用户名: 密码: 验证码:
临近空间浮空器热—结构耦合数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为高空平台,临近空间浮空器由于滞空时间长、低成本和可重复使用等优点,在军事上具有很好的使用价值,美、韩、日等国家已经对其开展了大量研究。在浮空器设计领域,一个很重要的问题是在设计和运行控制中预测内部气体温度变化特性,因为浮空器浮力取决于囊体内的气体温度与环境空气温度的差值。平流层浮空器外部蒙皮主要采用膜结构,其整体刚度小,一般为柔性,内部气体温度变化会导致浮空器蒙皮结构发生非线性变形,反之,浮空器结构变形也会影响到内部气体温度变化。因此,浮空器热力学与结构力学的相互作用是一个复杂的热-结构耦合问题。
     本文围绕着临近空间浮空器热-结构耦合问题开展了一系列研究,主要工作和成果如下:
     (1)建立了平流层飞艇热力学模型,据此设计了计算程序,并用实验数据验证了其准确性。用实验数据验证的计算程序对平流层飞艇滞空过程中的热力特性进行了分析,给出了飞艇蒙皮和内部气体温度瞬态变化规律,并研究了蒙皮辐射物性参数、周围风速以及飞艇姿态角对飞艇内部气体温度以及蒙皮温差的影响。
     (2)建立了飞艇表面光伏电池的三层导热模型,结合平流层飞艇的热力学模型获得了光伏电池与平流层飞艇耦合分析模型。根据所得数学模型,对平流层飞艇热特性计算程序进行了升级。利用升级后的计算程序,分析了光伏电池热力特性及其输出功率,研究了纬度和风速对光伏电池输出功率的影响以及光伏电池对飞艇热特性的影响。
     (3)建立了膜结构数学模型,据此设计了柔性薄膜变形计算程序,并进行了验证。将膜结构数学模型与飞艇的热力学模型相耦合,在此基础上设计出了平流层飞艇热-结构耦合数值模拟程序。利用该程序对飞艇蒙皮结构力学特性进行了研究,分析了蒙皮内外压差、蒙皮弹性模量以及泊松比等参数变化对飞艇蒙皮结构变形以及蒙皮应力的影响,为飞艇蒙皮结构设计提供了参考依据;对飞艇定点悬停过程中夜间和正午时刻进行了稳态热-结构耦合分析,揭示了蒙皮弹性模量、蒙皮辐射参数对飞艇内部气体温度、内外压差、飞艇体积以及滞空高度的影响;对飞艇滞空飞行和滞空悬停两种工作情况下的瞬态过程进行了热-结构耦合分析,预测了平流层飞艇内部气体昼夜温度变化以及蒙皮内外压差昼夜变化情况,计算出了蒙皮最大应力,作为判断平流层飞艇滞空过程中是否会出现破裂的依据。
     (4)建立了高空超压气球热-结构耦合数学模型,据此设计出了高空超压气球热-结构耦合数值模拟程序。利用该程序对超压气球蒙皮结构力学特性进行了研究,分析了加强筋数量、最大瓣角、蒙皮和加强筋弹性模量、蒙皮泊松比等参数变化对超压气球性能的影响,并对“南瓜形”与正球形(含加强筋、不含加强筋)三种结构超压气球的结构性能进行了对比分析,为高空超压气球蒙皮、加强筋以及结构设计提供了参考依据;对高空超压气球进行了热-结构耦合分析,预测了超压气球内部气体昼夜温度变化以及蒙皮内外压差昼夜变化情况下蒙皮的最大应力,用以判断超压气球滞空过程中是否会出现破裂现象。此外,还针对“等角度”南瓜形超压气球提出了设计思路,为超压气球的设计打下了一定的基础。
As a high-altitude platform, the near space airship has a great range of performance capabilityavailable to be exploited for commercial and military sectors. The main benefits of near space airshipare extended durations, low cost, and recycling. Currently, many developed countries, such as theUnited States, South Korea and Japan, have carried out intensive investigations of the research anddevelopment of near space airship. As is well known in the field of airship design, it is very importantto predict the inner gas temperature for the design and operation of an airship because its buoyancydepends strongly on the temperature difference between the inner gas and surrounding air. For thenear space airship skin, membrane structure is adopted. The membrane with the characteristic of lowrigid is taken as a flexible structure. The temperature variations of the inner gas may cause themembrane structure to deform, while the deformation alse influence the temperature of inner gas. Theinteraction between the temperature of the inner gas and the nonlinear large deformation is acomplicated thermal-structure coupling problem.
