用户名: 密码: 验证码:
燃气轮机透平叶片内部冷却机理的实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着燃气轮机透平进口温度的不断提高,为了保证燃气轮机的安全运行,内部冷却已经成为高温透平叶片必不可少的冷却方式之一,且叶片内部冷却结构形式愈加多样,冷气在其中的流动传热特性也更加复杂。因此,掌握透平叶片内部冷却的流动传热机理是掌握和优化透平叶片传热冷却技术的重要前提。
     本文针对内部蛇型冷却通道中的典型结构——带肋U型通道进行了较为系统的流动传热机理研究。搭建了透平叶片内部冷却实验台,采用瞬态液晶等测量手段研究了其中的流动传热分布规律,并总结了相关的经验公式。同时,本文通过导流片和肋片对其中弯头区域的流动传热进行了优化,研究表明:导流片能抑制弯头区域的大分离流动,从而有效减小该区域的压力损失,而导流片与肋片的组合可使传热分布更为均匀,有利于减小通道中的温度梯度。实验和数值模拟的对比表明,RANS方法对光滑及带45度肋U型通道中的流动传热分布的计算基本可靠,具备工程应用的参考价值。而由于其计算大分离流动能力的不足,弯头区域的传热计算误差较大。对梯形U型通道内流动传热特性的研究表明,非对称壁面会导致通道中横向二次流分布的不对称。对于梯形带肋通道,通道竖板壁面的传热系数均高于斜板壁面,而冷气进口方式对带肋通道中的流动传热情况影响不大。
     本文还采用实验、一维流体网络计算和三维数值计算方法相结合,对某F级重型燃机高温透平叶片冷却系统进行了较为全面的分析研究,揭示了其中的流动传热分布规律,分析了其冷却设计的特点。研究表明:经过经验公式校核的一维流体网络计算和三维数值计算能较好的预测出叶片复杂通道中的压力分布和冷气量的分配,并获得了该F级叶片内部冷气量分配比例关系。静止状态下,叶片成比例缩放后,冷却系统中的无量纲压力分布趋势不变,且通道中的压力分布和冷气量分配比例基本一致。旋转状态下,两种计算方法获得的压力分布和冷气量分配也基本相同。瞬态液晶传热实验结果和数值模拟,均较好的显示了该冷却叶片内部复杂传热分布,两者获得的传热系数分布基本一致,从而印证了两种方法在研究冷却叶片内部复杂流动传热问题的可靠性。
In order to improve the thermal efficiency of gas turbine, turbine stage is and willbe operated at increasingly higher inlet temperature, which obviously exceeds theallowable temperature of blade material. The internal cooling has become anindispensable cooling technology for turbine blade now, and more complicated internalcooling geometries inevitably lead to a sophisticated heat transfer and fluid flowdistribution. Therefore, the study of the mechanism of internal cooling is quiteimportant to master the heat transfer and cooling technology of gas turbine blade.
     The mechanism of heat transfer and flow in the ribbed U-duct, which is a typicalconfiguration in the internal serpentine duct, is studied both experimentally andnumerically. The heat transfer is measured by the transient liquid crystal technology.The pressure drop and friction factor are also measured and used to form the empiricalcorrelation. In this dissertation, the heat transfer and flow in the turn region has beenoptimized by adding different configurations in this region. It is shown that, the turningvane restrains the flow separation near the tip of divider wall, and weakens the flowacceleration in the turn region, so it could greatly reduce the pressure loss. Adding theturning vane and ribs in the turn region could make the heat transfer in the U-duct moreuniform. The comparison between the experimental and numerical results shows that,the RANS method could provide acceptable engineering accuracy to analyze the flowfeature and heat transfer in the smooth U-duct and45deg ribbed U-duct. However theapplied turbulence model still can’t capture the flow separation and acceleration in theturn with good enough accuracy, and the heat transfer in the turn region is not verysatisfactory. The study of trapezoid U-duct shows that, the unsymmetrical duct wall willmake the secondary flow form two different vortices, in which the larger one is near thevertical wall. As a result, for the ribbed U-duct, the heat transfer on the vertical wall ishigher than inclined wall. The different mode how the coolant enters the U-duct haslittle effect on the heat transfer and flow in the duct.
