用户名: 密码: 验证码:
柴油机ISG混合动力系统瞬态过程优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成启动发电机(ISG)型式的并联混合动力系统是汽车动力系统发展方向之一。目前大部分对ISG混合动力技术的研究结合汽油机进行,并主要围绕降低油耗开展。但对于比汽油机热效率高的柴油机,降低其排放,特别是降低其瞬态过程排放在日益严格的排放法规下具有更重要的意义。本文以降低瞬态过程排放为目标,对柴油机ISG混合动力系统的优化控制问题展开研究。所研究的动力系统由增压(无EGR)共轨柴油机、ISG电机和超级电容器组成。以降低瞬态过程排放为目标的优化控制算法是本文的核心研究内容,柴油机和电机的转矩协调控制是降低排放的基础。
     本文首先建立了面向实时控制的增压柴油机的瞬态排放模型,采用了多层前馈神经网络对排放模型的非线性静态特征进行描述,利用稳态试验数据对模型进行训练,采用线性自回归(ARX)模型对稳态模型进行动态修正,对瞬态过程烟度及NOx排放的模型估计准确度进行了试验验证。
     而后基于平均值模型结构建立了柴油机转矩估计模型,对估计结果的准确度进行了试验验证。基于非线性自回归(NARX)动态神经网络模型结构建立了总体转矩需求计算模型。基于上述模型,完整的提出了一套ISG混合动力系统转矩协调控制算法,并考虑了电机输出转矩动态约束和转矩输出延时问题。控制算法的有效性得到了试验验证。
     对于瞬态过程的多状态动态全局优化问题,首先提出了一种基于移动局部域原理的求解方法,进行了优化算法仿真分析。而后将算法进行简化,设计了自适应SOC维持能量管理算法,在单片机上实现了实时控制。发动机台架试验结果表明,本优化控制算法在保持发动机总体转矩输出特性不变和SOC自适应维持的前提下,成功地降低了瞬态排放,抑制了碳烟排放的瞬态恶化。在ETC瞬态循环中,排气烟度峰值下降约77%,微粒排放降低约15%,其中碳烟降低约20%。油耗和NOx等排放基本保持不变。针对等效中型客车驾驶循环,通过制动能量回收等功能可降低油耗约9%。
Integrated Starter Generator (ISG) parallel hybrid system set a new trend of vehicle powertrain systems. Most of the studies of ISG hybrid technology are conducted on gasoline engines and the focus is put on reducing fuel consumption. Diesel engines have the advantage of fuel efficiency over gasoline engines, but reduce emission especially in transient state has become more significant with the more stringent regulation on exhaust emission. For the purposes of reducing emission in transient state, optimal control of ISG hybrid system with diesel engines has been studied in this dissertation. The powertrain system being studied is composed of a turbocharged (non-EGR) common rail diesel engine, an ISG motor and ultracapacitors. The optimal control algorithm targeting at reducing emission in transient state is the core of the study, and the torque coordination control between the engine and the motor serves as a basis.
     First, a control oriented emission model for turbocharged diesel engines is built. The nonlinear static behavior of emission is described by a multi-layer neural network, which is trained by steady state experimental data. A linear auto-regression with exogenous input (ARX) model is implemented for dynamical correction of the steady model. The accuracy of the estimated smoke and NOx value by the model is validated by experiments.
     Then a mean value model based torque estimation model of the diesel engine is built. The accuracy of the estimation is examined by validation experiments. The total torque requirement is calculated by a nonlinear auto-regression with exogenous input (NARX) dynamic neural network model. Based on the above models, a complete torque coordination algorithm for ISG hybrid system is proposed, in which the dynamic limit on motor torque output and the delay in torque output is considered. The effectivness of the algorithm is validated by experiments.