     In the paper, a series of studies on the thermal-structure coupling problem of near space airship isdone. The main contents are as follow:
     (1) The thermodynamic model of the stratospheric airship is developed, based on which thecalculation program is implemented and verified by comparing the calculated values with theexperimental results. By numerical simulation, the thermal characteristics of the airship is explored,and the transient temperature variations of the skin and inner gas are presented. The effects ofradiative properties of the skin, wind velocity and attitude angle of the airship on the temperturevariations of buoyancy gas and the non-uniform temperture distribution of the skin have beenanalysed.
     (2) The three-layer heat conduction model of the photovoltaic array is developed and coupled withthe thermaldynamic model of the stratospheric airship, and then the photovoltaic array and airshipcoupling analysis model is developed. According the coupling model, the calculation programprogram of thermal characterics of the ship updates to estimate the thermal performances and outputpower of the array, the effects of the latitude, wind velocity and insulation on the power output of thePV array are analyzed and the effect of the PV array on the thermal characteristics of the airship isinvestigated.
     (3) The mathematical model of membrane structure is developed, the computational program ofmembrane deformation is implemented, and the validity and the accuracy of the computationalprogram are evaluated. Based on coupling the membrane strucuture model with thermodynamicmodel of the airship, the program of numerical simulation about thermal-structure coupling problemof the stratospheric airship is designed. By using the program, the structure analysis of thestratospheric airship is studied on, the effects of the differential pressure and elastic modulus andPoisson ratio of the skin on the structural deformation and the stress of the stratospheric airship areanalyzed, which offer references for structure design of the stratospheric airship. The steadythermal-structure analysis to the stratospheric airship in spot hover at night and noon is discussed. Theeffects of elastic modulus and radiative properties of the skin to the temperature of the inner gas,differential pressure, and the volume and flight altitude of the airship are analyzed. The transient thermal-structure analysis to the stratospheric airship is carried on during spot hover and floatingflight. the variation of inner gas temperature and pressure can be predicted precisely. The maximummain stress of the skin can be obtained, which is used to discern whether the stratospheric airship maybrust during floating flight.
     (4) The thermal-structure model of super pressure balloon is developed, the structure analysis of theballoon is done, and the effects of the number of the tendons, subtended angle at equator, elasticmodulus and Poisson ratio of the skin, elastic modulus of the tendons on the super pressure balloonare investigated. The structure behavior of Pumpkin-shaped and spherical balloons are compared andanalyzed. The study and analysis would offer references and experiences for structure design of thesuper pressure balloon. The transient thermal-structure analysis to the super pressure balloon is given.The maximum main stress of the skin and the maximum tension of the tendon can be accuratelypredicted to examine whether the balloon may brust, when the temperature and pressure of inner gasvaries from day to night. At last, the paper proposes a new way to design “Constant Angle”pumpkin-shaped balloon which could be good fundamentals for the design of the super pressureballoon.
引文
[1]王亚飞,安永旺,杨继何.临近空间飞行器的现状及发展趋势.国防技术基础,2010,(1):33–37.
    [2]段锋.临近空间飞行器现状与发展.航空科学技术.力学进展,2009,39(6):658–672.
    [3]郭劲.临近空间飞行器军事应用价值分析.光机电信息,2010,27(8):22–27.
    [4]王艳奎.临近空间飞行器应用前景及发展概况分析.中国航天,2009,(10):39–41.
    [5] Khoury G A. Airship technology[M]. Cambridge University Press,2012.
    [6]马瑞平,廖怀哲,中国地区20~80km高空风的一些特征.空间科学学报,1999,19(4):334–341.
    [7]马瑞平,徐寄遥,廖怀哲.我国地区20~80km高空大气温度特征.空间科学学报,2001,21(3):246–252.
    [8]彭勇刚,陈泽宇,陈洪滨,等.利用HRDI/UARS资料分析东亚区域中层大气纬向风气候特征.空间科学学报,2006,26(2):124–131.
    [9]吴振,陈泽宇,彭勇刚,等.东亚MIT区域平均纬向风再评估——WINDII测量分析结果.地球物理学报,2008,51(1):44–50.
    [10]徐寄遥,纪巧,袁韦华,等. TIMED卫星探测的全球大气温度分布及其与经验模式的比较.空间科学学报,2006,26(3):177–182.
    [11]肖存英.临近空间大气动力学特性研究[博士学位论文].北京:中国科学院研究生院(空间科学与应用研究中心),2009.
    [12]丛力田,胡文琳.浮空器平台在预警监视领域应用研究.中国浮空器大会论文集.北京:航空工业出版社,2011:29–36.
    [13]杨维东,杨凡德.临近空间飞行器预警能力分析.装备指挥技术学院学报,2008,19(2):57–60.
