用户名: 密码: 验证码:
空间计算机结构的动力学仿真与适应性设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间计算机是指安装在各种导弹、卫星、火箭、飞船及各类空间探测器内部的嵌入式计算机,它具有体积小、结构紧凑、功能密度高、环境适应性强等特点。作为各种航天飞行器和武器装备系统中的智能中枢,它承担着大量的数据处理、事务管理等任务。空间计算机及其环境适应性技术一直以来都是发达国家的研发重点,随着二代导航、天基信息网、新一代精确末制导导弹、新一代运载火箭、新一代战略导弹等新型航天型号和武器装备研制任务的展开,对空间计算机的环境适应性提出了更高的要求。
     本文在前人相关研究工作的基础上,对空间计算机的力学适应性设计思路、设计方法、解决方案,以及相应的结构可靠性设计问题进行了较为系统和深入的研究。结合空间计算机力学适应性设计的具体要求,研究了空间计算机动力学仿真建模的一般方法、PCB组件的一阶频率仿真精度问题、具有频率约束的PCB组件优化设计问题、随机振动条件下元器件引脚疲劳寿命的估算方法、两种内置式PCB组件的阻尼减振方法等问题,并对相关内容进行了试验验证。
     论文以相关理论研究为基础,从工程实际需求出发,以空间计算机力学环境适应性设计与动力可靠性研究为主题,为工程中有迫切需求的设计问题提供相应的设计方法和解决途径。论文既不失力学适应性设计的主线,又有所侧重。
     本论文所开展的具体研究内容为:
     1.从整机、PCB组件、器件三个层次分别研究了空间计算机力学适应性设计的方法,整机以减振器应用技术为主,PCB组件以频率优化设计为主,器件级以动力学响应分析和结构可靠性计算为主;
     2.研究空间计算机动力学仿真分析中建模方法与简化原则,分析造成PCB组件力学仿真分析结果与物理试验数据之间误差的产生原因,并确定各误差因素对于仿真结果精度的影响程度;
     3.研究了具有不确定性参数的多自由度振动的区间特征值问题,基于Rayleigh商法推导了特征值和随机激励下动力响应的快速计算方法;并将该方法用于PCB组件各结构参数的敏感度分析和动力学响应优化设计。
     4.针对PCB组件的力学适应性设计问题,选择了工程中具有代表性的PCB组件的频率约束优化设计问题作为研究对象,采用双变量切比雪夫多项式构造了该问题的响应面优化设计模型,并给出了可行解的存在性判据;
     5.针对器件级力学适应性设计问题,重点研究了随机振动激励下器件引脚的结构动力可靠性问题,提出了在力学环境的时间历程中空间计算机结构寿命的估算方法;
     6.针对工程具体应用需求,研究了空间计算机的内置式印制板级减振设计新方法,并通过物理试验验证了该减振设计方案的有效性。
A space computer is an embedded computer which is installed in various missiles, satellites, rockets, spacecrafts and space detectors. It has features of small volume, compact structure, high density of functionality and fine adaptability to environment. As a central intelligence for various spacecrafts and weapon equipment systems, it undertakes a multitude of tasks of data processing and transaction management. The space computer and its environmental adaptability technology have always been the key focus of developed countries' R&D effort. With the development of new-type aerospace projects and weapon equipments which include the second generation of navigation, space-based information network, the next generation of precise terminal guidance missiles, the next generation of launch vehicles, the next generation of strategic missiles, a higher request to the environmental adaptability of space computers has been put forward.
     Based on previous relative research works, this paper makes an in-depth and systematical research into design ideas, design methods and solutions of mechanical adaptability of space computers and corresponding structural reliability design. Combining of specific requirements of design of mechanical adaptability of space computers, general methods of dynamics simulation modeling, first order frequency simulation precision of PCB components, estimation of fatigue life of structural system under random vibration condition and two interior vibration damping methods are studied and relative experimental validations are carried out.