     For the dynamic global optimization problem in transient state with multi-states, a receding local horizon solving algorithm is proposed. Firstly simulation analyse of the optimal control algorithm is carried out on computer. Then the algorithm is simplified, and an adaptive SOC sustaining energy management algorithm is designed. The algorithm is implemented on a microcontroller in real-time. The test results on engine dynamometer show that, the total output torque characteristic is kept unchanged and the adaptive sustaining of SOC is ensured. The deterioration of soot emission in transient state is successfully suppressed. In ETC test cycle, the peak smoke is reduced by about 77%. The total PM emission is reduced by about 15%, in which the total soot emission is reduced by about 20%. The fuel consumption, NOx and other emission compositions are kept unchanged. For the test cycle simulating the driving cycle of a middle-sized passenger car, with the help of regenerative braking, the fuel consumption can be reduced by about 9%.
引文
[1]国家环境保护总局. GB 18352.3-2005轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段).北京:中国环境科学出版社, 2005.
    [2]国家环境保护总局. GB 17691-2005车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段).北京:中国环境科学出版社, 2005.
    [3] Pischinger S, Backer H. Internal Combustion Engines: Lecture Notes. Germany: Rheinisch-Westfalische Technische Hochschule Aachen, 2002.
    [4] Kolmanovsky I, Stefanopoulou A G, Powell B K. Improving turbocharged diesel engine operation with turbo power assist system. // Proceedings of IEEE Conference on Control Applications, 1999, 1:454-459.
    [5] Katrasnik T, Trenc F, Medica V, et al. An analysis of turbocharged diesel engine dynamic response improvement by electric assisting systems. Journal of Engineering for Gas Turbines and Power, 2005, 127(4):918-926.
    [6] Lee C S, Choi N J. Effect of air injection on the characteristics of transient response in a turbocharged diesel engine. International Journal of Thermal Sciences, 2002, 41(1):63-71.
    [7] Bergsson K. The first Hybrid Vehicle by Dr. Ferdinand Porsche [EB/OL]. [2008-03-28]. http://www.hybrid-vehicle.org/hybrid-vehicle-porsche.html.
    [8] Zeraoulia M, Benbouzid M E H, Diallo D. Electric motor drive selection issues for HEV propulsion systems: A comparative study. IEEE Transactions on Vehicular Technology, 2006, 55(6):1756-1764.
    [9] Nelson R F. Power requirements for batteries in hybrid electric vehicles. Journal of Power Sources, 2000, 91(1):2-26.
    [10] Ogawa H, Matsuki M, Eguchi T. Development of a Power Train for the Hybrid Automobile-The Civic Hybrid. // Advanced Hybrid Vehicle Powertrains 2003 (SP-1750). USA: SAE, 2003:2003-01-0083.
    [11] Iijima T. Development of Hybrid System for 2006 Compact Sedan. // SAE 2006 Transactions Journal of Engines (V115-3). USA: SAE, 2007: 2006-01-1503.
    [12] Fuchibe K. Development of IMA System For the 2006 Civic Hybrid [C/CD]. Japan: EVS-22 (The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition), 2006.
    [13] Tamai G, Jeffers M A, Lo C, et al. Development of the Hybrid System for the Saturn VUE Hybrid [C/CD]. USA: SAE, 2006: 2006-01-1502.
    [14] Cai W. Comparison and review of electric machines for integrated starter alternator applications. // Conference Record of the 2004 IEEE Industry Applications Conference: 39th IAS Annual Meeting, 2004, 1:386-393.
    [15] Auer J, Schneuwly A, Miller J M. Ultracapacitor - The boost in alternative Powertrains[C/CD]. Japan: EVS-22 (The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition), 2006.
    [16] Douglas H, Pillay P. Sizing ultracapacitors for hybrid electric vehicles. // ECON Proceedings of Industrial Electronics Conference: (IECON) 2005: The 31st Annual Conference of IEEE Industrial Electronics Society, 2005:1599-1604.
    [17] Schupbach R M, Balda J C, Zolot M, et al. Design methodology of a combined battery-ultracapacitor energy storage unit for vehicle power management. // PESC Record - IEEE Annual Power Electronics Specialists Conference, 2003, 1:88-93.