     The internal cooling configuration of an F-class gas turbine blade has beenstudied in detail. The Experimental test,1D flow network calculation and3D RANSanalysis have been carried out to investigate the heat transfer and flow in this cooling system, and to analyze the cooling system design features. It is shown that the1D flownetwork method, in which the empirical correlation has been evaluated and corrected,and3D RANS method could provide acceptable prediction of the pressure and coolantdistribution in the complicated internal cooling system. At the stationary condition, thepressure and coolant distribution in the scaled blade is consistent with the primary one.On the rotating condition, the prediction of the pressure and coolant distribution in theblade by two simulation methods, are also consisted with each other. The experimentaltest by using transient liquid crystal and3D numerical method matches well, and theycould well reveal the heat transfer distribution in this true blade internal cooling system.The comparison has proved the reliability of the two methods on research the heattransfer and flow in complicated cooled blade.
引文
[1]林公舒,杨道刚[著].现代大功率发电用燃气轮机.北京:机械工业出版社,2007.
    [2]韩介勤,桑地普·杜达,斯瑞纳斯·艾卡德[著].程代京,谢永惠[译].燃气轮机传热和冷却技术.西安:西安交通大学出版社,2005.
    [3] Halila E E, Lenahan D T, and Thomas T T. Energy efficient engine. NASA ReportCR-167955,1982.
    [4] Han J C, Park J S. Heat transfer and pressure drop in blade cooling channels with turbulencepromoters. NASA Report11707,1983.
    [5] Han J C. Turbine blade cooling studies at Texas A&M University:1980-2004. Journal ofThermo-physcs and Heat Transfer,2006,20(2):161-187.
    [6] Han J C, Park J S, and Lei C K. Augmented heat transfer in rectangular channels of narrowaspect ratios with rib turbulators. International Journal of Heat and Mass Transfer,1989,32(9):1619-1630.
    [7] Han J C, Park J S, and Lei C K. Heat transfer enhancement in channels with turbulencepromoters. Journal of Engineering for Gas Turbines and Power. Transactions of the ASME,1985,107(3):628-635.
    [8] Sewall E A, Tafti D K. Experimental validation of large eddy simulations of flow and heattransfer in a stationary ribbed duct. International Journal of Heat and Fluid Flow,2006,27:243–258.
    [9] Webb R L, Eckert E R G. Heat transfer and friction in tubes with repeated-rib roughness.International Journal of Heat and Mass Transfer,1971,14:601-617.
    [10] Rallabandi A P, Alkhamis N. Heat transfer and pressure drop measurements for a squarechannel with45deg round edged ribs at high Reynolds numbers. ASME PaperGT2009-59546.
    [11] Bailey J C, Bunker R S. Heat transfer and friction in channels with very high blockage45degstaggered turbulators. ASME GT2003-38611.
    [12] Casarsa L, Arts T. Experimental investigation of the aerothermal performance of a highblockage rib-roughened cooling channel. Journal of Turbomachinery,2002,127:580-588.
    [13] Liou T M, Hwang J J. Effect of ridge shapes on turbulent heat transfer and friction in arectangular channel. International Journal of Heat and Mass Transfer,1993,36(4):931-940.
    [14] Taslim M E, Spring S D. Effects of turbulator profile and spacing on heat transfer and frictionin a channel. AIAA Journal of Thermophysics and Heat Transfer,1994,8(3):555-562.
    [15] Rallabandi A P, Yang H T. Heat transfer and pressure drop correlations for square channelswith45deg ribs at high Reynolds numbers. Journal of Heat Transfer,2009,131(7):703-713.
    [16] Han J C, Zhang. Augmented heat transfer in square channels with parallel, crossed andV-shaped angled ribs. Journal of Heat Transfer,1991,113:590-596.
    [17] Han J C, Zhang. High performance heat transfer ducts with parallel broken and V-shapedbroken ribs, International Journal of Heat and Mass Transfer,1992,35(2):513-523.
    [18] Han J C, Huang J J. Augmented heat transfer in square channels with wedge-shaped anddelta-shaped turbulence promoters. Enhanced Heat Transfer,1993,1(1):37-52.