     According to theoretical research and practical needs, this doctoral dissertation centers on the design of mechanical adaptability of space computers and dynamic reliability problems and focuses on providing design methods and solutions on the pressing needs in the design problems of projects. The design of the mechanical adaptability is the main line of this dissertation which focuses on practical demand at the same time.
     This study includes the following contents:
     1. Discuss design methods for mechanical adaptability of space computers from three layers of whole machines, PCB assemblies and devices, of which whole machines focus on shock absorber application technology, PCB components focus on frequency optimization design and devices focus on dynamic response analysis and structural reliability calculation.
     2. Investigate the modeling method and simplification principle in dynamic simulation analysis of space computers, research error causes between simulation results and physical experiments and determine the influence degree of error factors.
     3. Concerning design problem of mechanical adaptability of whole machines, Study the interval eigenvalue of multi-freedom vibration with uncertain parameters, derive approximate and quick calculation methods of dynamic response under PSD stimulation as well as eigenvalue based on Rayleigh quotient method and apply the calculation methods on the susceptibility analysis of the structure parameters of PCB assemblies.
     4. Concerning design problem of mechanical adaptability of PCB assemblies, highlight design method on optimization of PCB assemblies with interval parameters and frequency constraint, establish an optimized model with frequency constraint based on response surface method and bring forward the existing criterion on feasible solutions.
     5. Concerning design problem of mechanical adaptability of devices, concentrate on the problem of dynamic reliability of pins and solder joints of devices under stochastic vibration stimulation and put forward calculating methods of the structural life and degree of reliability of space computers in mechanical environment course.
     6. Concerning specific application needs of projects, study new design methods of interior vibration damping and test to verify their effectiveness.
引文
[1]张军,韦凌云等.整星系统隔振优化设计研究[J].机械科学与技术,2005,24(10):1184-1186
    [2] Steinberg Dave S. Vibration analysis for Electronic Equipment [M], Second Edition, America, John wiley & Sons, Inc. 1988
    [3] W.W.Lee, L T.Nguyen, G.S.Selvaduray. Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages [J], Microelectronics Reliability 2000 (40):231-244
    [4]王红芳, SMT焊点振动疲劳可靠性理论与实验研究[D].上海:上海交通大学,2001
    [5]郭强,振动冲击条件下SMT焊点疲劳寿命与可靠性的理论与试验研究[D],上海:上海交通大学,2004
    [6] Boris Mirman, Lead-On-Chip Versus Chip-On-Lead Packages and Solder Failure Criteria [J], J. Elec. Pack., Sept.2000(122):279-280
    [7] Ravi Subrahmanyan, James R. Wilcox, and Che-Yu Li, A Damage Integral Approach to Thermal Fatigue of Solder Joints [J], IEEE transaction on Components, Hybrids, Mfg. Technology, Dec.1989, 12(4):480-491