    [18] Wu Ying, Gao Hongwei. Optimization of fuel cell and supercapacitor for fuel-cell electric vehicles. IEEE Transactions on Vehicular Technology, 2006, 55(6):1748-1755.
    [19] Miller J M, McCleer P J, Everett M, et al. Ultracapacitor plus battery energy storage system sizing methodology for HEV power split electronic CVT's. // Proceedings of the IEEE International Symposium on Industrial Electronics 2005: ISIE 2005, 2005, I:317-324.
    [20] Liu Shengyi, White R E, Dougal R A. Power and life extension of battery-ultracapacitor hybrids. IEEE Transactions on Components and Packaging Technologies, 2002, 25(1):120-131.
    [21] Ozatay E, Zile B, Anstrom J, et al. Power distribution control coordinating ultracapacitors and batteries for electric vehicles. // Proceedings of the 2004 American Control Conference (AAC), 2004, 5:4716-4721.
    [22] Miller J M, Everett M, Auer J. Ultracapacitor Enabled Gatekeeper Energy Management Strategy for Single Mode eCVT Hybrid Vehicle Propulsion[C/CD]. Vehicle Power and Propulsion Conference, 2006 (VPPC '06). USA: IEEE, 2006.
    [23] Gao Lijun, Dougal R A, Liu Shengyi. Power enhancement of an actively controlled battery/ultracapacitor hybrid, IEEE Transactions on Power Electronics, 2005, 20(1):236-243.
    [24] Stienecker A W, Flute M A, Stuart T A. Improved Battery Charging in an Ultracapacitor - Lead Acid Battery Hybrid Energy Storage System for Mild Hybrid Electric Vehicles. // Advanced Hybrid Vehicle Powertrains 2006 (SP-2008). USA: SAE, 2006:2006-01-1123.
    [25] Moreno J, Ortuzar M E, Dixon J W. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks. IEEE Transactions on Industrial Electronics, 2006, 53(2):614-623.
    [26] Powell B K, Bailey K E, Cikanek S R. Dynamic modeling and control of hybrid electric vehicle powertrain systems. IEEE Control Systems Magazine, 1998, 18(5):17-33.
    [27] Guoqiang Ao, Hu Zhong, Lin Yang, et al. Fuzzy logic based control for ISG hybrid electric vehicle. // Proceedings of ISDA 2006: Sixth International Conference on Intelligent Systems Design and Applications, 2006, 1:274-279.
    [28] Cui Y, Deng K, Wu J. A modelling and experimental study of transient NOx emissions in turbocharged direct injection diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(5):535-541.
    [29] Lakshminarayanan P A, Nayak N, Dingare S V, et al. Predicting hydrocarbon emissions from direct injection diesel engines. Journal of Engineering for Gas Turbines and Power, 2002, 124(3):708-716.
    [30] Duran A, Carmona M, Monteagudo J M. Modelling soot and SOF emissions from a diesel engine. Chemosphere, 2004, 56(3):209-225.
    [31] Jung D, Assanis D N. Quasidimensional modeling of direct injection diesel engine nitric oxide, soot, and unburned hydrocarbon emissions. Journal of Engineering for Gas Turbines and Power, 2006, 128(2):388-396.
    [32] Brahma A, Upadhyay D, Serrani A, et al. Modeling, identification and state estimation of diesel engine torque and NOx dynamics in response to fuel quantity and timing excitations. // Proceedings of the 2004 American Control Conference (AAC), 2004, 3:2166-2171.
    [33] Thompson G J, Atkinson C M, Clark N N, et al. Neural network modelling of the emissions and performance of a heavy-duty diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2000, 214(2):111-126.
    [34] Atkinson C, Mott G. Dynamic Model-Based Calibration Optimization: An Introduction and Application to Diesel Engines. // Electronic Engine Controls 2005 (SP-1975). USA: SAE, 2005:2005-01-0026.
    [35] Toth-Nagy C, Conley J J, Jarrett R P, et al. Further validation of artificial neural network-based emissions simulation models for conventional and hybrid electric vehicles. Journal of the Air and Waste Management Association, 2006, 56(7):898-910.
