用户名: 密码: 验证码:
超高水材料充填开采设计方法及地表移动控制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充填开采作为一种成熟的开采工艺被越来越多的矿区所应用,在最大限度开采地下资源的同时,有效保护地面建构筑物,防止地下水进入井下,是先进的绿色开采技术。针对超高水材料充填控制地面沉陷面临的问题,首先对超高水材料不同龄期、不同配比时的应力应变关系进行试验研究,测定了不同龄期的凝固体强度,分析研究了不同配比时强度随时间的变化规律,采用弹塑性梁、板理论,构建了充填工作面周围不同开采条件下,开放式充填控顶距判别式和充填开采设计方法,通过实测和数值模拟结果证明所提方法的正确性,主要工作及成果如下:
     (1)通过力学实验研究了不同配比、不同龄期下,超高水材料凝固体的应力应变关系,得到了各条件对应的抗压强度和弹性模量,为其工程实践应用提供技术依据。
     (2)当采场的的长宽比b/a <1/2时,顶板的垮落步距可按梁模型进行分析。基于弹塑性理论,建立了三种边界条件下梁的极限荷载和极限垮落距,分析了梁截面上弹性核高度与梁长度的关系,同时对两端固支梁和一端固支一端简支梁模型,按照塑性极限分析法,得到了不同边界条件下,梁的极限承载力和垮落距;考虑到实际应用中边界条件对计算结果的影响,进一步分析推导了弹性基础(或者充填体)梁及其受水平力作用时梁上最大弯矩表达式。
     (3)针对充填工作面周围不同开采情况,将充填工作面分为四周未开采、一侧有采空区、两侧有采空区、三侧有采空区及周围均有采空区,分别将其简化为四边固支板、三边固支一边简支板、邻边固支邻边简支板、一边固支三边简支板和四边简支板五种情况,对于不同条件建立了相应的力学模型。
     (4)针对超高水材料充填开采工作面周围不同开采、顶板较坚硬的条件,将其简化为不同边界固支的弹性薄板,基于虚功原理推导了弹性地基板以及四边受水平压力作用时挠度和弯矩的表达式,通过等价变化,弯矩公式转换为单级数求和后只需取6项就能到达工程要求精度,同时分析研究了不同边界条件板最大弯矩与推进距离的关系,为顶板较坚硬、周围不同开采条件下,超高水材料充填开采工作面开采宽度设计提供了计算方法。
     (5)针对超高水材料充填开采工作面周围不同开采、顶板较软弱的条件,将其简化为不同边界支撑的弹塑性薄板,按照塑性极限平衡理论,推导了不同边界固支条件矩形板的最大弯矩和极限垮落距的表达式,计算分析了板上塑性铰线的位置参数,为顶板较软弱、周围不同开采条件下,超高水材料充填开采工作面开采宽度设计提供了计算方法。
     (6)针对充填工作面四周不同开采情况,分析研究了充填工作面周围不同开采条件、充填控顶距、顶板岩性、厚度和有效载荷等对充填工作面设计宽度的影响规律:四周未开采,工作面宽度最大,四周都开采,工作面宽度最小,一侧有开采三侧无开采和二侧有开采二侧无开采工作面宽度位于两者之间;控顶距越大、顶板岩性越软弱、厚度越小、有效载荷越大,工作面可设计的宽度越小,反之成立。
     (7)分析研究了采厚、倾角、顶板厚度、岩性、控顶距、工作面布设宽度、推进速度、超高水材料凝结时间、充填方式等对高水材料充填开采控制的影响,形成了超高水材料充填开采设计方法,该方法包括控顶距确定方法、工作面采宽设计方法、开采工艺及充填方式选择方法,其中控顶距确定方法是基础,工作面开采宽度设计是核心,开采工艺及充填方式选择是保障,为超高水材料充填开采设计提供了理论和技术基础。
     (8)当采矿地质条件一定,通过选择工作面的布设方式和超高水材料的配比方法,调整顶板上最大弯矩以满足开放充填开采顶板不垮落,这一方法在陶一矿和田庄矿进行了实验,通过地表观测证明在保证充填率的情况下,该方法能有效减缓地表下沉量和下沉速度。
Backfilling method is a advanced green mining technology adopted by more and moremine areas has been taken as a mature mining technology, which explore underground resourceutmost, protect the buildings on the ground effectively and prevent the ground water fromgetting into the shaft. Aiming at the problems of control surface subsidence with superhighwater material, the stress-strain relationship curves of different solidifying time and proportionwere studied by mechanics test, which tested the solid strength with different time andanalyzed relationship between strength and time in different proportion, and then the criterionof open-up backfilling roof control distance and design method were obtained usingelastic-plastic beam and plate theory under different mining conditions surrounding backfillworking face, which was proved accurately by practical surveying. The main results asfollows:
     (1) The stress-strain relationship curves of solidified superhigh water material withdifferent proportion and age were tested by mechanical experiment, which obtained thecompression strength and elastic modulus and provided an basis for projection application.