    [19] Maurer M, Wolfersdorf J V. An experimental and numerical study of heat transfer andpressure losses of V-and W-shaped ribs at high Reynolds numbers. ASME PaperGT2007-27167.
    [20] Kunstmann S, Wolfersdorf J V. Heat transfer and pressure loss in rectangular one-side-ribbedchannels with different aspect ratios. ASME Paper GT2009-59333.
    [21]苏生,胡捷.交替大小肋片方腔通道内换热性能的数值模拟.航空动力学报,2008,23(12):2274-2279.
    [22] Park J S, Han J C. Heat transfer performance comparisons of five different rectangularchannels with parallel angled ribs. International Journal of Heat and Mass Transfer,1992,35(11):2891-2903.
    [23] Metzger D E, Vedula R P. Heat transfer in triangular channels with angled roughness ribs ontwo walls. Experimental Heat Transfer,1987,1(1):31-44.
    [24] Zhang Y M, Gu W Z. Augmented heat transfer in triangular ducts with full and partial ribbedwalls, Journal of Thermophysics and Heat Transfer,1994,8(3):574-579.
    [25] Taslim M E, Li T. Measurements of heat transfer coefficients and friction factors inrib-roughened channels simulating leading-edge cavities of a modern turbine blade.1997,Journal of Turbomachinery,119:601-609.
    [26] Amro M, Weigand B. An experimental investigation of the heat transfer in a ribbed triangularcooling channel. International Journal of Thermal Sciences,2007,46:491-500.
    [27] Schabacker, et al. PIV investigation of the flow characteristics in an internal coolant passagewith two ducts connected by a sharp180degree bend. ASME Paper98-GT-544.
    [28] Schabacker, et al. PIV investigation of the flow characteristics in an internal coolant passagewith45deg rib arrangement. ASME Paper99-GT-120.
    [29] Metzger D E, Plevich C W. Pressure loss through sharp180deg turns in smooth rectangularchannels. ASME Paper84-GT-154.
    [30] Metzger D E, et al. Heat transfer aroud sharp180-deg turns in smooth rectangular channels.Journal of Heat Transfer,1986,108:500-506.
    [31] Han J C, Chandra P R. local heat/mass transfer and pressure drop in a two-pass rib-roughenedchannel for turbine airfoil cooling. NASA Report CR179635,1987.
    [32] Son S Y, Kihm K D. PIV flow measurements for heat transfer characterization in two-passsquare channels with smooth and90deg ribbed walls. International Journal of Heat and MassTransfer,2002,45:4809–4822.
    [33] Ekkad S V, Han J C. Local heat transfer measurements nears a sharp180deg turn of atwo-pass smooth square channel with a transient liquid crystal image technique. Journal ofFlow Visualization and Image Processing,1995,2:287-298.
    [34] Ekkad S V, Huang Y. Detailed heat transfer distributions in two-pass square channels with ribturbulators, International Journal of Heat and Mass Transfer,1997,41(13):2523-2537.
    [35] Mochizuki S, Murata A. Effects of rib arrangements on pressure drop and heat transfer in arib-roughened channel with a sharp180deg turn. Journal of Turbomachinery,1997,119:610-616.
    [36] Chanteloup D, et al. Combined3-D flow and heat transfer measurements in a2-pass internalcoolant passage of gas turbine airfoils. Journal of Turbomachinery,2002,124:710-718.
    [37] Han J C, Zhang P. Pressure loss distribution in three-pass rectangular channels with ribturbulators, Journal of Turbomachinary,1989,111:515-521.
    [38] Han J C, Zhang P. Effect of rib-angle orientation on local mass transfer distribution in athree-pass rib-roughened channel. Journal of Turbomachinary,1991,113:123-130.
    [39] Cravero C, Giusto C. Fluid flow and surface heat transfer analysis in a three-pass trapezoidalblade cooling channel. Aircraft Engineering and Aerospace Technology,1999,71(2):143-153.
    [40] Chyu M K, et al. Surface heat transfer from a three-pass blade cooling passage simulator.Journal of Turbomachinery,1995,117:650-656.
    [41] Ekkad S V, Pamula G. Detailed heat transfer measurements inside straight and taperedtwo-pass channels with rib turbulators. Experimental Thermal and Fluid Science,2000,22:155-163.