    [8] John H. Lau, Girvin Harkins, Donald Rice, etc, Experimental & Statistical Analyses of Surface-Mount Technology PLCC Solder-Joint Reliability [J], IEEE Transactions on Reliability,Dec.1988, 37(5):524-530
    [9] H. D. Solomon. Low Cycle Fatigue of Surface-Mounted Chip-Carrier/ Printed Wiring Board Joints [J], IEEE Trans. Comp. Hybrids. Mfg. Tech. Dec 1989, 12(4):473-479
    [10] Reza Ghaffarian Namsoo P. Kim Reliability and Failure Analysis of Thermally Cycled Ball Grid Array Assemblies [J]. IEEE Transactions on components and packaging technologies September 2000, 23(3):528-534
    [11] Andrew Mawer. Plastic Ball Grid Array (PBGA)[M], Motorola Semiconductor Technical Data, 1996
    [12] John H. L,Pang, Kwang Hong Tan. Thermal cycling aging effects on microstructure and mechanical properties of single PBGA solder joint specimen[J]. IEEE Transactions on components and packaging technologies. March 2001,24(1):10-15
    [13]黄大巍,方洪渊,钱乙余.热循环载荷下SMT焊点应力应变过程的有限元分析[J].电子工艺技术, 1997,18(1):6-14
    [14]刘常康,周德检. PBGA焊点热疲劳寿命的正交试验及回归分析[J].电子工艺技术, May 1999, 20(3):90-93
    [15]陈柳. SMT焊点的热疲劳可靠性研究[D].上海:中科院上海冶金所.1999
    [16]王国忠,王青春,钱乙余. SMT焊点形态影响焊点热循环寿命的试验研究[J].电子工艺技术, 1997, 18(5):182-185
    [17] Rong J.H.,Xie Y.M.,Yang X.Y. An improved method foe evolutionary structural optimization against bulking[J]. J. Computers & Structure,2001(79):253-263
    [18] Rong J.H.,Xie Y.M.,Yang X.Y., Liang Q.Q. Topology optimization of structures under dynamic response constraints[J]. Journal of Sound and Vibration,2000,234(2):177-189
    [19]荣见华,姚起杭,葛祖德,在结构动力优化设计中动响应高阶修改和它的灵敏度分析[J].航空学报,1992,13(9):528-533
    [20]荣见华,姚起杭,阻尼结构的动响应高阶修改和优化方法[J].机械强度, 1993,15(3):1-6.
    [21]徐斌,姜节胜,闫云聚.具有频率约束的桁架结构可靠性拓扑优化[J].应用力学学报, 2001 18(z1)
    [22]童卫华,姜节胜,顾松年.桁架频率优化解存在性及其算法研究[J].应用力学学报,2000 17(02)
    [23]闫洁.航天柔性结构振动的主被动控制研究[D],西安:西安交通大学,2002
    [24]王光远.论不确定性结构力学的发展[J].力学进展. 2002, 32(2):205-211
    [25]李杰.随机结构系统─分析与建模[M].第一版.北京:科学出版社, 1996
    [26]李杰.结构动力分析的若干发展趋势.[J].世界地震工程, 1993(2):l-8
    [27]赵雷,陈虬.随机有限元动力分析方法的研究进展[J].力学进展. 1999, 29(1):9-18
    [28]李贤兴.强震作用下钢筋混凝土多层结构的空间随机响应分析及其损伤评估[D],成都:西南交通大学,1991
    [29] Kleiber M., Hien T.D. The Stochastic Finite Element Method[M]. Wiley,1992
    [30] Hisada T, Nakagiri S. Role of the stochastic finite element method in structural safety and reliability[C], Proc. 4th Int. Conf. on Structural Safety and Reliability, Kobe,Japan,1985
    [31] Vanmarke E. Random fields and stochastic finite elements [J]. Struct. Safety, 1986(3):143-166
    [32] Astill C J, Noisseir S B, Shinozuka M. Impact loading on structures with random properties[J]. J. Struct. Mech. 1972,1(1):63-67
    [33] Shinozuka M. Monte Carlo solution of structural dynamics[J]. Int. J. Comput. And Struct. 1972(2):855-874
    [34] Shinozuka M, Jan C M. Digtal simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972(25):111-128
    [35] Shinozuka M, Wen Y. K. Mote Carlo Solution of nonlinear vibration[J]. AIAA J. 1972,10(4):456-462.