    [14] Jamison L, Sommer G S, Porche III I R. High-altitude airships for the future force army. RandArroyo Center Santa Monica C,2005.
    [15]王明建,黄新生.平流层飞艇平台的发展及关键技术分析.兵工自动化,2007,26(08):58–60.
    [16]王海峰.高空飞艇定点控制关键技术及解决途径.飞行力学,2005,23(4):5–8.
    [17]欧阳晋.平流层平台的发展及其自主控制关键技术.工业仪表与自动化装置,2004(1):64–67.
    [18]王彦广,姚伟,李勇.平流层飞艇技术发展及其应用前景展望.卫星与网络,2010(4):18–21.
    [19]何林林.平流层飞艇关键技术与自主控制技术研究.航空科学技术,2010(1):36–39.
    [20]蒋谱成,武坦然,张宇涵.近地空间飞艇发展现状与趋势.空间电子技术,2008,5(3):5–10.
    [21]李利良,郭伟民,何家芳.国外近空间飞艇的现状和发展.兵工自动化.2008,27(2):32–35.
    [22]蒋谱成,武坦然,张宇涵.近地空间飞艇发展现状与趋势.空间电子技术,2008,5(3):5–10.
    [23]姚伟,李勇,王文隽,郑威.美国平流层飞艇发展计划和研制进展.航天器工程,2008,17(2):69–75.
    [24] Colozza A. Initial feasibility assessment of a high altitude long endurance airship.NASA/CR–2003–21272.
    [25] Nachbar D, Fabel,J. Next generation thermal airship. AIAA3rd Annual Aviation Technology,Integration, and Operations(ATIO) Technical Forum, AIAA, Reston, VA, Nov,2003:1–16
    [26] Lee Y G, Kim D M, Yeom C H. Development of Korean high altitude platform systems.International Journal of Wireless Information Networks, January2006, Vol.13(1), pp31–42
    [27] Kim D M, Lee Y G, Kang W G, et al. Korea stratospheric airship program and current results.AIAA2003–6782.
    [28] Eguchi K, Yokomaku Y, Mori M, et al. Feasibility study program on stratospheric platformairship technology in Japan. Proc.13th AIAA Lighter-Than-Air Systems TechnologyConference, Norfolk, Virginia, June,1999, AIAA99–33350.
    [29] Harada K, Eguchi K, Sano M, et al. Experimental study of thermal modeling for stratosphericplatform airships. AIAA2003–6833
    [30] Colozza A. Airships for Planetary Exploration. NASA/CR–2004–213345.
    [31] Colozza A. Initial feasibility assessment of a high altitude long endurance airship.NASA/CR–2003–212724.
    [32]华锋,高维,彭小龙,等.浅谈美军飞艇发展.飞航导弹,2007,7(23):62–64.
    [33]陈文英,陈玲.美军高空飞艇.江苏航空,2007(3):15–17.
    [34]曹旭,顾正铭,王伟志,等.美国ISIS平流层飞艇概述.2011年中国浮空器大会论文集.北京:航空工业出版社,2011:114-119.
    [35] Smith M, Rainwater E. Applications of scientific ballooning technology to high altitude airships.Proceedings3rd Annual Technical Forum, American Institute of Aeronautics and Astronautics,November.2003, AIAA2003–6711
    [36] Site I L. Northern Hemisphere Capabilities of the NASA Balloon Program. AIAA2007–2612.
    [37]陈务军,董石麟.德国(欧洲)飞艇和高空平台研究与发展.空间结构,2006,12(4):3–7.
    [38] Lutz T, Funk P, Jakobi A, et al. Summary of aerodynamic studies on the lotte airship.4thInternational Airship Convention and Exhibition. July,2002:1–12.
    [39] Valera L, Nagabhushan B. Design Trends and Global Developments in Modern Lta Vehicles.ICAS Congress, Saint Louis University.2002.
    [40] Eguchi K, Yokomaku Y, Mori M. Overview of stratospheric platform airship R&D program inJapan. Stratospheric Platform Systems Workshop SPSW2000, Tokyo, Japan, September21–22,15–23.
    [41] Onda M, Misawa M, Kojima T, et al. A stratospheric LTA stationary platform fortelecommunication and environmental protection. SICE Annual,1999.38th Annual ConferenceProceedings of the. IEEE,1999:1227–1232.
    [42] Onda M, Morikawa Y. High-altitude lighter-than-air powered platform. International Pacific Airand Space Technology Conference and Aircraft Symposium,29th, Gifu, Japan.1991:687–694.