    [36] Lindgren M, Hansson P A. Effects of transient conditions on exhaust emissions from two non-road diesel engines. BIOSYSTEMS ENGINEERING, 2004, 87(1):57-66.
    [37] Hafner M, Schueler M, Nelles O. Dynamical identification and control of combustion engine exhaust. // Proceedings of the American Control Conference, 1999, 1:222-226.
    [38] Krijnsen H C, van Kooten W E J, Calis H P A, et al. Prediction of NOx emissions from a transiently operating diesel engine using an artificial neural network. CHEMICAL ENGINEERING & TECHNOLOGY, 1999, 22(7):601-607.
    [39] Krijnsen H C, van Kooten W E J, Calis H P A, et al. Evaluation of an artificial neural network for NOx emission prediction from a transient diesel engine as a base for NOx control. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2000, 78(2):408-417.
    [40]白露.基于模糊神经网络的增压柴油机瞬态空燃比控制[硕士学位论文].北京:清华大学, 2001.
    [41]孔令模.车用柴油机排放的稳态与瞬态试验研究.内燃机工程, 1992, 13(4):7-14.
    [42]童毅.并联式混合动力系统动态协调控制问题的研究[博士学位论文].北京:清华大学, 2004.
    [43] Zweiri Y H, Whidborne J F, Seneviratne L D. Mathematical transient model for the dynamics of a single-cylinder diesel engine. // IEE Conference Publication, 1998, 457:145-151.
    [44] Falcone P, De Gennaro M C, Fiengony G, et al. Torque generation model for Diesel Engine. // Proceedings of the IEEE Conference on Decision and Control, 2003, 2:1771-1776.
    [45] Filipi Z S, Assanis D N. A nonlinear, transient, single-cylinder diesel engine simulation for predictions of instantaneous engine speed and torque. Journal of Engineering for Gas Turbines and Power, 2001, 123(4):951-959.
    [46] Benajes J, Lujan J M, Bermudez V, et al. Modelling of turbocharged diesel engines in transient operation. Part 1: Insight into the relevant physical phenomena. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(5):431-441.
    [47] Payri F, Benajes J, Galindo J, et al. Modelling of turbocharged diesel engines in transient operation. Part 2: Wave action models for calculating the transient operation in a high speed direct injection engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(6):479-493.
    [48] Galindo J, Lujan J M, Serrano J R, et al. Combustion simulation of turbocharger HSDI Diesel engines during transient operation using neural networks. Applied Thermal Engineering, 2005, 25(5-6):877-898.
    [49] Rakopoulos C D, Giakoumis E G. Sensitivity analysis of transient diesel engine simulation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(1):89-101.
    [50] Chauvin J, Corde G, Moulin P, et al. Real-time combustion torque estimation on a diesel engine test bench using time-varying Kalman filtering. // Proceedings of the IEEE Conference on Decision and Control: 2004 43rd IEEE Conference on Decision and Control (CDC), 2004, 2:1688-1694.
    [51] Chauvin J, Corde G, Moulin P, et al. Real-time combustion torque estimation on a diesel engine test bench using an adaptive fourier basis decomposition. // Proceedings of the IEEE Conference on Decision and Control: 2004 43rd IEEE Conference on Decision and Control (CDC), 2004, 2:1695-1702.
    [52] Taraza D, Henein N A, Bryzik W. The frequency analysis of the crankshaft's speed variation: A reliable tool for diesel engine diagnosis. Journal of Engineering for Gas Turbines and Power, 2001, 123(2):428-432.
    [53] Taraza D. Statistical correlation between the crankshaft's speed variation and engine performance - Part I: Theoretical model. Journal of Engineering for Gas Turbines and Power, 2003, 125(3):791-796.
    [54] Taraza D. Statistical correlation between the crankshaft's speed variation and engine performance - Part II: Detection of deficient cylinders and mean indicated pressure calculation. Journal of Engineering for Gas Turbines and Power, 2003, 125(3):797-803.