     (2) When the length-width ratio of face is b/a <1/2, the roof collapse distance can becalculated by beam model. The beam’s limit loading and limit collapse distance were obtainedby elastic-plastic with three kinds boundary supporting condition and analyzed the curves ofrelationship between length and elastic kernel height of beam section. Meanwhile, the limitloading and collapse were calculated by plastic limit theory at the condition of two-end-fixedbeam and one-end-fixed and the other simply supported beam; Considering the impact ofboundary conditions on practical calculation results, the expressions of beam’s maximumbending moment were further derived under the condition of elastic foundation beam andexisting horizontal pressure on it.
     (3) Aiming at different mining conditions surrounding working face with backfilling, theworking face was divided into5categories including no gob around, only one side existing gob,two side existing three side existing and gob on every side, which can be simplified asrectangle plate of four-side supported, three-side supported and the other simply supported,two-side supported and the others simply supported, one-side supported and three-side simplysupported, simply supported with four sides and the mechanical models were buildsrespectively.
     (4) Aiming at different mining and hard roof conditions around the working face withsuperhigh water material backfilling, the roof were taken as elastic plate with differentboundary supporting conditions. Based on virtual work principle, the deflection and momentexpressions of elastic foundation and existing horizontal pressure in two-way were deduced, the moment formula can be converted into single series by equivalent transformation, whichonly need six terms to meet engineering requirement. At the same time, the relationshipbetween driven distance and the maximum moment with different boundary conditions wereanalyzed, which provided an calculating method for design the width of working face withsuperhigh water material backfill mining when the roof was hard and different surroundingmining conditions.
     (5) Aiming at different mining and soft roof conditions around the working face withsuperhigh water material backfilling, the roof were simplified as elastic-plastic plate withdifferent boundary supporting conditions. In the light of plastic limit equilibrium theory, themaximum bending moment and limit collapse distance expressions of rectangle plate werededuced with different boundary support conditions and calculated the location parameters ofplastic yield-line, which provided an calculating method for design the width of working facewith superhigh water material backfill mining when the roof was soft and different surroundingmining conditions.
     (6) Aiming at different mining conditions around the working face, the laws of workingface width design were studied at the effect of different mining conditions, roof controldistance, roof lithology, roof thickness and payloads. When the working face around no gob,the width of it was largest, and when existing gob on every sides, the width was smallest, theworking face width were between them when other two kinds of gob existing way; the largerroof control distance, the weaker roof lithology or thinner roof and the bigger payloads, thesmaller design working face width, vice versa.
     (7) The effect on mining control with superhigh water material backfill was analyzed onthe basis of mining thickness, inclination, roof thickness, lithology, roof control distance,working face design width, driving velocity, solidifying time of superhigh water material andbackfill way, the designing method with superhigh water material backfill was formed, whichincluded the methods of determination roof control distance, working face width design,mining technology and choosing backfill way. Among them, the basis is the way ofdetermination roof control distance, the core is to design the width of working face, theprotection is to choosing mining technology and backfill method, which provided antheoretical and technical basis for working face design with superhigh water material backfill.
     (8) By choosing working face layout and the proportions of superhigh water material toadjusting the plate’s maximum moment to meet the roof no collapse of open-up backfilling atcertain mining and geological conditions, this method had been experimented at Taoyi andTianzhuang Mine. By means of observation station of surface movement, this way was provedto effectively alleviate the amount and velocity of surface subsidence if ensuring the backfilling ratio.