    [42]戚磊,丁水汀.带肋变截面回转通道内换热特性的实验研究.航空动力学报,2003,18(5):629-633.
    [43]刘浪,丁水汀.带肋变截面回转通道内沿程有效压力分布特性的实验研究.航空动力学报,18(3):353-357.
    [44] Elfert M, Jarius M P. Detailed flow investigation using PIV in a typical turbine coolinggeometry with ribbed walls. ASME Paper GT2004-53566.
    [45] Lee S W, Ahn H S. Heat (mass) transfer distribution in a two-pass trapezoidal channel with a180deg turn. Journal of Heat Transfer,2007,129:1529-1537.
    [46] Nakayama H, Hirota M. Fluid flow and heat transfer in two-pass smooth rectangular channelswith different turn clearances. Journal of Turbomachinery,2006,128:772-785.
    [47] Pape D, Jeanmart H. Influence of the180bend geometry on the pressure loss and heattransfer in a high aspect ratio rectangular smooth channel. ASME Paper GT2004-53753.
    [48] Jenkins S C, Zehnder F. The effect of ribs and tip wall distance on heat transfer for a varyingaspect ratio two-pass ribbed internal cooling channel. ASME Paper GT2008-51207.
    [49] Rao D V, et al. Effect of guide vanes on pressure drop in a rib roughened square channel witha sharp cornered1800bend. AIAA Paper2003-5961.
    [50] Luo J, Razinsky E H. Analysis of turbulent flow in180°turning ducts with and without guidevanes. ASME Paper GT2007-28173.
    [51] Zehnder F, Schüler M. The effect of turning vanes on pressure loss and heat transfer of aribbed rectangular two-pass internal cooling channel. ASME Paper GT2009-59482.
    [52] Byerley A R, Jones. Internal cooling passage heat transfer near the entrance to a film coolinghole: experimental and computational results. International Gas Turbine and AeroengineCongress and Exposition, Cologne, Germany,1992,92-GT-241.
    [53] Shen J R, Wang Z. Heat transfer enhancement within a turbine blade cooling passage usingribs and combinations of ribs with film cooling holes. Journal of Turbomachinery,1996,118:428-434.
    [54] Ekkad S V, Huang. Detailed heat transfer distributions in two-pass smooth and turbulatedsquare channels with bleed holes. International Journal of Heat and Mass Transfer.1998,41(13):3781-3791.
    [55]苏福彬,朱惠人.内冷通道带肋和出流孔壁面的换热研究.航空动力学报,2009,24(7):1500-1506.
    [56] Chanteloup D. Flow effects on the bend region heat transfer distribution of2-pass internalcoolant passages of gas turbine airfoils: influence of film cooling extraction. ASME PaperGT2003-38702.
    [57]刘湘云,陶智.带60°肋U型通道中气膜孔对通道换热特性的影响.航空动力学报,2005,20(5):822-826.
    [58] Tse D G, McGrath D B. A combined experimental/computational study of flow in turbineblade cooling passage, Part1:experimental study. ASME Paper95-GT-355.
    [59] Parsons J A, Han J C and Zhang Y M. Effects of model orientation and wall heating conditionon local heat transfer in a rotating two-pass square channel with rib turbulators. InternationalJournal of Heat and Mass Transfer,1995,38(7):1151–1159.
    [60] Wagner J H, Johnson. Heat transfer in rotating serpentine passages with smooth wails. Journalof Turbomachinary,1991,113:321-330.
    [61] Iacovides H, Jackson. LDA study of the flow development through an orthogonally rotatingU-bend of strong curvature and rib roughened walls. Journal of Turbomachinary,1998,108:386-391.
    [62] Dutta S, Han J C. Local heat transfer in rotating smooth and ribbed two-pass square channelswith three channel orientations. Journal of Heat Transfer,1996,118(3):578–584.
    [63] Dutta S, Han J C and Zhang Y M. Local heat transfer in a rotating two-pass triangular ductwith smooth walls. Journal of Turbomachinery,1996,118(3):435–443.
    [64] Dutta S, Han J C. Local heat transfer in a rotating two-pass ribbed triangular duct with twomodel orientations. International Journal of Heat and Mass Transfer,1996,39(4):707–715.