    [55]李建秋.电控柴油机分缸独立闭环控制研究[博士学位论文].北京:清华大学, 2000.
    [56] Grondin O, Stobart R, Chafouk H, et al. Modelling the Compression Ignition Engine for Control: Review and Future Trends [C/CD]. USA: SAE, 2004: 2004-01-0423.
    [57] Grunbacher E, Langthaler P, Steinmaurer G, et al. Adaptive Inverse Torque Control of a Diesel Engine Using Adaptive Mapping Update [C/CD]. USA: SAE, 2003: 2003-01-0397.
    [58] Rachid A, Liazid A, Champoussin J C. Nonlinear modelling of a turbocharged diesel engine. // Proceedings of IEEE Conference on Control Applications, 1994, 1:133-136.
    [59] Hendricks E. Mean Value Modelling of Large Turbocharged Two-Stroke Diesel Engines [C/CD], USA: SAE, 1989: 890564.
    [60] Hendricks E. The Analysis of Mean Value Engine Models [C/CD]. USA: SAE, 1989: 890563.
    [61] Hendricks E, Sorenson S C. Mean value modelling of spark ignition engines. SAE (Society of Automotive Engineers) Transactions, 1990, 99(3):1359-1373.
    [62] Jensen J P, Kristensen A F, Sorenson S C, et al. Mean Value Modeling of a Small Turbocharged Diesel Engine [C/CD]. USA: SAE, 1991: 910070.
    [63] Kao Minghui, Moskwa J J. Engine load and equivalence ratio estimation for control and diagnostics via nonlinear sliding observer. // Proceedings of the American Control Conference, 1994, 2:1574-1578.
    [64] Kao Minghui, Moskwa J J. Turbocharged diesel engine modeling for nonlinear engine control and state estimation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1995, 117(1):20-30.
    [65] Guzzella L, Amstutz A. Control of diesel engines. IEEE Control Systems Magazine, 1998, 18(5):53-71.
    [66] Tennison P J, Reitz R. An experimental investigation of the effects of common-rail injection system parameters on emissions and performance in a high-speed direct-injection diesel engine. Journal of Engineering for Gas Turbines and Power, 2001, 123(1):167-174.
    [67] Desantes J M, Pastor J V, Arregle J, et al. Analysis of the combustion process in a EURO III heavy-duty direct injection diesel engine. Journal of Engineering for Gas Turbines and Power, 2002, 124(3):636-644.
    [68] Lin Chan-Chiao, Wang Yongsheng, Filipi Z S, et al. Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in Simulink and Its Use for Power Management Studies [C/CD]. USA: SAE, 2001: 2001-01-1334.
    [69] Jalil N, Kheir N A, Salman M. Rule-based energy management strategy for a series hybrid vehicle. // Proceedings of the American Control Conference, 1997, 1:689-693.
    [70] Lee H-D, Koo E-S, Sul S-K, et al. Torque control strategy for a parallel-hybrid vehicle using fuzzy logic. IEEE Industry Applications Magazine, 2000, 6(6):33-38.
    [71] Schouten N J, Salman M A, Kheir N A. Fuzzy logic control for parallel hybrid vehicles. IEEE Transactions on Control Systems Technology, 2002, 10(3):460-468.
    [72] Langari R, Won J-S. Intelligent energy management agent for a parallel hybrid vehicle - Part I: System architecture and design of the driving situation identification process. IEEE Transactions on Vehicular Technology, 2005, 54(3):925-934.
    [73] Won J-S, Langari R. Intelligent energy management agent for a parallel hybrid vehicle - Part II: Torque distribution, charge sustenance strategies, and performance results. IEEE Transactions on Vehicular Technology, 2005, 54(3):935-953.
    [74] Jeon S-I, Jo S-T, Park Y-I, et al. Multi-mode driving control of a parallel hybrid electric vehicle using driving pattern recognition. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2002, 124(1):141-149.
    [75] Sciarretta A, Guzzella L. Control of hybrid electric vehicles. IEEE Control Systems Magazine, 2007, 27(2):60-70.