    [43] Onda M, Fujita M, Fujino Y, et al. A stratospheric stationary LTA platform concept andground-to-vehicle microwave power transmission tests. AIAA, Aerospace Sciences Meeting andExhibit,37th, Reno, NV, Jan,1999, A99–16857.
    [44] Onda M, Sano M. Stratospheric LTA Platform with Variable Flight Altitude Control. AIAA5thATIO and16th Lighter-Than-Air Sys Tech.&Balloon Systems Conferences, Arlington,Virginia, September,2005, AIAA2005–7391
    [45] Onda M. Design and Applications of a Stratospheric Long Endurance LTA Platform. AIAA2001–5266.
    [46] Min K D, Gyo L Y, Jong L S, et al. Research activities for the development of stratosphericairship platform in Korea.5th Stratospheric platforms Systems Workshop, Tokyo, Japan.2005:82–88
    [47] Cathey H M. Development of the NASA Long Duration Balloon Vehicle. Advances in SpaceResearch,2000,26(9):1345–1348.
    [48] Gregory D D, Stepp W E. NASA's long duration balloon program: the last ten years and the nextten years. Advances in Space Research,2004,33(10):1608–1612.
    [49] Stuchlik D, Tillery K. The NASA long duration balloon project. AIAA International BalloonTechnology Conference, Albuquerque, NM,1991:165–169.
    [50] Cathey H M. Test flights of the NASA ultra-long duration balloon. Advances in Space Research,2004,33(10):1633–1641.
    [51] Cathey H M. Evolution of the NASA ultra long duration balloon. AIAA Balloon TechnicalConference, Williamsburg, VA, May,2007, AIAA2007–2615.
    [52] Cathey Jr H M. NASA superpressure balloons-designing to meet the future. European Rocketand Balloon Programmes and Related Research,2001:583–590.
    [53] Cathey H M. Development Overview of the Revised NASA Ultra Long Duration Balloon.Advances in Space Research,2008,42(10):1624–1632.
    [54] Simpson J M, Raque S M. Developments in long duration balloon vehicles using pressurizedballoon systems. AIAA94–0514
    [55] Orr G D. The long duration balloon vehicle (LDBV) flight system development. AIAA96-0357.
    [56] Smith I S. Overview of the ultra long duration balloon project. Advances in Space Research,2002,30(5):1205–1213.
    [57] Krieider J F. Mathematical Modelling of High Altitude Balloon Performance. AIAA75-1385.
    [58] Carlson L A, Horn W J. New thermal and trajectory model for high-altitude balloons. Journal ofAircraft,1983,20(6):500–507.
    [59]刘东旭,杨永强,吕明云,等.蒙皮热辐射特性对平流层浮空器氦气温度影响.北京航空航天大学学报,2010,36(7):836–840.
    [60] Stefan K. Thermal effects on a high altitude airship. Lighter-Than-Air Systems Conference.United States, July,1983:94–100.
    [61]方贤德,王伟志,李小建.平流层飞艇热仿真初步探讨.航天返回与遥感,2007,28(2):5–9.
    [62] Rapert C R M. A heat transfer model for a heat helium airship. AIAA1987–2443.
    [63] Franco H, Cathey Jr H M. Thermal performance modeling of NASA’s scientific balloons.Advances in Space Research,2004,33(10):1717–1721.
    [64] Dai Q, Fang X, Li X, et al. Performance simulation of high altitude scientific balloons. Advancesin Space Research,2012,49(6):1045–1052.
    [65]徐向华,程雪涛,梁新刚.平流层浮空器的热数值分析.清华大学学报:自然科学版,2009(11):1848–1851.
    [66] Xia X L, Li D F, Sun C, et al. Transient thermal behavior of stratospheric balloons at floatconditions. Advances in Space Research,2010,46(9):1184–1190.
    [67] Wang Y W, Yang C X. A comprehensive numerical model examining the thermal performanceof airships. Advances in Space Research,2011,48(9):1515–1522.
    [68]李德福,夏新林.平流层浮空器定点悬浮过程中的温度变化研究.中国浮空器大会论文集.北京:航空工业出版社,2007:112–115.
    [69]李德福,夏新林.浮空器升空过程中的温度变化研究.中国工程热物理学会年会传热传质分会论文集.广州:中山大学,2007:739–742.
    [70]孙娜,周华刚,周雷.高空飞艇气囊材料热物性的数值优化研究.2011年中国浮空器大会论文集.北京:航空工业出版社,2011:430–436
    [71] Cathey Jr H M. Advances in the thermal analysis of scientific balloons. AIAA1996–695.
    [72] Cathey H M. Scientific balloon effective radiative properties. Advances in Space Research,1998,21(7):979–982.