    [36] Sun T. C. A finite element method for random differential equations with random coefficients[J]. SIAM J. Numer. Anal. 1979, 16(6):1019-1035
    [37] Ghanem R. G, Spanos P D. polynomial chaos in stochastic finite elements[J]. J of Appl. Mech. 1990(57):197-202
    [38] Ghanem R. G, Spanos P D. Spectral stochastic finite element formulation for reliability analysis[J]. ASCE, EM. 1991, 117(10): 2351-2372
    [39] Jensen H, Iwan W D. Response variability in structural dynamics[J]. Earthquake Engineering and Structural Dynamics. 1991(20):949-959
    [40] Iwan W D, Jensen H. On the dynamic response of continuous systems including model uncertainty[J]. J. of Applied Mechanics, 1993(60):484-490
    [41] Jensen H, Iwan W D. Response of systems with uncertain parameters to stochastic excitation[J]. ASCE, EM., 1992,118(11):1012-1025
    [42] Grigoriu M. Eigenvalue problem for uncertain systems-part 2 [J]. Applied Mechanics Reviews, 1991, 44(11):389-395
    [43] Singh B N, Yadav D & Iyengar N G R. Natural frequencies of composite plates with random material properties using higher-order shear deformation theory[J]. International Journal of Mechanical Sciences, 2001(43):2193-2214
    [44] Yang X W, Chen S H & Wu B S. Eigenvalue reanalysis of structures using perturbations and Pade Approximation [J]. Mechanical System and Signal Processing, 2001, 15(2):257-263
    [45] Kaminski M. Perturbation based on stochastic finite element method homogenization of two-phase elastic composites [J]. Computers & Structures, 2000, 78(6): 811-826
    [46] Kaminski M. Stochastic finite element method homogenization of heat conduction problem in fiber composites[J]. Structural Engineering and Mechanics, 2001, 11(4): 373-392
    [47] Choi C K. Stochastic finite element analysis of plate structures by weighted integral method [J]. Structural Engineering and Mechanics, 1996, 4(6):703-715
    [48] Cho K N. Mass perturbation influence method for dynamic analysis of offshore structures [J]. Structural Engineering and Mechanics, 2002, 13(4):429-436
    [49] Nagpal V K. Probabilistic structural analysis to quantify uncertainties associated with turbo pump blades [J]. AIAA J, 1989, 27(6):809-813
    [50]赵雷,陈虬.结构随机分析的Monte Carlo加权残值法[J].计算结构力学及其应用, 1996, 13(2):193-200
    [51] Yamazaki F. Neumann expansion for stochastic finite element analysis[J]. J Eng Mech. ASCE, 1988, 114(8):1335-1354
    [52]黄斌,常晓林.具有随机约束刚度的结构的特征值[J].武汉理工大学学报, 2001, 23(3):66-68
    [53]黄斌,瞿伟廉,常晓林.随机边界形状的结构振动特征值[J].武汉理工大学学报, 2002, 24(11):49-52
    [54]刘保国,王威,殷学纲.一维随机参数结构的特征值问题[J].机械强度, 2004, 26(4): 367-370
    [55]陈塑寰.随机参数结构的振动理论[M].长春:吉林科学技术出版社. 1992
    [56]张义民,刘巧玲,闻邦椿.随机结构系统的一般实矩阵特征值问题的概率分析[J].力学季刊, 2003, 24(4):522-527
    [57]张义民,闻邦椿.随机结构系统振动的频率可靠性分析[J].机械强度, 2002, 24(2): 240-242
    [58]张义民,闻邦椿.随机结构系统的特征值和特征向量分析[J].振动与冲击, 2002, 21(1): 77-78
    [59] Chen J J, Che J W, Sun H A, et al. Probabilistic dynamic analysis of truss structures[J], Structural Engineering & Mechanics, 2002, 13(2): 231-239
