [29] Xu D,Zhao W B. Reliability Prediction using Multivariate Degradation Data[C]. Proceedings Annual Reliability and Maintainability Symposium,2005:337-341.
    [30] Joseph V R,Yu I T. Reliability Improvement Experiments with Degradation Data[J]. IEEE Transactions on Reliability,2006,55(1):149-15.
    [31]邓爱民,陈循,张春华,等.基于性能退化数据的可靠性评估[J].宇航学报,2006,27(3):546-552.
    [32]金光.一种综合性能与寿命数据的Bayes-Bootstrap方法[J].宇航学报,2007,28(3):731-734.
    [33]李海军,孙秀霞.继电器触头的电蚀机理研究[J].电子产品可靠性与环境试验,2005(3):29-32.
    [34] Leung C H , Lee A. Electric Contact Materials and Their Erosion in Automotive DC Relays[J]. IEEE Transaction on Components,Hybrids,and Manufacturing Technology,1992,15(2):146-153.
    [35] Chen Z K,Sawa. Effect of Arc Behavior on Material Transfer:A Review[C]. Proceedings of the 42th IEEE Holm Conference on Electrical Contacts,1996:238-251.
    [36] Jemma N B,Morin L,Benhenda S,et al. Anodic to Cathodic Arc Transition According to Break Arc Lengthening[J]. IEEE Transactions on Components,Packing and Manufacturing Technology,Part A,1998,21(4):599-603.
    [37] Leung C,Streicher E. Material Transfer in Dynamic Welding of Ag and Ag/SnO2 Contact Material[C]. Proceedings of the 48th IEEE Holm Conference on Electrical Contacts,2002:21-28.
    [38] Neuhaus A R,Rieder W F,Hammerschmidt M. Influence of Electrical and Mechanical Parameters on Contact Welding in Low Power Switches[J]. IEEE Transactions on Components and Packaging Technologies,2004,27(1):4-11.
    [39] Schoepf T J,Boudina A,Rowlands R D,et al. Pre-conditioning Automotive Relay Contacts to Increase Their Resistance to Dynamic Welding[J]. IEICE Transactions on Electronics,2007,E90C(7):1441-1447.
    [40] Chen Z K,Sawa K. Investigation of Surface Characteristics and Contact Resistance of DC Relay Contacts[J]. IEEE Transactions on Components,Hybrids,and Manufacturing Technology,1993,16(2):211-219.
    [41] Swingler J,Mcbride J W. A Comparison of the Erosion and Arc Characteristics of Ag/CdO and Ag/SnO2 Contact Materials under DC Break Conditions[C]. Proceedings of the 41st IEEE Holm Conference on Electrical contacts,1995:381-392.
    [42]陈主荣,林秀华,张仁义.电磁继电器触点磨损的理化分析[J].厦门大学学报(自然科学版),1998,37(3):368-373.
    [43]郭凤仪,王国强,董讷,等.银基触头材料电弧侵蚀特性及裂纹机理分析[J].中国电机工程学报,2004,24(9):209-217.
    [44]同建辉,徐锦峰,李英挺,等.电弧作用下铜钨触头材料表面特征及失效机理[J].高压电器,2004,40(3):231-234.
    [45] Hammerschmidt M,Alexander R N,Rieder W F. The Effects of Material Transfer in Relays Disgnosed by Force and/or Voltage Measurement[J]. IEEE Tansactions on Componets and Packaging Technologies,2004,27(1):12-18.
    [46] Zhou X,Zou L,Briggs R. Prognostic and Diagnostic technology for DC Actuated Contactors and Motor Starters[J]. IEICE Transactions on Electronics,2009,E92C(7):1045-1051.
    [47]林辛,张冠生,洪翠.基于模糊理论的真空断路器开断电寿命综合评判的研究[J].中国电机工程学报,2000,20(2):15-18.
    [48]王小华,荣命哲,吴翊,等.高压断路器故障诊断专家系统中快速诊断及新知识获取方法[J].中国电机工程学报,2007,27(3):95-99.
    [49]李志刚,姚芳,陆俭国.应用“模糊概率加权移动预测”研究电接触性能[J].电工技术学报,2006,21(3):83-88.
    [50] Rieder W F. , Strof T W.. Relay Life Tests With Contact Resistance Measurement After Each Operation[J]. IEEE Transactions on Components,Hybrids,and Manufacturing Technology,1991,14(1):109-112.
    [51]魏梅芳,李震彪,宋晓亮,等.开关触头电寿命预测方法分析[J].低压电器,2006(1):11-14.
    [52] Fontana W J. Electromagnetic Relay Reliability Predictions by Designed Life Experiments and Weibull Analysis[J]. IEEE Transactions on Parts,Materials and Packing,1965,1(1):309-319.
    [53] MiyaJima K,Nitta S,Mutoh A. A Proposal on Contact Surface Model of Electromagnetic Relays-Based on the Change in Showering Arc Waveforms with the Number of Contact Operations[J]. IEICE Transaction Electronics,1998,E81C(3):399-407.