    [65] Azad G M S, et al. Heat transfer in a two-pass rectangular rotating channel with45-degreeangled rib turbulators. ASME Paper2001-GT-186.
    [66] Al-Hadhrami L, Griffith T S. Heat transfer in two-pass rotating rectangular channels (AR=2:1)with parallel and crossed45V-shaped rib turbulators. AIAA Paper2002-59.
    [67] Griffith T S, Al-Hadhrami L. Heat transfer in rotating rectangular cooling channels (AR=4)with angled ribs. AIAA Paper2001-2820.
    [68] Wright L M, Fu W L and Han J C. Thermal performance of angled, V-shaped and W-shapedrib turbulators in rotating rectangular (AR=4:1) cooling channels. Journal of Turbomachinery,2004,126:603–613.
    [69] Fu W L, Wright L M and Han J C. Heat transfer in two-pass rotating rectangular channels(AR=1:2and AR=1:4) with45angled rib turbulators. ASME Paper GT-2004-53261.
    [70] Liu Y H, Huh. M. High rotation number effect on heat transfer in a triangular channel with45°, inverted45°, and90°ribs. ASME Paper GT2009-59216.
    [71] Huh M, Lei. J. High rotation number effects on heat transfer in a rectangular (AR=2:1) twopass channel, ASME Paper GT2009-59421.
    [72] Abuaf N, et al. Heat transfer and turbulence in a turbulated blade cooling circuit. Journal ofTurbomachinery,1994,116:169-177.
    [73] Bunker R S, Wetzel T G. Heat transfer in a complex trailing edge passage for a highpressure,turbine blade-part1:Experimental measurements. ASME Paper GT-2002-30212.
    [74] Jackson D, Ireland P. Combined experimental and CFD study of a hp blade multi-pass coolingsystem. ASME Paper GT2009-60070.
    [75] Poser R, Wolfersdorf J V. Liquid crystal thermography for transient heat transfermeasurements in complex internal cooling systems. Int. Symp. on Heat Transfer in GasTurbine Systems,2005, HT2005-72260.
    [76] Poser R, Wolfersdorf J V. Advanced evaluation of transient heat transfer experiments usingthermochromic liquid crystals. Journal of Power and Energy,2009,221:793-801.
    [77] Cooper T E, Field R J. Liquid crystal thermography and its application to the study ofconvective heat transfer. Journal of Heat Transfer,1975,97(3):442-450.
    [78] Ireland P T, Jones T V. Response time of a surface thermometer employing encapsulatedthermochromic liquid crystals. Journal of Physics E: Scientific Instruments,1987,20(10):1195-1199.
    [79] Wang Z, Ireland P T. Technique for measuring convective heat transfer at rough surfaces.Transactions of the Institute of Measurement and Control,1991,13(3):145-154.
    [80] Camci C, Kim K. A new hue capturing technique for the quantitative interpretation of liquidcrystal images used in convective heat transfer studies. Journal of turbomachinery,114:765-775.
    [81] Wang Z, Ireland P T. An advanced method of processing liquid crystal video signals fromtransient heat transfer experiments. ASME Paper93-GT-282.
    [82] Wang Z, Ireland P T. A color image processing system for transient liquid crystal heattransfer experiments. ASME Paper94-GT-290.
    [83] Ireland P T, Neely A J. Turbulent heat transfer measurements using liquid crystals.International Journal of Heat and Fluid Flow,1999,20:355-367.
    [84] Ekkad S V, Han J C. A transient liquid crystal thermography technique for gas turbine heattransfer measurements. Meas. Science. Technol,2000,11:957–968.
    [85] Talib A R A, et al. A novel liquid crystal image processing technique using multiple gastemperature steps to determine heat transfer coefficient distribution and adiabatic walltemperature. ASME Paper GT2003-38198.
    [86] Newton P J, Yan Y. Transient heat transfer measurements using thermochromic liquid crystal.part1:an improved technique. International Journal of Heat and Fluid Flow,2003,24:14–22.
    [87] Owen J M, Newton P J. Transient heat transfer measurements using thermochromic liquidcrystal. part2: experimental uncertainties. International Journal of Heat and Fluid Flow,2003,24:23–28.