引文
[1]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003
    [2]钱鸣高,缪协兴.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230
    [3]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2):135-139
    [4]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,27(1):39-42
    [5]茅献彪,缪协兴,钱鸣高.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学,1999,20(2):1-4
    [6]茅献彪,缪协兴,钱鸣高.采高及复合关键层效应对采场来压步距的影响[J].湘潭矿业学院学报,1999,14(1):1-5
    [7]缪协兴,茅献彪,钱鸣高.采动覆岩中关键层的复合效应分析[J].矿山压力与顶板管理,1999,(3):5-9
    [8]许家林.岩层移动与控制的关键层理论及其应用[D].徐州:中国矿业大学采矿系,1999
    [9] Grice A G. Recent Mine fill Developments in Australia, In: Stone D, eds. MINEFILL2001, Society forMining, Metallurgy, and Exploration,2001.51-358
    [10] Desouza E, Degagne D, Archibald J F. Mine fill Applications, Practices and Trends in Canadian Mines,In: Stone D, eds. MINEFILL2001,Society for Mining, Metallurgy, and Exploration,2001.311-320
    [11] Connors C. Methods to Reduce Portland Cement Consumption in Backfill at Jerritt Canyon'sUnderground Society for Mining, Metallurgy, Mines, In: Stone D, eds. MINEFILL2001and Exploration,2001.301-310
    [12] Cayoutte J. Optimization of the paste backfill plant of Louvicourt mine. CIM Bulletin,2003,96(1075):51-57
    [13] Seppanen P Mine backfill technology in the Outokumpu Group. Transactions of the Institution ofMining&Metallurgy, Section A: Mining Industry,1995, v104:178-183
    [14] Potgieter J H, Potgieter S S. Mining backfill formulations from various cementitious and wastematerials. Indian Concrete Journal,2003,77(5):1071-1075
    [15] Wang X M, Li J X, Fan P Z. Applied technique of the cemented fill with fly ash and fine-sands. Journalof Central South University of Technology (English Edition),2001,8(3):189-192
    [16] Ryder J A. Application of numerical stress analyses to the design of deep mine. In: South African Inst ofMining&Metallurgy, eds. GOLD100, Johannesburg: South African Inst of Mining&Metallurgy Publisher,1986.245-253
    [17]周华强,侯朝炯,易宏伟等.国内外高水巷旁充填技术的研究与应用[J].矿山压力与顶板管理,1991,No.4:1-6
    [18]黄国纲,黄伯儒.引进高水充填材料护巷技术的实验[J].湘潭矿业学院学报,1992,12,Vol.7.add,11-17
    [19]孙恒虎,黄玉诚,杨宝贵.当代胶结充填技术[M].北京:冶金工业出版社,2002.
    [20]刘同有.充填采矿技术与应用[M].北京:冶金工业出版社,2001.
    [21] Mkrtchian T, Dight P Experience in electroactivation backfill hardening. Australasian Institute ofMining and Metallurgy Publication Series,1998, n1:333-335
    [22] Rose J.G.,Bland A.E,Robl T.L.Utilization Potential of Kentucky Coal Refuse,University ofKentucky Institute for Mining and Minerals Research Publications Group, Lexington, Kentucky,1989:49
    [23] M.G.Karfakis, C.H.Bowman, E.Topuz. Characterization of coal-mine refuse as backfillingmaterial[J].Geotechnical and Geological Engineering,1996(14):129-150
    [24] Archibald J F, Chew J L, Lausch P. Use of ground waste glass and Normal Portland cement mixtures forimproving slurry and paste backfill support performance. CIM Bulletin,1999,92(10):74-80
    [25] De Souza E, Archibald J F, Degagne D. Glassfill-an environmental alternative for waste glass disposal.CIM Bulletin,1997,90(1010):58-64
    [26] Amaratunga L M. Designing a strong total tailings pastefill using cold-bonded tailings agglomerates.CIM Bulletin,2000,93(1043):119-122
    [27] Amaratunga L M, Yaschyshyn D N. Development of a high modules paste fill using fine gold milltailings. Geotechnical and Geological Engineering,1997,15(3):205-219
    [28] R.Cowling. Twenty-five Years of Mine Filling-Developments and Directions. Sixth InternationalSymposium on Mining with Backfill Brislane: April1998:3~10
    [29] Stewart J M, Clark I H, Morris A N. Assessment of fill quality as basis for selecting and developingoptimal backfill systems for South African gold mines. South African Inst of Mining&Metallurgy,1986,v1:255-270
    [30] Bloss M L, Revell M. Cannington paste fill system-Achieving demand capacity. In: Sandvik, Tamrock,Dyno N. eds. MassMin2000. Australasian Institute of Mining and Metallurgy publisher,2000.713-720
    [31] Bloss M L, Morland R. Influence of backfill stability on stope production in the copper mine at MountIsa Mines. In: Conference Series-Australasian Institute of Mining&Metallurgy, Proceedings of the19956thUnderground Operators' Conference,1995.237-245
    [32] Bloss M L, Greenwood A Cz Cemented rock fill research at Mount Isa Mines Limited1992-1997. In:Bloss D M, eds. MINEFILL`98. Brisbane, Australia:
    [33] Doney D,Peng SS,Luo Y(1991)Subsidence prediction in Illinois coal basin.In:the10th InternationalConference on Ground Control in Mining,pp212-219.