    [54]关永刚,黄瑜龙,钱家俪.真空断路器电磨损监测技术的改进[J].高压电器,200137(4):1-4.
    [55] Yao F,Li Z G,Li W H,et al. Concerning Contact Resistance Prediction Based on Time Sequence and Distribution Character[C]. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts,2004:447-452.
    [56] Yao F,Lu J G,Zheng J R,et al. Research on the Falure Disagnostics Parameters and the Reliability Predicion Model of the Electrical Contacts[C]. Proceedings of the 52th IEEE Holm Conference on Electrical Contacts,2006:69-72.
    [57]翟国富,赵新民,刘茂凯,等.采用超程时间建模的航空航天继电器寿命预测方法的研究[J].航空学报,1998,19(5):617-620.
    [58]翟国富,王淑娟,许峰,等.基于超程时间和吸合时间建模的继电器双变量寿命预测方法的研究[J].中国电机工程学报,2002,22(7):76-80.
    [59] Meek W Q,LuValle M J. An Accelerated Life Test Model Based on Reliability Kinetics[J]. Technometrics,1995,37:133-146.
    [60] Hyunseok O,Azarian M H,Pecht M. Physics-of-Failure Approach for Fan PHM in Electronics Applications[C]. International Conference on Prognostics & System Health Management(PHM),2010:1-6.
    [61] Evans J,Michael J. Cushing,et al. A Physics-of-failure (POF) Approach to Addressing Device Reliability in Accelerated Testing of MCMS[C]. Proceedings of 1995 IEEE Multi-Chip Module Conference,1995:14-25.
    [62]吴细秀.开关电器触头材料喷溅侵蚀模型研究及其试验[D].武汉:华中科技大学博士学位论文,2005.
    [63]陈强. JRC-19FD型继电器的失效分布类型研究及可靠性特征量的估计[J].机电元件,1994,14(3):10-14.
    [64]宛艳萍,陆俭国,李志刚,等.一种关于电器产品可靠性的评估方法[J].低压电器,2006,(4):3-5.
    [65]翟国富,王淑娟,姜守旭,等.电器可靠性失效分析中极大似然估计方法的研究[J].中国电机工程学报,2001,21(3):90-92.
    [66] Watkins A J. On Maximum Likelihood Estimation for the Two Parameter Weibull Distribution[J]. Microelectronics and Reliability,1996,36(5):595-603.
    [67]王景芹,唐义良,陆俭国.小样本及无失效数据时电器产品可靠性特征量的估计[J].电工技术学报,2000,15(4):27-31.
    [68]王淑娟,刘丽平,翟国富,等.航天继电器“小子样、零失效”情况下的可靠性评估方法[J].机电元件,2007,27(2):3-7.
    [69] Nair V N. Discussion of Estimation of Reliability in Field Performance Studyes by J.D. Kalbfleisch and J.F. Lawless[J]. Technometrics,1988(30):379-383.
    [70] Lu C J,Meeker W Q. Using Degradation Measures to Estimate a Time-to-failure Distribution[J]. Technometrics,1993,23(5):131-174.
    [71] Su C,Lu J C,Chen D. A Random Coefficient Degradation Model With Random Sample Size[J]. Lifetime Data Analysis,1999(5):173-183.
    [72] Yang K,Xue J N. Continuous States Reliability Analysis[C]. Proceedings Annual Reliability and Maintainability Symposium,1996:251-257.
    [73] Sun Q,Zhou J L,Zhong Z. Gauss-Poisson Joint Distribution Model for Degradation Failure[J]. IEEE Transaction on Plasma Science, 2004, 32(5):1864-1868.
    [74] Tang J,Su T S. Estimating Failure Time Distribution and Its Parameters Based on Intermediate Data from a Wiener Degradation Model[J]. Naval Research Logistics,2008(55):265-276.
    [75]赵建印,刘芳,孙权,等.基于性能退化数据的金属化膜电容器可靠性评估[J].电子学报,2005,33(2):378-381.
    [76]彭宝华,周经伦,潘正强. Wiener过程性能退化产品可靠性评估的Bayes方法[J].系统工程理论与实践,2010,30(3):543-549.
    [77] Zuo M J,Jiang R Y,Richard C M Yam. Approaches for Reliability Modeling of Continuous-State Devices[J]. IEEE Transactions on Reliability,1999,48(1):9-18.
    [78]赵建印.基于性能退化数据的可靠性建模与应用研究[D].长沙:国防科技大学博士学位论文,2005.
    [79] Chen Z H,Zheng S. Lifetime Distribution Based Degradation Analysis[J]. IEEE Transactions on Reliability,2005,54(1):3-10.
    [80]钟强晖,张志华,吴和声.基于退化数据的可靠性评估方法探讨[J].系统工程与电子技术,2009,31(9):2280-2284.
    [81] Freitas M A,Maria Luíza G. de Toledo,Enrico A C. Using Degradation Data to Assess Reliability:A Case Study on Train Wheel Degradation[J]. Quality and Reliability Engineering International,2009,25:607-629.
