用户名: 密码: 验证码:
石横特钢60t转炉负能炼钢的研究和实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机日益严重制约着全球经济的发展,节约能源、降低能源消耗已成为世界性课题。我国在“十一五”发展规划纲要中已经明确提出:大力发展循环经济、全面推行清洁生产,形成低投入、低消耗、低排放和高效率的节约型增长方式。我国作为世界上最大的产钢国,同时也是资源、能源相对匮乏的国家,推广节能减排技术已成为保证我国钢铁工业可持续发展的关键。“负能炼钢”是炼钢节能的主要技术,我国转炉钢比例已超过90%,推广“负能炼钢”对实现节能减排目标,保证钢铁工业健康发展具有十分重要的意义。
     为降低转炉炼钢工序能耗、实现转炉“负能炼钢”,本文主要研究包括转炉煤气回收技术、蒸汽回收技术以及氧气、电力、煤气等能源介质的相应节能降耗技术,在转炉炼钢实际生产过程中通过改造设备、优化工艺操作、推广应用新工艺技术等应用、实践和论证各技术的实用性和先进性,从而达到了有效降低石横特钢三炼钢工序能耗的目的。本文的主要工作如下:
     (1)对转炉—连铸炼钢全工序高效生产工作进行了研究和实践,通过实施设备升级改造,解决了转炉—连铸生产能力匹配问题;通过制定生产顺行保证措施和建立各关键工序控制要点,并通过严格管理和监督实施,有效保证了生产顺行,为实现“负能炼钢”奠定了坚实的基础。
     (2)从工艺及操作方面对影响转炉“负能炼钢”指标的因素进行了研究和实践,通过稳定炉前操作水平、稳定汽化和煤气回收操作、通过采用“一罐到底”铁水入炉技术、炉外钢包脱硫技术、精炼渣再利用技术、钢包砖料混砌技术等,有效稳定了煤气回收和蒸汽回收水平,并有效降低了氧气、精炼电及煤气等能源的消耗指标,确保了转炉“负能炼钢”指标的顺利完成。
     (3)从设备角度对影响转炉“负能炼钢”指标的因素进行了研究和实践,通过完善系统管网,强化煤气回收和蒸汽回收水平,通过优化改进氧枪喷头等工艺设备参数、通过引进、消化吸收节能新工艺技术、通过改造应用新型节能设备,有效提高了煤气、蒸汽回收产量和质量,有效降低了冶炼氧耗、电力消耗及煤气消耗指标,确保了转炉“负能炼钢”指标的顺利完成。
     本研究对国内转炉炼钢企业特别是同炉型小吨位转炉实现“负能炼钢”具有较强的借鉴和参考价值。
Nowadays, the increasing energy crisis restricts the development of the global economy, so energy conservation and energy consumption reduction have become a worldwide issue. Eleventh Five-Year Plan of Chinese government has proclaim clearly that the circular economy must be developed and cleaner production must be extended to form the healthy economical growth which is low-input, low-consumption, low-emissions but high efficiency. In China, which is the largest steel producing country in the world, and also relatively lack of resources and energy, promotion of energy saving technology has become the key to ensure the development of China's steel industry sustainably. In China, the converter steel-making ratio exceeds 90%, so it is very important to ensure the healthy development of steel industry through promotion of Negative Energy Steelmaking which is a main steel-making technology to achieve emission reduction targets.
     The main contents of this thesis is to research related technologies to reduce the energy consumption of the converter steel-making and to achieve Negative Energy Steelmaking, which contain gas recovery technology, vapor recovery technology and other energy saving technologies. The research methods of the subject is organized Through the transformation of equipment, optimizing the operation process, and promotion the use of new technology in the converter actual production process, the efficiency and advancement are discussed in order to achieve effective reduce energy consumption. The main works of the thesis are performed as the following sections:
     The full process of converter and continuous casting steelmaking and its efficient production are researched and practiced. Applying the implementation of equipment upgrades, the capacity matching of the converter-continuous casting production is solved. And through the development of production and the establishment of measures, the key process of the control points is ensured. Finally, through the implementation of strict management and supervision, the smooth production line effectively can also be ensured, which laids a solid foundation for achieving Negative Energy Steelmaking.
     The factors to influence the index of Negative Energy Steelmaking are investigated and discussed, in terms of the technology and operation of the converter steelmaking. Based on the stabilizing the level of blast furnace operation and vaporization, as well as gas recovery operations, and the use of some advanced technologies (such as "a can in the end" technology into the furnace hot metal, furnace ladle desulfurization technology, refining slag recycling technology, ladle brick puzzle mixed materials technology etc), the level of gas recovery and vapor recovery are effectively stabilized, and oxygen, electricity and gas, refining energy consumption indicators are effectively reduced. As a result, the index of Negative Energy Steel-making is performed successfully.
