用户名: 密码: 验证码:
汽油HCCI发动机闭环反馈控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均质压缩燃烧(Homogeneous Charge Compression Ignition,HCCI)方式具有可以同时降低油耗和排放的优势,得到了内燃机界的广泛研究,并日趋成为一个新的燃烧方式。但其还存在着火时刻控制、变工况控制及其控制系统等方面的难点。本文主要是围绕着HCCI发动机的这一系列控制问题展开了研究。
     针对基于全可变气门机构的汽油HCCI发动机,为满足HCCI发动机的闭环反馈控制的研究需要,提出了基于单片机和CAN总线的分布式HCCI控制体系结构。同时为了保证控制策略的实时性和简化控制参量之间的耦合关系,提出了HCCI分层闭环管理的思想。将控制系统划分为负荷控制、燃烧相位控制和机构控制等三个层次,三个层次均采用相应的闭环控制。系统结构清晰,易于实现,而且具有较高的鲁棒性。
     本文开发了基于分布式控制系统的HCCI发动机管理单元、喷油点火控制单元、全可变气门机构控制单元以及缸压采集分析单元等基本功能模块。采用基于神经元自适应PID控制策略,实现了对全可变气门机构的精确、有效控制,为实现HCCI发动机运行控制奠定了基础。开发了缸压采集及实时分析算法,解决了燃烧信息在线反馈问题。开发了基于动态递归神经网络的进气量预测算法,有效解决了空燃比准确、快速控制问题。
     采用基于模型的优化方法和试验相结合,研究了HCCI发动机稳态运行时的气门控制规律。提出了利用经典PID控制和前馈控制相结合的办法,实现了HCCI燃烧下的IMEP和燃烧相位CA50的闭环控制,该策略实时性强,可以实现基于循环的控制。研究开发了基于混合放热率管理的HCCI/SI模式过渡闭环控制策略。试验表明,所提出建立的分层闭环控制策略可以实现有效的HCCI运行控制。
     建立了HCCI虚拟车辆仿真平台,结合发动机工作循环仿真和道路运行仿真,在整车的NEDC工作循环下评价了控制策略,并预测了HCCI发动机在NEDC循环下的性能。
Homogeneous Charge Compression Ignition combustion has the potential of providing better fuel economy and emission characteristics. Therefore, it has been widely researched and is gradually becoming a new combustion mode apart from the original ones. However, it is still confronted with problems in ignition timing control, transient operation and control system. In this paper, the aforementioned problems that occur in the application of an HCCI engine are systematically studied in detail.
     A CAN-bus-based distributed HCCI control system was designed to obtain close loop control on the fully variable valve actuation (FVVA) HCCI gasoline engine. Meanwhile, a layered management strategy was developed to achieve highly real-time control as well as to simplify the couplings between the inputs and the outputs. The entire control system was stratified into three layers, responsible for load management, combustion phase control and mechanical system control respectively, each with its own specified close loop control strategy. The system is outstanding for its explicit configuration, easy actualization and robust performance.
     Based on the distributed control system, software and hardware were developed for the primary functioning modules of HCCI engine management unit, injection and ignition control unit, FVVA control unit and in-cylinder pressure acquisition unit. With the single-neural-network-based self-adaptive PID control strategy employed, accurate and effective control of FVVA was achieved, which contributed to the operation control of the HCCI engine. Also, an algorithm of in-cylinder pressure acquisition and real-time analysis was developed, realizing the on-board feedback of combustion condition. Another algorithm to predict the amount of inlet flow was developed based on dynamic recurrent neural network, leading to accurate and rapid control of A/F ratio.
     Model-based optimization and experiments were employed to investigate the general valve control law when the HCCI engine was operated in steady state. The strategy of combining classical PID and feedforward control was proposed to realize the control of IMEP and CA50 in HCCI mode, and cycle-to-cycle control was achieved due to the high real time of this strategy. Meanwhile, HCCI/SI mode transition control strategy based on managing hybrid heat relese curve was studied. Experimental results show that, with the layered management strategy applied, effective control over HCCI operation becomes possible.
     A virtual HCCI vehicle simulation platform was established, on which engine operation simulation and road simulation were combined to evaluate the HCCI control strategy in NEDC drive cycle as well as to predict the HCCI engine performance throughout the entire NEDC cycle.