    [73] Louchev O A. Steady state model for the thermal regimes of shells of airships and hot airballoons. International journal of heat and mass transfer,1992,35(10):2683–2693.
    [74] Romero M, Rougeron M, Tockert C. Thermal balance of pumpkin shaped balloons and itsrelation with IR earth radiation. American Institute of Aeronautics and Astronautics.Aerodynamic Decelerator and Balloon Technology Conference,7th, San Diego, CA.1981,AIAA81–1938.
    [75] Cho C S, Raque S M. Influence of the infrared radiation on a high altitude scientific balloon.AIAA2002–1044.
    [76] Bohaboj T A. Scientific Balloon Thermal Modeling Using Thermal Desktop. AIAA5th Aviation,Technology, Integration, and Operations Conference(ATIO), Arilington, Virginia, September,2005, AIAA2005–7410.
    [77] Farley R E. Balloon Ascent:3-D simulation tool for the ascent and float of high altitude balloons.AIAA2005–7412.
    [78] Garde G J. Thermal Modeling of NASA’s Super Pressure Pumpkin Balloon. AIAA2007–2630.
    [79]徐向华,程雪涛,梁新刚.平流层浮空器的热数值分析.清华大学学报:自然科学版,2009(11):1848–1851.
    [80] Cao K, Baker J. Application of Transient Network Models for Near Space Thermal Management.AIAA46th Aerospace Sciences Meeting and Exhibit, Reno, NV,2008, AIAA2008–1192.
    [81]邓丽君.一种临近空间浮空器热控系统的研究[硕士学位论文].南京:南京理工大学,2009.
    [82] Palumbo R, Russo M, Filippone E, et al. ACHAB: analysis code for high-altitude balloons.AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head Island, SC,August,2007, AIAA2007–6642.
    [83]田莉莉,方贤德,戴秋敏,等.高空气球运动特性研究.2011年中国浮空器大会论文集,北京:航空工业出版社,2011:371–375.
    [84] Dai Q, Fang X, Li X, et al. Performance simulation of high altitude scientific balloons. Advancesin Space Research,2012,49(6):1045–1052.
    [85]姚伟,李勇,王文隽等.平流层飞艇热力学模型和上升过程仿真分析.宇航学报,2007,28(3):603–607.
    [86]史君海,朱新坚,隋升.平流层飞艇表面接收太阳能的建模与分析.计算机仿真,2007,24(8):64–67.
    [87]张衍垒,李兆杰,王生,等.平流层飞艇太阳能电池布设区域的计算与仿真.计算机仿真,2011,28(8):76–79.
    [88] Haifeng Wang, Bifeng Song, Liankai Zuo. Effect of High-Altitude Airship’sAttitude onPerformanceof its Energy System. Journal of Aircraft,2007,44(6):2077–2079
    [89]施红,宋保银,姚秋萍.平流层飞艇太阳能源系统研究.中国空间科学技术,2009(1):26–31.
    [90]郑威,宋琦,李勇等.平流层飞艇太阳电池阵发电功率计算及分析.宇航学报,2010(4):1224–1230.
    [91]程雪涛,徐向华,梁新刚.太阳电池在平流层中的工作性能分析.宇航学报,2010(3):925–930.
    [92] Kreith F, Kreider J F. Numerical Prediction of the Performance of High Altitude Balloons.NCAR, Boulder,1974.
    [93] Horn W J, Carlson L A. Thermtraj: A Fortran Program to Compute the Trajectory and Gas FilmTemperatures of Zero Pressure Balloons, NASA, Wallops Island,1981.
    [94] Conrad G R. Balloon Vertical Performance Model Refinements. PSL, NMSU, February,1990.
    [95] Raque S M. SINBAD3.0, NASA's Scientific Balloon Analysis Model User's Manual. NASA,Wallops Island,1993
    [96] Musso I, Cardillo A, Cosentino O, et al. A balloon trajectory prediction system. Advances inSpace Research,2004,33(10):1722–1726.
    [97] Orr GD, PALESTINE T. Atmospheric and Radiation Effects on Balloon Performance: A Reviewand Comparison of Flight Data and Vertical Performance Analysis Results. A97–31339
    [98] Ozoroski T A, Mas K G, Hahn A S. A PC-based design and analysis system for lighter-than-airunmanned vehicles.2nd AIAA" Unmanned Unlimited" System, Technologies, andOperation-Aerospace. San Diego, California,2003, AIAA2003–6566.
    [99] Pankine A A, Heun M K, Nguyen N, et al. Navajo: advanced software tool for balloonperformance simulation.17th ESA Symposium on European Rocket and Balloon Programmesand Related Research.2005(590):451–455.