     The factors to influence the index of Negative Energy Steelmaking are investigated and discussed, in the viewpoint of the device. Through improving the networks the recycling of the gas and vapour increases. And through the introduction, digestion and absorption of new energy-saving technology and now equapments, such as oxygen lance nozzle parameters, the gas, vapor recovery yield and quality are improved obviously, and simultaneously the refining oxygen consumption, electricity consumption and gas consumption are effectively reduced so as to ensure Negative Energy Steelmaking converter targets successfully.
     The methods, conclusions and practice of this thesis give a good example or can be considered as the benchmark for relevant steelmaking companies in China.
引文
[1]刘浏.我国转炉“负能炼钢”的技术现状和发展[C].中国钢铁年会论文集(第3卷),北京,2005,133-137
    [2]王雅贞,张岩,张红文.氧气顶吹转炉炼钢工艺与设备[M].第2版.北京:冶金工业出版社,2001,400-422
    [3]Toshiyuki Ueki, Kiyohito Fujiwara, et al. High Productivity Operation Technologies of Wakayama Steelmaking Shop, The Tenth Japan-China Symposium on Science and Technology of Iron and Steel,2004.11,122
    [4]CAI Jiu ju, HE Jie heng. LU Zhong wu, et al. Analysis of Energy Saving and Energy Consumption in Chinese Steel Industry for Last 20 Years and Next 5 Years [J]. Iron and Steel,2002,37(11):68-73
    [5]李明儒,方善超,段贵生等.对国内转炉负能炼钢几个问题的探讨[J].河南冶金,2005,13(4):26-28
    [6]Shangyi Li, Zubin Wang. Present and Future Status of the Chinese Steel Industry in 21st Century [J]. Iron and Steel Engineer,1999, (8):56-59
    [7]翟有有.炼钢——工序转炉炼钢能耗现状分析[J].甘肃冶金.2008,30(1):62-63
    [8]李世龙,孟祥燕.转炉负能炼钢与煤气回收技术[C].中国钢铁年会论文集(下),北京,1997,23-27
    [9]杨家国.实现转炉负能炼钢的措施[J].能源研究与利用,2007,6:7-9
    [10]王英均.宝钢转炉炼钢工序能耗现状分析及其措施[C].全国炼钢、连铸生产技术会议,上海,2002,164-166
    [11]刘占增,蒋扬虎,丁翠娇等.武钢炼钢总厂三分厂转炉负能炼钢实践[J].武钢技术,2009,47(5):1-6
    [12]刘雪平,张新彦.邯钢转炉实现“负能炼钢”的现状与措施[J].冶金能源,2006,25(6):6-9
    [13]郑筱莉,兰海,赵小卉.南钢转炉实现“负能”炼钢的探讨[J].江西冶金,2008, 28(2):12-15
    [14]蒲国庆.八钢120t转炉负能炼钢实践[J].宝钢技术,2009,6:14-17
    [15]朱辉文,范才红.广钢转炉炼钢厂负能炼钢探索与实践[J].冶金丛刊,2009,2:39-42
    [16]周全开.三安实现转炉“负能炼钢”的现状与措施[J].四川冶金,2009,31(4):65-67
    [17]刘树海,牛锡云,朱珉.青钢负能炼钢概述[J].连铸,2008,1:14-15
    [18]郦秀萍,蔡九菊,王爱华等.转炉煤气回收量极限值的研究[J].节能,2004,5:13-15
    [19]宋新南,申立峰.OG法转炉煤气回收及处理系统的优化改造[J].节能与环保,2002,8:35-37
    [20]王永刚,王建国,叶天鸿,等.转炉煤气干法除尘技术在国内钢厂的应用[J].重型机械,2002,1-3
    [21]曹家从.钢铁厂余热利用的有效方法[J].冶金动力,1997,1:1-4
    [22]张大勇,张彩军,徐志荣.音频化渣技术在150t复吹转炉上的开发和应用[J].中国冶金,2007,17(8):35-37
    [23]杨顺江,霍文福.高压变频器在煤气加压机中的应用[J].变频器世界,2008,3:61-68
    [24]杜磊,翟晓铭.高压变频调速技术在风机上的应用[J].中国科技信息,2009.17:136-144
    [25]王继秀,阮琨.高压变频调速技术在风机、泵类应用中的节能分析[J].冶金动力,2008,1:15-17
    [26]陈德强,马敬.供水泵站水泵节能改造及效益分析[J].供水技术,2009.3(3):58-59
    [27]姜延柏,郗安民,刘颖,等.变频器在给水工程中节能降耗的分析[J].机电产品开发与创新,2004,17(6):38-40
    [28]富烨.浅谈变频器在供水系统中的应用[J].黑龙江科技信息,2010,2:11-19
    [29]梁栋.高压变频器在转炉煤气回收风机节能改造中的应用[J].山西冶金,2009,3:70-71
    [30]C Bortoni, R A Almeida. Optimization of Parallel Variable-speed-driven Centrifugal Pump Operation [J]. Energy Efficinecy,2008,1:167-173
    [31]Dudi A. Rendusara. Analysis of Common Mode Voltage-"Neutral shift" in Medium Voltage PWM Adjustable Speed Drive (MV-ASD) Systems [G]. IEEE Transactions on Power Electrics,2000,15(6):1124-1133