    [34]焦迎杰. ZKD-I型高水速凝材料试验简介[J].冶建技术,1992.4:32-36
    [35]刘同友.充填采矿技术与应用.北京:冶金工业出版社,2001
    [36]孙恒虎.高水速凝材料及其应用[M].中国矿业大学出版社,1994.
    [37]王培月.高水材料固结尾砂充填工艺在玲珑金矿的应用[J].中国矿业,2004,13(9):50-52.
    [38]田斌.高水固化材料与尾砂用于胶结充填[J].化工矿物与加工,1999,(2):15-16.
    [39]邢林.高水速凝固化材料充填技术的应用与效果[J].金属矿山,2001,(7):1-5.
    [40]张良云.凤凰山铜矿高水固化充填试验[J].金属矿山,1997,(8):17-19.
    [41]郑娟荣.矿山充填胶凝材料的研究现状及发展趋势[J].有色金属(矿山部分),2000,52(6):12-15.
    [42]孙恒虎,刘庆林,刘文永.金属矿山高水速凝胶结新工艺的探讨.有色金属(矿山部分), No.5,1991
    [43]孙恒虎,刘文永,杨宝贵.高水固结充填技术的应用研究与进展.中国有色金属学会.第四届全国充填采矿会议论文集,1999.373-378
    [44]刘文永,孙恒虎,杨宝贵等.高水固结充填的应用与进展,中国有色金属学会.第四届全国充填采矿会议论文集,1999.45-48
    [45]孙文标,孙恒虎,刘建庄,等.似膏体充填料浆配合比的实验研究[J].中国矿业,2005,14(8):70-71.
    [46]孙恒虎,刘文永.高水固结充填采矿.北京:机械工业出版社,1998
    [47]赵龙生,孙恒虎,孙文标,等.似膏体料浆流变特性及其影响因素分析[J].中国矿业,2005(10):45-48.
    [48]冯光明.超高水充填材料及其充填开采技术研究与应用[D].徐州:中国矿业大学,2009.12
    [49] Sun Henghu,Han Jianmin and Lishuqin. Application of Tailing Sand and Water as Backfill Material inMetal Mines,11th International Conference on Ground Control in Mining, Australia,1992
    [50] Sun Henghu, Liu Wenyong, Huang Yucheng and Yang Baogui. The Use of High-waterRapid-solidifying Material as Backfill Binder and Its Application in Metal Mines, Sixth InternationalSymposium on Mining with Backfill, Brisbane, Australia,1998, pp.21-24
    [51] H. Sun, G.Baiden and M.Grossi. New Backfill Binder and Method, Sixth International Symposium onMining with Backfill, Brisbane, Australia,1998, pp.77-81
    [52] R.cowling. Twenty-five Years of Mine Fill: Developments and Directions, Sixth InternationalSymposium on Mining with Backfill, Brisbane, Australia,1998, pp.3-9
    [53] Tongyou Liu, Chengpu Zhou and Sijing Cai. New Development of Cemented Fill in various ChineseMetal Mines, Sixth International Symposium on Mining with Backfill, Brisbane, Australia,1998, pp.49-51
    [54] N.A.Filatov, et al. Underground Pressure Effect upon Intersection Points of Vertical and LateralOpenings, Seventh International Strata Control Conference, INIEX,1982, pp.98-102
    [55] A.Azzoni, et al. Analysis and Prediction of Rockfalls Using a Mathematical Model, Int. J. RockMech.Min.Sci., Vol.34, No.6,1997, pp.709-724
    [56] A.zong and T.F.Wong, Elastic Stiffness and Stress Concentration in Cemented Granular Material,Int.J.Rock Mech.Min.Sci., Vol.32, No.6,1995, pp.709-724
    [57] Guo Yuguang, Bai Jianbiao, Hou Chaojiong, Study on the main parameters of gateside packs ingateways maintained along gob-edges[J]. Journal of China University of Mining&Technology,1992,21(4):1~5.