引文
[1] http://forex.678678.com/news/his/20060113/305152656684gb.html
    [2] 苏万华,《国家重点基础研究发展规划》项目计划任务书,2002 年 3月 10 日
    [3] 樊志卿,汽车排放法规与发动机控制技术,上海标准化,2002 年第 5期
    [4] 蒋德明,内燃机燃烧与排放学,西安:西安交通大学出版社,2001 年7 月第 1 版
    [5] 顾柏良 等译,Bosch 汽车工程手册,北京:北京理工大学出版社,2004年 4 月第 2 版
    [6] Aaron John Oakley, Experimental Investigations on Controlled Auto-Ignition Combustion in Four-Stroke Gasoline Engine, [PhD Thesis], Brunel University, September 2001
    [7] http://www.dieselnet.com/standards/eu/ld.html
    [8] Uyehara O., Factors that Affect NOx and Particulates in Diesel Engine Exhaust, PartⅡ, SAE 920695
    [9] O. Lang, W. Salber and J. Hahn, Thermodynamical and Mechanical Approach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process, SAE 2005-01-0762
    [10] Fuquan (Frank) Zhao, Thomas W. Asmus, Dennis N. Assanis, et al., Homogenous Charge Compression Ignition (HCCI) Engine: Key Research and Development Issues, Society of Automotive Engineers, Inc., 2002
    [11] Jianlin Yang, canton, MI(us), Engine control strategy for a hybrid HCCI engine[P], United States Patent.
    [12] Shigeru Onishi, Souk Hong Jo, Katsuji Shoda, et al., Active Thermo-Atmosphere Combustion (ATAC) – A New Combustion Process for internal Combustion Engines, SAE Paper 790501.
    [13] Noguch, M., Y. Tanaka, T. Tanaka, and Y. Takeuchi D1979E: A study in gasoline engine combustion by observation of intermediate reactive products during combustion. SAE Paper 790840.
    [14] Paul M. Najt and David E. Foster, Compression-Ignited Homogeneous Charge Combustion, SAE Paper 830264.
    [15] Thring, Homogeneous-charge Compression-ignition (HCCI) Engines, SAE Paper 892068.
    [16] M. Stockinger,H. Sch?pert?ns,P.Kuhlmann, Versuchean einem gemischansugenden Verbrennungsmotor mit Selbstzündnung, MTZ, Motertechnisches Zeitschrift 53 (1992) pp 80-85
    [17] T. Seko et al., Combustion Improvement of a Premixed Charge compression Ignition Methanol Engine Using Flash Boiling Fuel Injection, SAE Paper 2001-01-3611.
    [18] Jian Li, Hua Zhao, Nicos Ladommatos, Research and Development of Controlled Auto-Ignition (CAI)Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine, SAE 2001-01-3608
    [19] Hua Zhao, Jian Li, Tom Ma and Nicos Ladommatos, Performance and Analysis of a 4-stroke Multi-Cylinder Gasoline Engine with CAI combustion, SAE 2002-01-0420
    [20] Aaron Oakley, Hua Zhao and Nicos Ladommatos,Experimental Studies on Controlled Auto-ignition (CAI) Combustion of Gasoline in a 4-Stroke Engine,SAE 2001-01-1030
    [21] Aaron John Oakley , Experimental Investigations on Controlled Auto-Ignition Combustion in A Four-Stroke Gasoline Engine, PHD thesis, Department of Mechanical Engineering, Brunel University, UK
    [22] Magnus Christensen, Anders Hultqvist et al., Demostrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio, SAE 1999-01-3679
    [23] Hiraya, K., Hasegawa, K., Urushihara, T., Iiyama, A., and Itoh, T., A study on gasoline fueled compression ignition engine ~ A trial of operation region expansion ~, SAE 2002-01-0416
    [24] Fuquan(Frank) Zhao, Thomas W. Asmus, Dennis N. Assanis, et al., Homogenous Charge Compression Ignition (HCCI) Engine: Key Research and Development Issues, Society of Automotive Engineers, Inc., 2002
    [25] G?ran Haraldsson, Closed-Loop Combustion Control of a Multi Cylinder HCCI Engine using Variable Compression Ratio and Fast Thermal Management, [PhD Thesis], Brunel University, September 2004
    [26] Aaron Oakley, Hua Zhao, and Niscos Ladommatos, Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels, SAE 2001-01-3606
    [27] Tanet, A., Volker, S., An Investigation Into the Effect of Fuel Composition on HCCI Combustion Characteristics, SAE 2002-01-2830
    [28] Nicolas, J., Xavier, M., Pierre, D., Engine and Fuel Related Issues ofGasoline CAI (Controlled Auto-Ignition) Combustion, SAE 2003-01-1856