    [82] Zhao J Y,Liu F. Reliability Assessment of the Metallized Film Capacitors from Degradation Data[J]. Microelectronics Reliability,2007(47):434-436.
    [83] González J R,Vázquez M,Algora C,et al. Real-time Reliability Test for a CPV Module Based on a Power Degradation model[J]. Progress in Photovoltaics:Research and Applications,2010.
    [84] Sari J K,Newby M J,Brombacher A C,et al. Bivariate Constant Stress Degradation Model:LED Lighting System Reliability Estimation with Two-state Modelling[J]. Quality and Reliability Engineering International,2009,25:1067-1084.
    [85] Rieder W F,Strof T W. Reliability of Commercial Relays during Life Tests at Low Electriacal Contact Load[J]. IEEE Transactions on Components,Hybrids and Manufacturing Technology,1992,15(2):166-171.
    [86] Hayashi M,Mano K. The Contact Phenomena Test Method for the Reliability and Life Span of Electromechanical Components[C]. Proceeding of 36th IEEE Holm Conference on Electrical Contacts,1990:447-453.
    [87] Werner K. In process Test on Automatic Production Line MT4-Relay[C]. Proceeding of 37th Relay Conference,1989:1-8.
    [88] Frost B J. A New Generation of Relay Test Equipment Address Old Relay Measurement Problem[C]. Proceeding of 45th Relay Conference,1997:5-8.
    [89] Haslam S J,Crossley P A,Jenkins N. Design and evaluation of a wind farm protection relay[J]. IEE Proceedings-Generation , Transmission and Distribution,1999,146(1):37-44.
    [90]李志刚,陆俭国.控制用电磁继电器可靠性试验方法[C].第十届全国电接触学术会议论文集,1996:140-144.
    [91]杨正福.恒温继电器寿命试验自动监测台[J].机电元件,2002,22(1):30-37.
    [92]李慧芳,汪澄.继电器电参数测试技术探讨[J].机电元件,1997,17(1):32-36.
    [93]翟国富,陈兴文,张青森,等.电磁继电器时间参数综合测试分析系统的研究[J].低压电器,2003(2):48-49.
    [94] Hasegawa M , Niizuma K , Mizukoshi H , et al. Material Transfer Characteristic of Silver Contacts under Resistance DC Load Conditions[C]. Proceedings of the 39th IEEE Holm Conference on Electrical Contacts,1993:275-281.
    [95]朱耀君.电磁继电器触点回跳分析[J].机电元件,2007,27(4):17-23.
    [96] Chen Z C,Witter G J. A Study of Dynamic Welding of Electrical Contacts with Emphasis on the Effects of Oxide Content for Silver Tin Indium Oxide Contacts[C]. Proceedings of the 56th IEEE Holm Conference on Electrical Contacts,2010:69-72.
    [97] Rieder W F,Neuhaus A R.. Short Arc Modes Determining Both Contact Welding and Material Transfer[J]. IEEE Transactions on Components and Packing Technologies,2007,30(1):9-14.
    [98]张曦,阎威武,刘振亚,等.基于核主元分析和邻近支持向量机的汽轮机凝汽器过程监控和故障诊断[J].中国电机工程学报,2007,27(14):56-61.
    [99] Zhao K,Upadhyaya B R. Model Based Approach for Fault Detection and Isolation of Helical Coil Steam Generator Systems Using Principal Component analysis[J]. IEEE Transactions on Nuclear Science,2006,53(4):2343-2352.
    [100] Cho J H,Lee J M,Choi S W,et al. Sensor Fault Identification Based on Kernel Principal Components Analysis[C]. Proceedings of the 2004 IEEE International Conference on Control Applications,2004,1223-1228.
    [101]张曦,赵旭,刘振亚,等.基于核Fisher子空间特征提取的汽轮发电机组过程监控与故障诊断[J].中国电机工程学报,2007,27(20):1-6.
    [102] Kim S W,Oommen B J. On Using Prototype Reduction Schemes to Optimize Kernel-based Fisher Discrininant Analysis[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2008,38(2):564-570.
    [103] Xiang C,Fan X A,Lee T H. Face Recognition Using Recursive Fisher Linear Discriminant[J]. IEEE Transactions on Image Processing,2006,15(8):2097-2105.
    [104]何书元.应用时间序列分析[M].北京:北京大学出版社,2003,119-225.
    [105] Swingler J,Mcbride J W. Modeling of Energy Transport in Arcing Electrical Contacts to Determine Mass Loss[J]. IEEE Transaction on Components,Packing and Manufacturing Technology-part A,1998,21(1):54-60.
    [106]钱渭,陈霖,梁海梅,陈军.论国军标GJB65B-1999[J].机电元件. 2010, 3(2):52-58.
    [107] Chikkara R S,Folks J L. The Inverse Gaussian Distribution[M]. New York:Marcell Dekker,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700