    [100] Morani G, Palumbo R, Cuciniello G, et al. Method for Prediction and Optimization of aStratospheric Balloon Ascent Trajectory. Journal of Spacecraft and Rockets,2009,46(1):126–133.
    [101] Palumbo R, Mercogliano P, Corraro F, et al. Meteorological conditions forecast and balloontrajectory estimations. Memorie Della Società Astronomica Italiana,2008,79(3):841–845.
    [102] Palumbo R, Morani G, Corraro F. Effective Approach to Characterization of Prediction Errorsfor Balloon Ascent Trajectories. Journal of Aircraft,2010,47(4):1331–1337.
    [103] Henze M, Weigand B, Von Wolfersdorf J. Natural convection inside airships.9th AIAA/ASMEJoint Thermophysies and Heat Transfer Conference, San Francisco, California,2006,AIAA2006–3798
    [104] R.Bruce, P.Reulet and P. Millan. Experimental Study of the Natural Convection on the wall ofinfrared Balloon. AIAA2010–4651.
    [105]李德福,平流层浮空器的热特性及其动力学效应研究[博士学位论文],哈尔滨:哈尔滨工业大学,2011.
    [106] Newman D J. Some aeroelastic effects in airships. Loughborough University of Technology,Department of Transport Technology,TT(Report),1977.
    [107] Bessert N, Frederich O. Nonlinear airship aeroelasticity. Journal of fluids and structures,2005,21(8):731–742.
    [108] Schall E, El Omari K, Amara M, et al. Fluid-structure coupling of a turbulent flow and a genericblimp structure at high angle of attack. Ninth international conference Zaragoza-Pau on appliedmathematics and statistics: Jaca (Spain), September,2006:369–376.
    [109]刘建闽,薛雷平,鲁传敬.平流层飞艇绕流场与柔性变形的数值模拟.力学季刊,2006,27(3):440–448.
    [110]刘建闽.平流层飞艇绕流场与膜结构大变形的耦合计算[博士学位论文].上海:上海交通大学,2007
    [111] LIU Jian-min, LU Chuan-jing, XUE Lei-ping. Investigation of Airship Aeroelasticity usingFluid-Structure interaction. Journal of Hydrodynamic,2008,20(2):164–171.
    [112] LIU Jian-min, LU Chuan-jing, XUE Lei-ping. Numerical Investigation on the AeroelasticBehavior of An Airship With Hull-Fin Configuration. Journal of Hydrodynamic,2010,22(2):207–213.
    [113]秦朝中,杨向龙,孙文斌,等.高空飞艇的流固耦合数值研究.中国浮空器大会论文集,北京:航空工业出版社,2007:94–99.
    [114]刘芳,李栋.飞艇绕流场与柔性变形的数值模拟.中国浮空器大会论文集,北京:航空工业出版社,2008:108–111.
    [115]刘芳,李栋,李振.飞艇柔性变形对气动特性的影响研究.科学技术与工程,2009,9(13):3704–3712
    [116]王晓亮,单雪雄,陈丽.平流层飞艇流固耦合分析方法研究.宇航学报,2011,32(1):22–28.
    [117]王伟志,刘学强.平流层飞艇外形气动特性分析.航天返回与遥感,2007,28(3):55–61.
    [118]席俊波.飞艇囊体几何非线性有限元分析[硕士学位论文].西安:西北工业大学,2006.
    [119]王文隽,李勇,姚伟,等.飞艇气囊压力与蒙皮张力的估算.宇航学报,2007,28(5):1109–1112.
    [120]黄伟良,宋笔锋.基于有限元的软式飞艇主气囊动态特性分析.科学技术与工程,2008,8(14):3863–3867.
    [121]谢飞,叶正寅.蒙皮波动对飞艇阻力的影响.工程力学,2009(1):250–256.
    [122] Baginski F, Collier W. Energy minimizing shapes of partially inflated large scientific balloons.Advances in Space Research,1998,21(7):975–978.
    [123] Pagitz M, Pellegrino S. Computation of buckling pressure of pumpkin balloons.47thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,USA, May,2006, AIAA2006–1803.
    [124] Pagitz M, Pellegrino S. Buckling pressure of “pumpkin” balloons. International Journal ofSolids and Structures,2007,44(21):6963–6986.
    [125] Pagitz M, Pellegrino S. Shape optimization of “pumpkin” balloons. In: AIAA balloon systemsconference, Williamsburg, VA, May,2007, AIAA2007–2606.
    [126] Deng X, Pellegrino S. Computation of partially inflated shapes of stratospheric balloonstructures. Proc.49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference, Schaumburg, IL,2008, AIAA2008–2133.