    [88] Wagner G, et al. The transient liquid crystal technique: influence of surface curvature andfinite wall thickness. ASME Paper GT2004-53553.
    [89] Jenkins S C, et al. Transient thermal field measurements in a high aspect ratio channel relatedto transient thermochromic liquid crystal experiments. ASME Paper GT2007-27812.
    [90]阚瑞,陈伟,任静,蒋洪德.梯形带肋内部冷却通道的流动及传热特性.工程热物理学报,2010,31:753-756.
    [91] Besserman D L, Tanrikut S. Comparison of heat transfer measurements with computations forturbulent flow around a180°bend. ASME Paper91-GT-2.
    [92] Ooi A, et al. Reynolds averaged simulation of flow and heat transfer in ribbed ducts.International Journal of Heat and Fluid Flow,2002,23:750–757.
    [93] Hermanson K P, Wolfersdorf J. Prediction of pressure loss and heat transfer in internal bladecooling passages, Int. Symp. on Heat Transfer in Gas Turbine Systems,2000,934:448-455.
    [94] Jia R, Sunden B. Computational analysis of heat transfer enhancement in square ducts withV-shaped ribs:turbine blade cooling. Journal of Heat Transfer,2005,127:425-433.
    [95] Iacovides H, Raisee M. Recent progress in the computation of flow and heat transfer ininternal cooling passages of turbine blades. International Journal of Heat and Fluid Flow,1999,20:320-328.
    [96] Iacovides H, Launder B E. Internal blade cooling: the cinderella of computational andexperimental fluid dynamics research in gas turbines. Journal of Power and Energy,2006,221Part A:265-290.
    [97] Jang Y J, et al. Computation of flow and heat transfer in two-pass channels with60deg ribs.Journal of heat transfer,2001,123:563-575.
    [98] Rigby D L, et al. Computation of turbulent heat transfer on the walls of a180degree turnchannel with a low Reynolds Number Reynolds Stress Model. ASME Paper GT-2002-30211.
    [99] Lucci J M, Amano R S. Turbulent flow and heat transfer in variable geometry u-bend bladecooling passage. ASME Paper GT2007-27120.
    [100]Lin Y L, et al. A numerical study of flow and heat transfer in a smooth and ribbed U-ductwith and without rotation. Journal of heat transfer,2001,123:219-232.
    [101]Okita Y, Iacovides H. Comparisons of high-Reynolds-number EVM and DSM models in theprediction of heat and fluid flow of turbine blade cooling passages. Journal ofTurbomachinery,2003,125:585-597.
    [102]Iaccarino G, Ooi A. Conjugate heat transfer predictions in two-dimensional ribbed passages.International Journal of Heat and Fluid Flow,2002,23:340-345.
    [103]Walker D, Zausner J. RANS evaluations of internal cooling passage geometries: ribbedpassages and a180degree bend. ASME Paper GT2007-27830.
    [104]李广超,朱惠人.涡轮工作叶片内冷通道换热特性数值模拟.机械设计与制造,2006,9:80-82.
    [105]苏生,刘建军.非对称蛇形旋转通道换热及流场数值研究.工程热物理学报,2007,28(1):77-80.
    [106]姚玉,张靖周.有无内部对流换热对导叶冷却效果影响的数值研究.航空动力学报,2009,23(9):1672-1677.
    [107]Shevchuk I V, Jenkins S C, Validation and analysis of numerical results for a varying aspectratio two-pass internal cooling channel. ASME Paper GT2008-51219.
    [108]Saha A K, Sumanta A. Flow and heat transfer in an internally ribbed duct with rotation: anassessment of LES and URANS. Journal of Turbomachinery,2005,127:306-316.
    [109]Tafti D K, Evaluating the role of subgrid stress modeling in a ribbed duct for the internalcooling of turbine blades. International Journal of Heat and Fluid Flow,2005,26:92–104.
    [110]Sewall E A, Tafti D K. LES of flow and heat transfer in the180o bend region of a stationaryribbed gas turbine internal cooling duct. ASME Paper GT2005-68518.
    [111]Spalart P R. Young-Person's Guide to Detached-Eddy Simulations Grids. NASA ReportCR-2001-211032,2001.