    [29] Olsson, J., Johansson, B., Closed Loop Control of an HCCI Engine, SAE 2001-01-1031
    [30] 吉丽斌、吕兴才、马骏骏、黄震,基础燃料复合均质压燃的试验研究,中国内燃机学会,2006-070,2006
    [31] J.Willand, R-G. Nieberding, G. Vent, C. Enderle, The Knocking Syndrome——Its Cure and Its Potential, SAE 982483
    [32] George Kontarakis, Nick Collings and Tom Ma, Demonstration of HCCI Using a Single Cylinder Four-stroke SI Engine with Modified Valve Timing, SAE 2000-01-2870
    [33] H. Zhao, Z. Peng, J. Williams, N. Ladommatos, Understanding the Effects of Recycled Burnt Gases on the Controlled Autoignition (CAI) Combustion in Four-Stroke Gasoline Engines, SAE Paper 2001-01-3607, 2001
    [34] A. Fuerhapter, W.F. Piock, G.K. Fraidl, CSI-Controlled Auto Ignition – the Best Solution for the Fuel Consumption - Versus Emission Trade off? SAE 2003-01-0754
    [35] A. Fuerhapter, E. Unger, W.F. Piock, G.K. Fraidl, The new AVL CSI Engine – HCCI Operation on a Multi Cylinder Gasoline Engine, SAE 2004-01-0551
    [36] D. Law, et al., Controlled Combustion in an IC-engine with a Fully Variable Valve Train, SAE Paper 2000-01-0251, 2000
    [37] N. Kaahaaina, et al., Use of Dynamic Valving to Achieve Residual – Affected Combustion, SAE Paper 2001-01-0549.
    [38] Wolters, P., Salber, W., Geiger, J., Duesmann, M. , et al. Controlled Auto Ignition Combustion Process with an Electromechanical Valve Train[C]. SAE Paper 2003-01-0032
    [39] Makoto Kaneko, Koji Morikawa, Jin Itoh, Youhei Saishu, Study on Homogeneous Charge Compression Ignition Gasoline Engine, The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA 2001), July 1 ~ 4, 2001, Nagoya
    [40] Craig D. Marriott, Rolf D. Reitz, Experimental Investigation of Direct Injection - Gasoline for Premixed Compression Ignited Combustion Phasing Control, SAE 2002-01-0418
    [41] Craig D. Marriott, Song-Charng Kong, Rolf D. Reitz, Investigation of Hydrocarbon Emissions From a Direct Injection-Gasoline Premixed Charge Compression-Ignited Engine, SAE 2002-01-0419
    [42] Shiro Yamaoka, Hiromu Kakuya, Shinji Nakagawa et al., A Study of Controlling the Auto-Ignition and Combustion in a Gasoline HCCI Engine, SAE 2004-01-0942
    [43] Shiro Yamaoka, Hiromu Kakuya, Shinji Nakagawa et al., HCCI Operation Control in a Multi-Cylinder Gasoline Engine, SAE 2005-01-0120
    [44] S. Takemura, S. Aoyama, T. Sugiyama et al., A Study of a Continuous Variable Valve Event and Lift (VEL) System, SAE Paper 2001-01-0243
    [45] M. Nakamura, S. Hara, Y. Yamada et al., A Continuous Variable Valve Event and Lift Control Device (VEL) for Automotive Engines,SAE 2001-01-0244
    [46] Richard Standing, Navin Kalian, Tom Ma et al., Effects of Injection Timing and Valve Timings on CAI Operation in a Multi-Cylinder DI Gasoline Engine, SAE 2005-01-0132
    [47] Tanet Aroonsrisopon, Philipp Werner, John O. Waldman et al., Expanding the HCCI Operation with the Charge Stratification, SAE 2004-01-1756
    [48] 田国弘,王志,葛强强等,汽油 HCCI 发动机燃烧相位及瞬态过程控制的研究,中国内燃机学会,2006-059,2006
    [49] Jeff Allen and Don Law, Variable Valve Actuated Controlled Auto-Ignition: Speed Load Maps and Strategic Regimes of Operation, SAE Paper 2002-01-0422, 2001
    [50] Hua Zhao, Jian Li, Tom Ma and Nicos Ladommatos, Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion, SAE 2002-01-0420, 2002
    [51] U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies, Homogeneous Charge Compression Ignition (HCCI) Technology- A Report to the U.S. Congress,April 2001
    [52] M. Christensen, B. Johansson, P. Amneus, F. Mauss, Supercharged Homogenous Charge Compression Ignition, SAE 980787
    [53] S. Aceves, J. Martinez Frias, D. Flowers, J. Smith, A Decoupled Model of Detailed Fluid Mechanics for Prediction of Iso-Octane HCCI Combustion, SAE 2001-01-3612
    [54] Najt, P. M. and Foster, D. E., Compression Ignited Homogeneous Charge Combustion, SAE 830264.