    [127] Lee K, Lee S W. Structural analysis of scientific balloons using assumed strain formulationsolid shell finite elements. AIAA,2005–1802.
    [128] Yajima N, Izutsu N, Honda H, et al. A new design concept of natural shape balloon for highpressure durability. AIAA International Balloon Technology Conference, June,1999,A99–33326.
    [129] Harada M, Sano M, Gotoh T, et al. Theoretical analysis of a new design concept for LTAstructure. AIAA2002–3425.
    [130] Baginski F, Brakke K. Simulating clefts in pumpkin balloons. Advances in Space Research,2010,45(4):473–481.
    [131] Baginski F, Brakke K. Estimating the deployment pressure in pumpkin balloons. Journal ofAircraft,2011,48(1):235–247.
    [132] Baginski F E, Brakke K A, Schur W W. Cleft formation in pumpkin balloons. Advances inSpace Research,2006,37(11):2070–2081.
    [133] Cathey Jr H M, Pierce D L. Duration flight of the NASA super pressure balloon. AIAA BalloonTechnical Conference, Seattle, Washington, May2009, AIAA2009–2808
    [134] Cathey Jr H M. The NASA super pressure balloon–A path to flight. Advances in SpaceResearch,2009,44(1):23–38.
    [135] Henderson J K, Calderon G, Rand J L. A nonlinear viscoelastic constitutive model for balloonfilms. AIAA, Aerospace Sciences Meeting and Exhibit,32nd, Reno, NV, January,1994, AIAA94–0638.
    [136] Sterling W J, Rand J L. Biaxial Stress Limit for ULDB Film. AIAA5th Aviation, Technology,Integration, and Operations Conference(ATIO), Arlington,Virginia, September,2005, AIAA2005–7470.
    [137] Young L G, Garde G J. Application Limits for Thin-Film Polyethylene Used in NASA’s SuperPressureBalloon. AIAA2009–2811.
    [138]黄无量,徐春娴,吴枚等.高空科学气球的应力分析与球形设计.空间科学学报,1986,6(1):82-88.
    [139]姜鲁华.大型高空气球的球形设计及形变和变工况研究[博士学位论文].北京:中国科学院高能物理研究所,1991.
    [140]马云鹏,吕明云,武哲等.基于褶皱的平流层浮空器升空结构形变模拟.北京航空航天大学学报,2009(11):1298–1301.
    [141]马云鹏,刘东旭,武哲.平流层高空气球升空过程中应力分析.飞机设计,2009,29(1):17–21.
    [142]何泽青,顾逸东,王生等.系留气球压差与球体应力变化关系研究.计算机仿真,2009,26(2):96–100.
    [143]祝榕辰,王生,姜鲁华.超压气球球体设计与仿真分析.计算机仿真,2011,28(12):32–37.
    [144]李如思.平流层超压气球有限元分析[硕士学位论文],北京:北京航空航天大学,2007
    [145]赵臻璐,王小群,杜善义.平流层飞艇囊体气密层材料及氦气透过聚合物研究现状.航空学报,2009,30(9):1761–1768.
    [146]高海健,陈务军,付功义.浮空器囊体膜材力学性能试验研究.空间结构,2010(1):57–64.
    [147]刘宇婷. Vectran纤维光老化性能的研究及防护处理[博士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [148] Liu Y, Zhang C, Liu Y, et al. Accelerated ultraviolet aging study of the Vectran fiber. Journal ofApplied Polymer Science,2012,124(4):3286–3292.
    [149]姚学锋,雷一鸣,熊超等.平流层浮空器蒙皮复合材料结构氦泄露模型研究.2009年中国力学学会学术大会摘要集,2009.
    [150]杨炳尉.标准大气参数的公式表示.宇航学报,1983(1):09–10.
    [151] Cao Kang. A study of fundamental heat transfer behavior at near-space altitudes(Dissertation),USA: The University of Alabama,2008.
    [152] Armstrong C L, Garrett R D. High Altitude Wind Data from Meteorological Rockets. MonthlyWeather Review,1960,88(5):187–190.
    [153]任国玉,张爱英,王颖等.我国高空风速的气候学特征.地理研究,2009,28(6):1583–1592.
    [154] Atwater M A, Ball J T. A numerical solar radiation model based on standard meteorologicalobservations. Solar Energy,1978,21(3):163–170.
    [155] Rodgers G G, Souster C G, Page J K. The Development of an Interactive Computer Program,SUN1, for the Calculation of Solar Irradiances and Daily Irradiations on Horizontal Surfaces onCloudless Days for Given Conditions of Sky Clarity and Atmospheric Water Content.Department of Building Science, Faculty of Architectural Studies, University of Sheffield,1981.