    [60]车建文.基于可靠性的结构动力优化设计研究[D].西安:西安电子科技大学, 1998
    [61]马洪波,陈建军,崔明涛.随机参数桁架结构的有限元与可靠性分析[J].西安电子科技大学学报,2003, 30(1):103-107
    [62]高伟,陈建军,刘伟.随机参数智能桁架结构动力特性分析[J].应用力学学报, 2003, 20(1):123-127
    [63]戴君,陈建军,马洪波,崔明涛.随机参数结构在随机和在激励下的动力响应分析[J].工程力学, 2002, 19(3): 64-68
    [64] Dai J, Chen J.J., Li Y G. Dynamic response optimization design for engineering structures based on reliability[J]. Applied Mathematics and Mechanics, 2003, 24(1): 43-52
    [65] Gao W., Chen J. J., Ma H. B. Dynamic response analysis of closed loop control system for intelligent truss structures based on probability [J]. Structural Engineering & Mechanics, 2003, 15(2):239-248
    [66]高伟,陈建军,刘伟,马洪波,马孝松.随机参数智能刚架结构在随机力下的闭环控制动力响应分析[J].机械科学与技术, 2002, 21(6):909-912
    [67]高伟,陈建军.线性随机结构的平稳随机响应分析[J],应用力学学报, 2003, 20(3):92-95
    [68] Gao W., Chen J. J., Ma J., Liang Z. T. Dynamic response analysis of stochastic frame structures under nonstationary random excitation [J]. AIAA Journal, 2004, 42(9): 1818-1822
    [69] Rice S O. Mathematical Analysis of Random Noise [J]. Bell System Technical Journal, 1944(23): 282-332
    [70] Yang J N, Shinozuka M. On the first excursion probability in stationary narrow band random vibration [J]. Journal of Applied Mechanics, 1971(38):1017-1022
    [71] Iyenger R N. First passage probability during random vibration [J]. Journal of Sound and Vibration, 1973,31(2):185-193
    [72] Roberts J B. Probability of first-passage failure for nonstationary random vibration [J]. Journal of Applied Mechanics, 1975(42):716-720
    [73] Gasparini D A. Response of MDOF systems to nonstationary random excitation [J]. Journal of the Engineering Mechanics Division, 1979, 105(1):13-18
    [74] Roberts J B. First passage time for oscillators with non-linear damping [J]. Journal of Applied Mechanics, 1978(45):175-180
    [75] Roberts J B. The energy evenlope of a randomly excited non-linear oscillator [J]. Journal of Sound and Vibration, 1978,60(2):177-185
    [76] Iwan W D, Spanos P T. Response envelope statistics for nonlinear oscillators with random excitation [J]. Journal of Applied Mechanics, 1978:170-174
    [77] Iwan W D, Gates N C. Estimations earthquake response of simple hysteretic structures [J]. Journal of Applied Mechanics, 1979:391-405.
    [78] Mochio Takashi. Dynamic reliability of hysteretic structures under combined random loads. JSME International Journal, Series 3: Vibration, Control Engineering[J], Engineering for Industry. 1989, 32(1):19-24
    [79] Mochio Takashi. Dynamic reliability of multi-degrees-of-freedom structures with hysteretic characteristics under combined random loads[C]. Proceedings of ICOSSAR '89, the 5th International Conference on Structural Safety and Reliability. 1989:1363-1370
    [80] Mahadevan S, Mehta S. Dynamic reliability of large frames [J]. Computers and Structures. 1993, 47(1):57-67
    [81] Colonius Fritz, Haeckl Gerhard, Kliemann Wolfgang. Dynamic reliability of nonlinear systems under random excitation[J]. American Society of Mechanical Engineers. 1995, 84(3):1007-1024