    [58] Huang Yucheng. Sun Henghu. Experimental Study on the Mechanical Properties of Paste-like FillMaterial, Journal of China University of Mining&Technology.2004(02):107-109
    [59] B.H.G布雷迪,E.T.布郎.地下采矿岩石力学[M].北京:煤炭工业出版社,1990
    [60]于学馥,郑疑人.地下工程位移稳定性分析「M].北京:煤炭工业出版社,1996
    [61] Macfarlane A S, Laas J J, Spearing A J S. Derivation of a backfilling strategy for tabular, deep, scatteredmining on Vaal Reefs. In: Bloss D M, eds. MINEFILL`98. Brisbane, Australia: Australasian Institute ofMining and Metallurgy Publication,1998.309-314
    [62] KIRSTEN H. A. D., STACEY T. R二充填在低下沉量采场中的支护机理.国外金属矿山充填采矿技术的研究与应用—国外充填法矿山论文集[C].长沙:中国矿业协会采矿专业委员会,长沙矿山研究院编译,1998.351357
    [63]于学馥,刘同有.金川的充填机理与采矿理论[R].第四届全国岩石力学大会(金川),1996
    [64]贾喜荣,翟英达.采场薄板矿压理论与实践综述[J].矿山压力与顶板管理.1999, No3-4:22-25
    [65]贾喜荣,李海,王青平,贾瑞成.薄板矿压理论在放顶煤工作面中的应用[J].太远理工大学学报.1999,3.30(2):179-183
    [66]乔福祥.长壁工作面矿山压力的模拟研究[J].中国矿业大学学报,1985,3:44-48
    [67] S.P.铁摩辛柯, J.M.盖莱.弹性稳定理论[M].北京:科学出版社,1965,369-381
    [68] S.P.铁摩辛柯, S.沃诺斯基.板壳理论[M].北京:科学出版社,1977,206-217
    [69]钱鸣高,朱德仁,王作堂.老顶岩层断裂型式及对工作面来压的影响[J].中国矿业大学学报,
    [70]钱鸣高.老顶的初次断裂步距[J].矿山压力,1987,1:1-6.(Qian Minggao. The First Collapse Span ofMain Roof [J].Ground Pressure and Strata Control,1987,1:1-6)
    [71]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003,77-84.
    [72] Zhu De Ren. Structure of the Roof at the End of Longwall Face and its Support,The Aus IMMIllawarra Branch,Ground Movement and Control related to Coal Mining,Symposium1986.8.
    [73]朱德仁,钱鸣高.长壁工作面老顶破断的计算机模拟[J].中国矿业大学学报,1987年,第3期1987,3:1-9
    [74]王作棠,钱鸣高.老顶初次来压步距的计算预测法[J].中国矿业大学学报,1989,18(2):9-18
    [75]建筑结构静力计算手册组,建筑结构静力计算手册[M].北京:中国建筑工业出版
    [76]王金庄,邢安仕,吴立新.矿山开采沉陷及其防治[M].北京:煤炭工业出版社,1981.
    [77]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [78]张玉卓,煤矿地表沉陷的预测与控制——世纪之交的回顾与展望,煤炭学会第五届青年科技学术研讨会论文集,煤炭工业出版社,1998.11.
    [79]吴立新,王金庄,刘延安等.建(构)筑物下压煤条带开采理论与实践[M].徐州:中国矿业大学出版社,1994.
    [80]克诺特,李特维尼申.矿区地面采动损害保护[M].北京:煤炭工业出版社,1980.
    [81] Salamon, M.D.G. Elastic analysis of displacements and stresses induced by the mining of seam or roofdeposis,J.S.Afr,Inst.Metall,1963,Vol.63
    [82] M.D.G沙拉蒙.地下工程的岩石力学,北京:冶金工业出版社,1982.
    [83] Kratesch,H, Mining Subsidence Engineering Springer Verlag, Berlin,1983.
    [84]王有俊.矸石直接充填及其效益分析[J].辽宁工程大学学报:自然科学版,2003,22(增刊):70-72.
    [85] M.鲍来茨基,M.胡戴克.矿山岩体力学[M].北京:煤炭工业出版社,1985.
    [86] B.A.布克林斯基.矿山岩层与地表移动[M].北京:煤炭工业出版社,1989.
    [87]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
    [88]何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [89]沈光寒,李白英,吴戈,等.矿井特殊开采的理论与实践[M].北京:煤炭工业出版社,1992.
    [90]何国清,马伟民,王金庄.威布尔型影响函数在地表移动的计算中的应用—用碎块体理论研究岩层移动基本规律探讨[J].中国矿业大学学报:自然科学版,1982(1):1-20.
    [91]刘光庆,谭志祥,岳尊彩,等.超长综放面开采地表移动变形规律的实测研究[J].矿业安全与环保,2007,34(2):7-9.