    [55] Rudolf H.Stanglmaier et al., Homogeneous Charge Compression Ignition(HCCI):Benefits, Compromises, and Future Engines Applications, SAE 1999-01-3682
    [56] O. Lang, W. Salber and J. Hahn, Thermodynamical and MechanicalApproach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process, SAE 2005-01-0762
    [57] M. Christensen, B. Johansson, P. Amneus, F. Mauss, Supercharged Homogenous Charge Compression Ignition, SAE 980787
    [58] S. Aceves, J. Martinez Frias, D. Flowers, J. Smith, A Decoupled Model of Detailed Fluid Mechanics for Prediction of Iso-Octane HCCI Combustion, SAE 2001-01-3612
    [59] Najt, P. M. and Foster, D. E., Compression Ignited Homogeneous Charge Combustion, SAE 830264.
    [60] M. Christensen, HCCI Combusiton Engine Operation and Emission Characteristics, [Doctoral thesis], Sweden,Lund university, 2002.
    [61] Johan Bengtsson,Closed-Loop Control of HCCI Engine Dynamics:[Ph.D. thesis],Sweden;Lund Institute of Technology,2004
    [62] Gregory M. Shaver, Matthew Roelle and J. Christian Gerdes, Modeling cycle-to-cycle coupling in HCCI engines utilizing variable valve actuation. IFAC, 2004
    [63] Joel Martinez-Frias, Salvador M. Aceves, Daniel Flowers, Equivalent Ratio-EGR Control of HCCI Engine Operation and the Potential for Transition to Spark-Ignited Operation, SAE paper 2001-01-3613
    [64] Petter Strandh, Johan Bengtsson, Rolf Johansson, etal. Cycle-to-cycle Control of a Dual-Fuel HCCI Engine, SAE Paper 2004-01-0941.
    [65] G?ran Haraldsson, Per Tunest?l and Bengt Johansson, etal. Transient Control of a Multi Cylinder HCCI Engine During a Drive Cycle, SAE Paper 2005-01-0153.
    [66] Lucien Koopmans, Hans Str?m, Staffan Lundgren, etal. Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-Cylinder Electronic Valve Control Engine, SAE Paper 2003-01-0753.
    [67] Gregory M. Shaver, J.Christian Gerdes. CYCLE-TO-CYCLE CONTROL OF HCCI ENGINES, IMECE2003-41966
    [68] Matthew J. Roelle, Gregory M. Shaver, J. Christian Gerdes. TACKLING THE TRANSITION: A MULTI-MODE COMBUSTION MODEL OF SI AND HCCI FOR MODE TRANSITION CONTROL, IMECE2004-62188.
    [69] Halim Santoso, Jeff Matthews and Wai K. Cheng, Managing SI/HCCI Dual-Mode Engine Operation, SAE Paper 2005-01-0162.
    [70] Nebojsa Milovanovic, Dave Blundell, Stephen Gedge, etal. SI-HCCI-SI Mode Transition at Different Engine Operating Conditions, SAE Paper 2005-01-0156.
    [71] Andreas Vressner, Petter strandh, Anders Hultqvist, etal. Multiple Point Ion Current Diagnostics in an HCCI engine, SAE Paper 2004-01-0934.