    [32]P. Gnacinski. Energy Saving Work of Frequency Controlled Induction Cage Machine. Energy Conversion and Management,2007,48:919-926
    [33]Gnacinski P. Determination of Load-carrying Capacity of Induction Machine Under Condition of Energy Saving Work. In:Proceedings of Fourth International Workshop Compatibility in Power Electronics CPE'05 (CD-ROM). Gdansk-Sobieszewo, Poland,2005,06:1-3
    [34]王伟鸣,杨锡红.蓄热式钢包烘烤器原理及应用[J].江苏冶金,2006.4:25-27
    [35]饶荣水.钢包烘烤技术的发展[J].工业加热,2000,3:8-10
    [36]Lou IS CAMPION. Ladle Heating Using Regenerative Burnerd for Effeiency [J]. Industrial Heating,1992,59(9):44-47
    [37]Tony Martin. Regenerative Ceramic Burner Technology and Utilization. Industrial Heating,1998
    [38]吴耀光.95t转炉氧枪喷头设计与应用[J].炼钢,2005,21(4):56-58
    [39]蔡开科.连铸二冷区凝固传热及冷却控制[J],河南冶金,2003,11(1):3
    [40]呼延战波,刘凯军.连铸二冷配水自动调节系统的改造及优化[J].冶金设备,2003,6:64-66
    [41]M El-Bealy, N Leskinen, H Fredriksson. Simulation of Cooling Conditions in Secondary Cooling Zone in Contihous Casting Process [J]. Ironrnaking and Steelmaking,1995,22(3):169-184
    [42]K Morward, K Dittenberger, K D Ives. Dynamic Cooling System-Features and Operational Results [J]. Ironmaking and Steelmaking,1998,25(4):323-327
    [43]X Huang, B. G. Thomas and F. M. Najjar. Modeling Superheat Removal During Continuous Casting of Steel Slabs [J], Metallurgical Transfactions,1992,23B(6): 339-356
    [44]李希胜,郗安民,韩传基,等.矩形坯连铸机二冷自动配水系统[J].矿冶,2005,14(2):79-81
    [45]Sahai Yeaeshwar. EMI Toshihiko. Melt Flow Characterization in Continuous Casting Tundishes [J]. ISIJ International,1996,36(6):667-672
    [46]李新林,刘海强,张振申.120t转炉氧枪喷头设计与应用.河南冶金,2006,14(4):36-38
    [47]丁建宁.高压变频器的节电原理及设计方案[J].江苏冶金,2007,35(5):43-44
    [48]Yalmaz, Sozer, et al. New Inverter Output Filter Technology for PWM Motor Drivers [G]. IEEE Transactions on Power Electrics,2000,15(6):1007-1017
    [49]乐可襄,王世俊.CaO-SiO2-MgO-A1203精炼渣的脱硫性能[J].特殊钢,1998,19(3):15-17
    [50]Hikoya IWAI. Desulphurization and Simultaneous Desulphurization and Desulphudzafion of Molten Iron by Na2O-SiO2 and Na2O-CaO-SiO2 Fluxes. ISU International,1998,29:135
    [51]Ting Tsao. Sulpher Distribution between Liquid Iron CaO-SiO2-MgO-Al2O3 Slags Used for Ladle Refining. Transactions ISIJ.1986,26:717
    [52]廖建云,王平.LF钢包脱硫工艺分析[J],四川冶金,2004,(2):19-25
    [53]M Andersson, M Hallberg, L. Jonsson and P Jasson. Slag-metal Reactions during Ladle Treatment with Focus on Desulphrisation. Ironmaking and Steeling,2002,29(3):224-232
    [54]孙炯,徐国华.100吨钢包炉用直通狭缝式透气砖的研制和应用[J].上海金属.1998,20(2):25-27
    [55]Toshiaki Okimura et al. Reduction of Molten Steel Temperature Drop with Improvement of Ladle Lining. Shinagawa Technical Report,2001,41
    [56]B Wang. Elevated Temperature Erosion-resistance of Several Thermal Spray Coatings. In Coddet Ced., the Challenge of the 21st Century, Proc. of the 15th ITSC, Nice, France,1998,1:151-155
    [57]丁彰雄,田野,黄文豪.热喷涂层在转炉烟罩上的应用研究.机械工人.2003,9:29-30
    [58]E J, Morgan Warren. Thermal Spraying for Boiler Tube Protection. Weld. Met, 1992,2(1/2):25-31
    [59]S Gustafsson. Thermal Coatings as Corrosion Protection in Boilers. Advances in Thermal Spraying Proceedings of ITSC'86, Montreal,1986:19-28
    [60]王永刚,叶天鸿,翟玉杰,等.转炉煤气干法净化回收技术与湿法技术比较[J].工业安全与环保,2008,34(5):10-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700