    [92]吴侃,邓喀中,周鸣.综采放顶煤表土层移动监测成果分析[J].煤炭学报,1999,24(1):21-24.
    [93]贺平,王东攀,高保彬.厚松散层地表移动变形预计的双曲函数法[J].煤矿开采,2005,4:2-5.
    [94]余华中,李德海,李明金.厚松散层放顶煤开采条件下地表移动参数研究[J].焦作工学院报(自然科学版),2003,22(6):413-416.
    [95]余华中,李德海,李明金.厚松散层下开采预计的概率积分法修正模型[J].焦作工学院学报(自然科学版),2004.7(4):255-257.
    [96]谢广祥,常聚才,华心祝.开采速度对综放面围岩力学特征影响研究[J].岩土工程学报,2007,29(7):963-967.
    [97]高明中,余忠林.厚冲积层急倾斜煤层群开采重复采动下的开采沉陷[J].煤炭学报,2007,32(4):347-352.
    [98]尹光志,鲜学福,代高飞.大倾角煤层开采岩移基本规律的研究[J].岩土工程学报,2001,23(4):450-453.
    [99]曹树刚,刘延保,黄昌文,等.近水平煤层开采地表移动规律研究[J].采矿与安全工程学报,2006,23(1),74-77.
    [100]黄庆享,张沛,董爱菊.浅埋煤层地表厚砂土层“拱梁”结构模型研究.[J].岩土力学,2009(9):2722-2726.
    [101]苏美德,赵忠明,李德海.灰色系统理论模型在矿山开采沉陷中的应用[J].西部探矿工程,2003,4(4):82-83.
    [102]李德海,赵忠明,李东升.条带煤柱强度弹塑性理论公式的修正[J].矿冶工程,2004,6(3):16-18.
    [103]李德海,李东升,宋长胜.条带设计弹性理论的复变函数模型[J].辽宁工程技术大学学报,2003,2(1):58-60.
    [104]聂卫平,张彦宾,李德海.建筑物下条带开采地表移动与变形研究[J].有色金属(矿山部分),2007,5(3):12-15.
    [105]彭苏萍,凌标灿,郑高升.采场弯曲下沉带内部巷道变形与岩层移动规律研究[J].煤炭学报,2002,2(1):21-25.
    [106] Cui Ximin. Prediction of Progressive Surface Subsidence above Longwall Coal Mining using a TimeFunction[J].International Journal of Rock Mechanics&Mining Sciences,2001,38:1057-1063.
    [107]崔希民,缪协兴,赵英利,等.论地表移动过程的时间函数[J].煤炭学报,1999,24(5):453-455.
    [108]常占强,王金庄.关于地表点下沉时间函数的研究——改进的克诺特时间函数[J].岩石力学与工程学报,2003,22(9):1496-1499.
    [109]李德海.覆岩岩性对地表移动过程时间影响参数的影响[J].岩石力学与工程学报,2004,12(22):3780-3783.
    [110]高延法,贾君莹,李冰,等.地表下沉衰减函数与塌陷区稳定性分析[J].煤炭学报,2009,7(7):892-896.
    [111]徐洪钟,李雪红.基于Logistic增长模型的地表下沉时间函数[J].岩土力学,2005,26(增):151-152.
    [112]张文志,邹友峰,任筱芳.Logistic模型在开采沉陷单点预测中的研究[J].采矿与安全工程学报,2009,26(4):486-489.
    [113]赵明忠,李德海.Verhulst模型模拟地表移动变形的时间过程[J].焦作工学院学报(自然科学版),2003.(1):1-4.
    [114]赵忠明.用生物生长规律划分地表移动变形时间阶段[J].有色金属(矿山部分),2005,57(6):27-28.
    [115]李德海.费尔哈斯模型预测地表移动变形[J].煤炭科学技术,2009(7):58-60.
    [116]彭小沾,崔希民,臧永强,等.时间函数与地表动态移动变形规律[J].北京科技大学学报,2004,26(4):341-344.
    [117]朱广轶,朱乐君,郭影.地表沉陷动态时间函数研究[J].西安科技大学学报,2009(3):329-332.
    [118]赵忠明,王其胜,李德海.下沉速度法研究地表移动变形分布规律[J].辽宁工程技术大学学报,2003,6(3):313-316.
    [119]刘文涛,贾喜荣.开采沉陷动态预计流变模型及应用.[J].太原理工大学学报,2004,7(4):491-493.