    [112]Yan L, Tucker P G. Comparison of zonal RANS and LES for a non-isothermal ribbed channelflow. International Journal of Heat and Fluid Flow,2006,27:391–401.
    [113]Viswanathan A K, Tafti D K. DES of turbulent flow and heat transfer in a ribbed duct, Journalof Fluids Engineering,2005,127:888-896.
    [114]Viswanathan A K, Tafti D K. DES of flow and heat transfer in fully developed rotatinginternal cooling channel with normal ribs. International Journal of Heat and Fluid Flow,2006,27:351–370.
    [115]Viswanathan A K, Tafti D K. DES of turbulent flow and heat transfer in a two-pass internalcooling duct, International Journal of Heat and Fluid Flow,2006,27:1–20.
    [116]Viswanathan A K, Tafti D K. A comparative study of DES and URANS for flow prediction ina two-pass internal cooling duct, Journal of Fluids Engineering,2006,128(6):1336-1346.
    [117]Viswanathan A K, Tafti D K. Investigation of DES in capturing the effects of coriolis forcesand centrifugal buoyancy in ribbed ducts, Journal of Heat Transfer,2007,129(7):778-790.
    [118]Jones M J. Calibration and image processing techniques for quantitative digital analysis ofthermographic images. PhD Thesis, University of Southampton, U.K.,1991.
    [119]Kakade V U, Lock G D. Accurate heat transfer measurements using thermochromic liquidcrystal. part1: calibration and characteristics of crystals. International Journal of Heat andFluid Flow,2009,30:939-949.
    [120]Metzger D E, Larson D E. Use of melting point surface coatings for local convection heattransfer measurements in rectangular channel flows with90-deg turns. Journal of HeatTransfer,1986,108:48-54.
    [121]Bunker R S, Metzger D E. Local heat transfer in internally cooled turbine airfoil leading edgeregions. part1: impingement cooling without film extraction. Journal of Turbomachinary,1990,112:451-458.
    [122]H cker. Optimization of transient heat transfer measurements using thermochromic liquidcrystals based on an error estimation. ASME Paper96-GT-235.
    [123]ANSYS CFX-Solver Theory Guide, ANSYS. Inc,2009.
    [124]Han J C, Park J S. Measurement of heat transfer and pressure drop in rectangular channelswith turbulence promoters. NASA Contractor Report4015,1986.
    [125]宏坎普M S,布特基维茨J J.用于翼型部的冷却系统.中国:CN1776199A.2006年5月24日.
    [126]宏坎普M S.用于冷却燃气涡轮发动机的转子组件的方法和装置.中国:CN1743646A.2006年3月8日.
    [127]本杰明E D等.冷却燃气涡轮发动机转子组件的方法和装置.中国:CN1611748A.2005年5月4日.
    [128]张X J等.冷却燃气涡轮转子叶片的方法和装置.中国:CN16117474A.2005年5月4日.
    [129]Flowmaster V7New User Training, Flowmaster. Inc,2009.
    [130]吴大观,斯贝MK202发动机技术设计(EGD-6),西安:国营红旗机械厂,1982.
    [131]Miller D S. Internal Flow Systems. BHRA Fluid Engineering.1978.
    [132]Majumdar A K, Bailey J W. A generalized fluid system simulation program to model flowdistribution in fluid networks, AIAA98-3682.
    [133]Majumdar A K, et al. Generalized fluid system simulation program (gfssp) version3.0,1999.
    [134]Schallhorn P A, et al. Forward looking pressure regulator algorithm for improved modelingperformance within the generalized fluid system simulation program, AIAA Paper2004-3667.
    [135]陶智等.流体网络法在发动机空气冷却系统设计中的应用.航空动力学报,2009,24(1):1-6.
    [136]刘松龄,郭文.发动机空气系统网络法计算方法研究.四川江油:中国燃气涡轮研究院,1996.
    [137]郭文,吉洪湖.高压涡轮导叶内冷通道流动特性计算分析.航空动力学报,2005,20(5):831-835.
    [138]The Gas Turbine Handbook, US Department of Energy,2006.
    [139]Johnson B V, Wagner J H. Heat transfer in rotating serpentine passages with trips skewed tothe flow. Journal of Turbomachinery,2000,116(1):113-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700