    [72] http://www.siemensvdo.com/products_solutions/special-oem-solutions/sensors/glow-plug-pressure-sensor/
    [73] 谢辉,胡顺堂,张岩,等,基于全可变气门机构节能超低排放双模式均质压燃发动机,中国专利号: 200610013415.8。
    [74] 周能辉、谢 辉、王立彪、赵 华,全可变气门机构闭环控制的试验研究,《机械工程学报》,2006.10
    [75] 朱红国,HCCI 汽油机变凸轮试验研究及原理样机的设计,硕士学位论文,天津;天津大学,2005
    [76] 高瑞,HCCI 汽油机瞬态燃烧分析系统的开发及应用,硕士学位论文,天津;天津大学,2005
    [77] XC164-16 USer's manual, infineon company,2003
    [78] 周能辉,基于 CAN 总线的纯电动轿车动力总成控制器的开发研究,硕士学位论文,天津;天津大学,2004
    [79] 陶永华. 新型 PID 控制及其应用[M]. 北京:机械工业出版社,2002:8-26.
    [80] Hua Zhao, Nicos Ladommatos, Engine Combustion Instrumentation and Diagnostics, Society of Automotive Engineers, Inc. 2001
    [81] Aaron John Oakley, Experimental investigations on controlled auto-ignition combustion in a four-stroke gasoline engine, 2001。
    [82] 周龙保,内燃机学,机械工业出版社,2000。
    [83] Heywood John B., Internal Combustion Engine Fundamentals, McGraw-Hill, Inc., 1988.
    [84] Klas Telborn. A Real-Time Platform for Closed-Loop Control and Crank Angle based Measurement. Master's thesis. Dept. of Electrical Engineering at Linkoings University, 2002.
    [85] Woschni G. A universally applicable equation for instantaneous heat transfer coefficient in the internal combustion engine. SAE 670931
    [86] Heywood J. B. Internal Combustion Engine Fundamentals. McGrawHill,New York, 1988.
    [87] 麻德贤.过程系统工程导论.北京:机械工出版社,1992.
    [88] 王永骥等,神经网络控制,北京:机械工业出版社,1998.
    [89] 何邦全,张岩,谢辉,赵华, 过量空气系数对 HCCI 汽油机燃烧特性的影响,燃烧科学与技术,2007.
    [90] 周代彬,步进电机及直流伺服电机高精度定位控制,[硕士学位论文],南京,东南大学,2001.01
    [91] 秦静,可控自燃汽油机燃烧过程及其控制的研究,博士学位论文,天津;天津大学,2006。
    [92] Mark Sellnau and Eric Rask, Two-Step Variable Valve Actuation for Fuel Economy, Emissions, and Performance, SAE Paper 2003-01-0029.
    [93] 钱人一, 现代汽车发动机电子控制, 上海:上海交通大学出版社, 1999.
    [94] Hua Zhao, Nicos Ladommatos, Engine Combustion Instrumentation and Diagnostics, Society of Automotive Engineers, Inc. 2001
    [95] Aaron John Oakley, Experimental investigations on controlled auto-ignition combustion in a four-stroke gasoline engine, 2001.
    [96] 周龙保,内燃机学,机械工业出版社,2000。
    [97] Heywood John B., Internal Combustion Engine Fundamentals, McGraw-Hill, Inc., 1988.
    [98] J. Bengtsson, P. Strandh, R. Johansson, P. Tunest?l, B. Johansson. Closed-Loop Combustion Control of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics. Int. J. Adapt. Control Signal Process. Vol. 18(2) , Pages 167:179, 2004.
    [99] Klas Telborn. A Real-Time Platform for Closed-Loop Control and Crank Angle based Measurement. Master's thesis. Dept. of Electrical Engineering at Linkoings University, 2002.
    [100] Woschni G. A universally applicable equation for instantaneous heat transfer coefficient in the internal combustion engine. SAE 670931
    [101] Heywood J. B. Internal Combustion Engine Fundamentals. McGrawHill,New York, 1988.
    [102] 王立彪,全可变气门机构闭环控制策略的试验研究,硕士学位论文,天津;天津大学,2006
    [103] 郝明德,双缸摩托车发动机电控管理系统的开发研究,硕士学位论文,天津;天津大学,2006
    [104] 杨林,基于缸内废气再循环的 HCCI 汽油机试验研究,硕士学位论文,天津;天津大学,2005
    [105] 林铁坚,基于多脉冲复合喷射控制的柴油 HCCI 燃烧过程的研究,博士学位论文,天津;天津大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700