    [120]解廷堃.开采沉陷动态预计中的流变模型及应用[J].露天采矿技术,2009,2(2):35-37.
    [121] C.Gonzalez-Nicieza,M.I.Alvarez-Fernandez, A.Menendez-Diaz.A.E.Alvarez-Vigil,The influence oftime on subsidence in the Central Austrian Coalfield[J].Bull Eng Geol Environ,2007,(66):319–329.
    [122]王悦汉,邓喀中,吴侃.采动岩体动态力学模型[J].岩石力学与工程学报,2004,23(1):352-357.
    [123]梁运培,孙东玲.岩层移动的组合岩梁理论及其应用研究[J].岩石力学与工程学报,2002,21(5):654-657.
    [124]赵晓东,宋振骐.岩层移动复合层板模型的系统方法解析[J].岩石力学与工程学报,2001,20(2):197-201.
    [125]张向东,范学理,赵德深.覆岩运动的时空过程[J].岩石力学与工程学报,2002,21(1):56-59.
    [126]郝延锦,吴立新,戴华阳,等.用弹性板理论建立地表沉陷预计模型[J].岩石力学与工程学报,2006,25(增1):2958-2961.
    [127] Ramesh P.Singh, Ram N.Yadav,Prediction of subsidence due to coal mining in Ranigan coal field,West Bengal, India[J]Engineering Geology,1995(39):103.111.
    [128]李文秀,梁旭黎,赵胜涛,等.地下开采引起地表沉陷预测的弹性薄板法[J].工程力学,2006,23(8):177-181.
    [129]姜岩.采场覆岩离层及分布规律[J].山东矿业学院学报,1997,16(1).
    [130]郭惟嘉.覆岩沉陷离层发育的解析特征[J].煤炭学报,2000(12):49-53.
    [131]苏仲杰,于广明,杨伦.覆岩离层变形力学模型及应用[J].岩土工程学报,2002,24(6):778-781.
    [132]苏仲杰.采动覆岩离层变形机理研究[D].辽宁工程技术大学,2002.
    [133]苏仲杰,于广明,杨伦.覆岩离层变形力学模型及应用[J].岩土工程学报,2002(6):778-781.
    [134]邓喀中.开采沉陷中的岩体结构效应应用[D].博士学位论文.徐州:中国矿业大学,1993.
    [135]邓喀中.开采沉陷中岩体结构效应研究[M].徐州:中国矿业大学出版社,1993.
    [136]邓喀中,马伟民,何国清.开采沉陷中的层面效应研究[J].煤炭学报:1995,20(4):56-58.
    [137]贾喜荣,翟英达.采场薄板矿压理论与实践综述[J].矿山压力与顶板管理,1999,12(4):21-25.
    [138]陈忠辉,谢和平,李全生.长壁工作面采场围岩铰接薄板组力学模型研究[J].煤炭学报,2005,30(2):172-176.
    [139]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [140]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [141]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用研究[J].岩土工程学报,2004,26(5):632-636.
    [142]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(5):403-409.
    [143]缪协兴,钱鸣高,采动岩体的关键层理论研究新进展[J].中国矿业大学学报,2000,29(1):25-28.
    [144]缪协兴,陈荣华,浦海.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1295.
    [145]翟所业,张开智.用弹性板理论分析采场覆岩中的关键层[J].岩石力学与工程学报,2004,23(11):1856-1860.
    [146刘开云,乔春生,周辉,覆岩组合运动特征及关键层位置研究[J]岩石力学与工程学报,2004,23(8):1290-1293.
    [147]王红卫,陈忠辉,杜泽超.弹性薄板理论在地下采场顶板变化规律研究中的应用[J].岩石力学与工程学报,2006,25(增2):3769-3774.
    [148]谢和平,周宏伟,王金安.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401.
    [149]赵洪亮.综放开采地表移动变形规律FLAC数值模拟与实践[J].煤炭工程,2009,4(4):89-91.
    [150]彭苏萍,凌标灿,郑高升.采场弯曲下沉带内部巷道变形与岩层移动规律研究[J].煤炭学报,2007,27(1):21-25.
    [151]蓝航,姚建国,张兴华,等.基于FLAC3D的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,3(3):572-577.
    [152]蓝航,张华兴,姚建国.山区地表采动沉陷预计的数值模拟[J].煤炭学报,2007,32(9):912-916.
    [153]蓝航,李凤明,姚建国.露天煤矿排土场边坡下采动沉陷规律研究[J].中国矿业大学学报,2007,7(4):482-486.