    [76] Liu Jinming, Peng Huei. Control optimization for a power-split hybrid vehicle. // Proceedings of the 2006 American Control Conference, 2006:466-471.
    [77] Koot M, Kessels J T B A, de Jager B, et al. Energy management strategies for vehicular electric power systems. IEEE Transactions on Vehicular Technology, 2005, 54(3):771-782.
    [78] Koot M, Kessels J T B A, De Jager B. Fuel reduction of parallel hybrid electric vehicles. // 2005 IEEE Vehicle Power and Propulsion Conference (VPPC), 2005:26-31.
    [79] Delprat S, Guerra T M, Rimaux J. Optimal control of a parallel powertrain : From global optimization to real time control strategy. // IEEE Vehicular Technology Conference, 2002, 4:2082-2088.
    [80] Delprat S, Lauber J, Guerra T M, et al. Control of a parallel hybrid powertrain: Optimal control. IEEE Transactions on Vehicular Technology, 2004, 53(3):872-881.
    [81] Musardo C, Rizzoni G, Staccia B. A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management. // Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (CDC-ECC '05), 2005:1816-1823.
    [82]何彬.串联式混合动力汽车能量管理及其动态控制研究[博士学位论文].北京:清华大学, 2006.
    [83]石英乔.以提高经济性为目标的燃料电池客车能量管理策略研究[硕士学位论文].北京:清华大学, 2007.
    [84] Sciarretta A, Back M, Guzzella L. Optimal control of parallel hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 2004, 12(3):352-363.
    [85] Pisu P, Rizzoni G. A comparative study of supervisory control strategies for hybrid electric vehicles. IEEE Transactions on Control Systems Technology: Control Applications in Automotive Engineering, 2007, 15(3):506-518.
    [86] Lin Chan-Chiao, Peng Huei, Grizzle J W, et al. Power management strategy for a parallel hybrid electric truck. IEEE Transactions on Control Systems Technology, 2003, 11(6):839-849.
    [87] Lin Chan-Chiao, Peng Huei, Grizzle J W. A stochastic control strategy for hybrid electric vehicles. // Proceedings of the 2004 American Control Conference (AAC), 2004, 5:4710-4715.
    [88] International Organization for Standardization. ISO 16183:2002(E) Heavy-duty engines - Measurement of gaseous emissions from raw exhaust gas and of particulate emissions using partial flow dilution systems under transient test conditions. First edition 2002-12-15. Switzerland: ISO, 2002.
    [89] Arregle J, Bermudez V, Serrano J R, et al. Procedure for engine transient cycle emissions testing in real time. Experimental Thermal and Fluid Science, 2006, 30(5):485-496.
    [90] AVL List Gmbh. Operating Manual AVL 439 Opacimeter. Revision 05. Austria: AVL LIST GMBH Graz, 1998.
    [91] Hendricks E, Chevalier A, Jensen M, et al. Modelling of the intake manifold filling dynamics. // SAE Special Publications: Electronic Engine Controls 1996.
    [92] Storset O F, Stefanopoulou A G, Smith R. Adaptive air charge estimation for turbocharged diesel engines without exhaust gas recirculation. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2004, 126(3):633-643.
    [93] Heywood J B. Internal Combustion Engine Fundamentals. USA: McGraw-Hill Book Company, 1988.
    [94] Taylor C F, Taylor E S. The Internal Combustion Engine. Second Edition. USA: Int. Textbook Co., 1970.
    [95] Measuring And Reporting Fuel Economy of Plug-in Hybrid Electric Vehicles [C/CD], Japan: EVS-22 (The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition), 2006.
    [96]中华人民共和国国家质量监督检验检疫总局. GB/T 19753-2005轻型混合动力电动汽车能量消耗量试验方法.北京:中国标准出版社, 2005.
    [97] Society of Automotive Engineers, Inc. SAE J1711 Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles. USA: SAE, 1999.