    [156] Bird R E, Hulstrom R L. Simplified clear sky model for direct and diffuse insolation onhorizontal surfaces. Solar Energy Research Inst., Golden, CO (USA),1981.
    [157] Gueymard C. A two-band model for the calculation of clear sky solar irradiance, illuminance,and photosynthetically active radiation at the earth's surface. Solar Energy,1989,43(5):253-265.
    [158] Nielsen L B, Prahm L P, Berkowicz R, et al. Net incoming radiation estimated from hourlyglobal radiation and/or cloud observations. Journal of Climatology,1981,1(3):255–272.
    [159]彦启森,赵庆珠.建筑热过程.北京:中国建筑工业出版社,1986.
    [160] Iziomon M G, Mayer H. Assessment of some global solar radiation parameterizations. Journalof atmospheric and solar-terrestrial physics,2002,64(15):1631–1643.
    [161] Gueymard C A. Clear-sky irradiance predictions for solar resource mapping and large-scaleapplications: Improved validation methodology and detailed performance analysis of18broadband radiative models. Solar Energy,2012,86(8):2145–2169.
    [162] Grigiante M, Mottes F, Zardi D, et al. Experimental solar radiation measurements and theireffectiveness in setting up a real-sky irradiance model. Renewable Energy,2011,36(1):1–8.
    [163] Salazar G A, Hernández A L, Saravia L R. Practical models to estimate horizontal irradiance in clearsky conditions: Preliminary results. Renewable Energy,2010,35(11):2452–2460.
    [164] Forero N L, Caicedo L M, Gordillo G. Correlation of global solar radiation values estimatedand measured on an inclined surface for clear days in Bogotá. Renewable Energy,2007,32(15):2590–2602.
    [165] Harada K. Ground-to-Stratosphere Flight Test Report-Ascent Simulation of the Test Vehicle.JAXA Research and Development Report,2005.
    [166] Carlson L A, Horn W J. A unified thermal and vertical trajectory model for the prediction ofhigh altitude balloon performance. Texas A&M Univ., Engineering Experiment Station, Rept.TAMRF-4217-81-01, College Station, TX, June,1981.
    [167]杨世铭.传热学基础.北京:高等教育出版社,1991.
    [168]刘森元,黄远锋.天空有效温度的探讨.太阳能学报,1983,4(1):64–68.
    [169]周西华,梁茵,王小毛,等.饱和水蒸汽分压力经验公式的比较.辽宁工程技术大学学报,2007,26(3):331–333.
    [170] Matz E, Appelbaum J, Taitel Y, et al. Solar cell temperature on Mars. Journal of propulsion andpower,1998,14(1):119–125.
    [171] Hencky H. On the stress state in circular plates with vanishing bending stiffness. Zeitschrift fürMathematik und Physik,1915,63(3):311–317.
    [172] Fichter W B. Some solutions for the large deflections of uniformly loaded circular membranes.National Aeronautics and Space Administration, Langley Research Center,1997.
    [173] Zastawny M, Mallouppas G, Zhao F, et al. Derivation of Drag and Lift Force and TorqueCoefficients for Non-spherical Particles in Flows. International Journal of Multiphase Flow,2012(39):227–239.
    [174] White F M. Fluid Mechanics. McGraw-Hill, New York,1991
    [175] Cheng N S. Comparison of formulas for drag coefficient and settling velocity of sphericalparticles. Powder Technology,2009,189(3):395–398.
    [176] Almedeij J. Drag coefficient of flow around a sphere: Matching asymptotically the wide trend.Powder Technology,2008,186(3):218–223.
    [177] Brown P P, Lawler D F. Sphere drag and settling velocity revisited. Journal of EnvironmentalEngineering,2003,129(3):222–231.
    [178] Clift R, Grace J R, Weber M E. Bubbles, drops, and particles. Courier Dover Publications,2005.
    [179] Concha F, Barrientos A. Settling velocities of particulate systems,3. Power series expansion forthe drag coefficient of a sphere and prediction of the settling velocity. International Journal ofMineral Processing,1982,9(2):167–172.
    [180] Flemmer R L C, Banks C L. On the drag coefficient of a sphere. Powder Technology,1986,48(3):217–221.
    [181] Turton R. A short note on the drag correlation for spheres. Powder Technology,1986,47(1):83–86.
    [182]吴子牛.空气动力学:下册.北京:清华大学出版社,2008
    [183] Lee S, Bang H. Three-dimensional ascent trajectory optimization for stratospheric airshipplatforms in the jet stream. Journal of Guidance, Control, and Dynamics,2007,30(5):1341–1351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700