    [154]程东全,尹士献,李德海.厚黄土覆盖层条带开采关键层的数值模拟[J].矿冶工程,2008,12(6):8-14.
    [155]余学义,尹士献,赵兵朝.采动厚湿陷性黄土破坏数值模拟研究[J].西安科技大学学报,20056(2):135-138.
    [156]麻凤海.大倾角多煤层开采地表移动规律的数值模拟研究[J].中国矿业,2009(6):71-73.
    [157]许家林,钱鸣高,马文顶,等.岩层移动模拟研究中加载问题的探讨[J].中国矿业大学学报,2001,5(3):252-255.
    [158]朱建明,徐秉业,朱峰,等.FLAC有限差分程序及其在矿山工程中的应用[J].中国矿业,2000,4(4):79-80.
    [159]武崇福,刘东彦,方志.FLAC3D在采空区稳定性分析中的应用[J].河南理工大学学报(自然科学版),2007,4(2):136-140.
    [160]张世雄,王福寿,胡建华等.充填体变形对建筑物影响的有限元极限分析[J].武汉理工大学学报,2002,24(5):71-75.
    [161]查剑锋.矸石充填开采沉陷控制基础问题研究[D].徐州:中国矿业大学,2008.12
    [162]周震宇.矸石充填巷采地表沉陷控制研究[D],徐州:中国矿业大学出版社,2008.
    [163]刘鹏亮.邢东矿充填巷式开采数值模拟与现场实测研究[D].煤炭科学研究总院,2007.
    [164]卢央泽.基于煤矸石似膏体胶结充填法控制下的覆岩移动规律研究[D].中南大学,2006.
    [165]孙晓光,周华强.固体废物膏体充填岩层控制的数值模拟研究[J].采矿与安全工程学报,2007,24(1):117-126.
    [166]胡炳南.粉煤灰充填对控制岩层移动的理论研究[J].煤矿开采,1991(2):30-33.
    [167]谢文兵,史振凡,陈晓祥等.部分充填开采围岩活动规律分析[J].中国矿业大学学报,2004,33(2):163-166.
    [168]刘长友,杨培举,侯朝迥等.充填开采时上覆岩层的活动规律和稳定性分析[J].中国矿业大学学报,2004,33(2):166-169.
    [169]张华兴,郭爱国.宽条带充填全柱开采的地表沉陷影响因素研究[J].煤炭企业管理,2006,(6):56-57.
    [170]中国矿业大学北京研究生部高水材料研究所、山东省焦家金矿编,焦家采矿模式—高水固结充填采矿法研究报告,鉴定材料,1994
    [171]中国矿业大学北京研究生部、山东省招远金矿,全尾砂速凝固化胶结充填新工艺,鉴定文件1992
    [172]张民正,下向进路全尾砂高水固化充填体假顶参数及强度计算,有色金属, No.4.1995
    [173]胡文宇,有色金属矿山胶结充填的现状及其发展方向探讨,有色金属(矿山部分), No.5,1989
    [174]冯光明,丁玉,朱红菊,等.矿用超高水充填材料及其结构的实验研究[J].中国矿业大学学报,2010,39(6):813-819.
    [175]冯光明,孙春东,王成真,等.超高水材料采空区充填方法研究[J].煤炭学报,2010,35(12):1963-1968.
    [176]冯光明,王成真,李凤凯,等.超高水材料开放式充填开采研究[J].采矿与安全工程学报,2010,27(4):453-457.
    [177] Cody, A.M. et al. The effects of chemical environment on the nucleation, growth, andstabilityofettringite[Ca3Al(OH)6]2(SO4)3·26H2O[J].CementandConcreteResearch,2004,34:869-881.
    [178] Ouhadi, V. R. et al. Ettringite formation and behaviour in clayey soils[J]. Applied ClayScience,2008,(impress).
    [179]Long, Shizong et al. Investigation on the formation of ettringite in the presence of Bao[J].CementandConcreteResearch,1995,25(7):1417-1422.
    [180]贾乃文.塑性力学[M].重庆,重庆大学出版社,1992:101-115
    [181]徐秉业,刘信声.结构塑性极限分析[M].北京:中国建筑工业出版社,1985:13-48,241-245
    [182]张福范.弹性薄板[M].北京:科学出版社,1963,67-84
    [183]孙恒虎.沿空留巷顶板活动机理及支护围岩关系新研究[D].北京:中国矿业大学,1988.9.
    [184]蒋金泉.老顶岩层板结构断裂规律[J].山东科技大学学报,1988, Vol.7No1:51-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700