    [98]中华人民共和国国家质量监督检验检疫总局. GB/T 19755-2005轻型混合动力电动汽车污染物排放测量方法.北京:中国标准出版社, 2005.
    [99]李海东,祁新春,齐智平.双电层电容器的应用模型.电池, 2007, 37(4):322-324.
    [100]马仲蕃,魏权龄,赖炎连.数学规划讲义.北京:中国人民大学出版社, 1981.
    [101]阿佛里耳.非线性规划-分析与方法.上海:上海科学技术出版社, 1980.
    [102]巴扎拉.非线性规划-理论与算法.贵州:贵州人民出版社, 1986.
    [103]费培之.线性和非线性规划引论及其应用.四川:四川大学出版社, 1989.
    [104]胡毓达.非线性规划.北京:高等教育出版社, 1990.
    [105] Ohtsuka T, Fujii H A. Real-time optimization algorithm for nonlinear receding-horizon control. Automatica, 1997, 33(6):1147-1154.
    [106] Kleinman D L. An easy way to stabilize a linear constant system. IEEE Transactions on Automatic Control, 1970, ac-15(6):692
    [107] Chen C C, Shaw L. ON RECEDING HORIZON FEEDBACK CONTROL. Automatica, 1982, 18(3):349-352..
    [108] Qin S J, Badgwell T A. A survey of industrial model predictive control technology. Control Engineering Practice, 2003, 11(7):733-764.
    [109] Rawlings J B. Tutorial overview of model predictive control. IEEE Control Systems Magazine, 2000, 20(3):38-52.
    [110] Piche S, Sayyar-Rodsari B, Johnson D, et al. Nonlinear model predictive control using neural networks. IEEE Control Systems Magazine, 2000, 20(3):53-62.
    [111] Camponogara E, Jia D, Krogh B H, et al. Distributed model predictive control. IEEE Control Systems Magazine, 2002, 22(1):44-52.
    [112] Henson M A. Nonlinear model predictive control: current status and future directions. Computers & Chemical Engineering, 1998, 23(2):187-202.
    [113] Findeisen R, Diehl M, Disli-Uslu I, et al. Computation and performance assessment of nonlinear model predictive control. // Proceedings of the IEEE Conference on Decision and Control, 2002: 4613-4618.
    [114] Herceg M, Raff T, Findeisen R, et al. Nonlinear Model Predictive Control of a Turbocharged Diesel Engine [C/CD]. IEEE International Conference on Control Applications 2006 (CCA '06), USA: IEEE, 2006.
    [115] Beck R, Saengerll S, Richert F, et al. Model predictive control of a parallel hybrid vehicle drivetrain. // Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (CDC-ECC '05), 2005:2670-2675.
    [116] Lewis R M, Torczon V. A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM JOURNAL ON OPTIMIZATION, 2002, 12(4):1075-1089.
    [117] Conn A R, Gould N I M, Toint P L. A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds. SIAM Journal on Numerical Analysis, 1991, 28(2):545-572.
    [118] Conn A R, Gould N I M, Toint P L. A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds. Mathematics of Computation, 1997, 66(217):261-288.
    [119] Hooke R, Jeeves T A. Direct Search Solution of Numerical and Statistical Problems. Journal of Association for Computing Machinery, 1961, 8:212-221.
    [120] Rosenbrock H H. An Automatic Method for Finding the Greatest or Least Value of a Function. Computer Journal, 1960, 3:175-184.
    [121] Torczon V. On the convergence of pattern search algorithms. SIAM Journal on Optimization, 1997, 7(1):1-25.
    [122] Lewis R M, Virginia T. Pattern Search Algorithms for Bound Constrained Minimization. SIAM Journal on Optimization, 1999, 9(4):1082-1099.
    [123] Lewis R M, Virginia T. Pattern Search Methods for Linearly Constrained Minimization. SIAM Journal on Optimization, 2000, 10(3):917-941.
    [124] Audet C, Dennis J E. Analysis of generalized pattern searches. SIAM Journal on Optimization, 2003, 13(3):889-903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700