    [82] Becker G, Camarinopoulos L, Kabranis D. Dynamic reliability under random shocks. Reliability Engineering and System Safety[J]. 2002, 77(3):239-251
    [83]刘锡绘.现行规范抗震设计方法安全度的评价及工程参数的确定[J].地震工程与工程振动. 1982(2):21-25
    [84]尹之潜,李树帧.结构抗震的可靠度与位移控制设计[M].地震工程与工程振动, 1982(2):56-59
    [85]李桂青,曹宏.动力可靠性述评[J].地震工程与工程震动, 1983(3):42-61
    [86]欧进萍,王光远.基于模糊破坏准则的抗震结构动力可靠性分析[J].地震工程与工程振动. 1986(1):32-36
    [87]朱位秋.随机振动[M].第一版.北京:科学出版社. 1992
    [88]李桂青,曹宏,李秋胜,霍达.结构动力可靠性理论及其应用[M].地震出版社. 1993
    [89]管昌生,张鹏,刘增夕,李桂青,李国发.时变结构动力可靠性分析的包络过程法[J].广西工学院学报, 1995, 6(3):25-30
    [90]李创第,李桂青,黄任常.连续随机结构的动力反应和可靠性分析.广西工学院学报, 1997,8(1):25-31
    [91] Chen J J, Duan B Y & Zen Y G.. Study on dynamic reliability analysis of the structures with multidegree-of-freedom system[J]. Computers & Structures, 1997, 62(5): 877-881
    [92]石少卿,姜节胜.非平稳随机激励作用下多自由度体系系统动力可靠性研究[J].应用力学学报. 1999, 16(4):73-77
    [93]郑忠双.结构随机响应分析及其动力可靠性研究现状及趋势[J].福建建筑, 2002,76(1):25-28
    [94]肖梅玲,高春涛,叶燎原.结构地震反应在小波基下的动力可靠性分析[J]世界地震动工程, 2002, 18(1):27-33
    [95]陈建军,车建文,陈勇.具有振型和频率概率约束的工程结构动力优化设计[J].计算力学学报. 2001, 18(1):45-49
    [96]陈建军,车建文等.桁架结构动力可靠性优化设计[J].固体力学学报. 2001, 22(1): 54-60
    [97]田四朋,任钧国,张书俊.稳态随机过程激励下基于首次超越破坏的结构优化设计[J].国防科技大学学报. 2002, 24(5):5-9
    [98]祝少才,卫军.基于可靠度的抗震结构优化设计[J].华中科技大学学报(自然科学版). 2002, 30(8):76-78
    [99] Ben-haim Y, Convex models of uncertainty in radial pulse bulkling of shells[J], Journal ofapplied mechanics, 1993, 60(3): 683-688.
    [100] Koyluoglu H U, Cakamk A S, Nielsen S R K. Interval algebra to deal with pattern loading and structural uncertainties[J], Journal of Eigineering Mechanics,1995, 121(11): 1149-1157.
    [101] Qiu Z, Elishakoff. I. Analysis of uncertainty structural system using interval analysis[J], AIAA Journal, 1997, 35(4): 727-735.
    [102] Eloshakoff I, Three version of the finite element method based on concepts of either stochasticity, fuzziness or anti-optimization[J], Applied Mechanics Review, 1998, 51(3): 209-218.
    [103]郭书祥、吕震宙,区间运算和静力区间有限元[J].应用数学和力学,2001, 22(12): 1249~1254
    [104]陈塑寰、邱志平、宋大同等,区间矩阵标准特征值的一种解法[J],吉林工业大学学报, 1993, 23(3):1-8
    [105]王登刚,计算具有区间参数的固有频率的优化方法[J],力学学报, 2004, 36(3): 364-372
    [106]张建国、陈建军、马孝松等,不确定结构动力特征值区间分析的一种算法[J],应用力学学报, 2006, 23(1): 96-100
    [107]邱成悌,赵惇殳,蒋全兴.电子设备结构设计原理[M].南京:东南大学出版社.2001
    [108]梁震涛,陈建军,马洪波.随机参数板梁组合结构有限元分析的随机因子法[J].西安电子科技大学学报,2005.32(2),201~205
    [109]邱志平,马一,王晓军.含有不确定参数的复合材料板振动的区间分析法[J].北京航空航天大学学报,2004.30(7),682~685
    [110]胡太彬,陈建军,徐亚兰.随机参数平面刚架结构频率特性分析的随机因子法[J].机械强度,2006,29(2):196~200
    [111] N.S.Khot. Optimization of Structures with multiple Frequency Constraints [J]. Compute.Structures,1985,20(5):869~876
    [112] Gradhi R. Structural optimization with frequency con-straints-a review [J]. AIAA J, 1993,31(2):296~303
    [113]童卫华,顾松章.桁架频率优化解存在性及其算法研究[J].应用力学学报,2000,17(2):36~43
    [114]周传荣.结构动态设计[J].振动、测试与诊断, 2001, 21(1):1~8
    [115]傅万刚.具有某阶频率约束的试验架设计[J].振动、测试与诊断,2004,24(3):218-220
    [118]刘纪承,周传荣.机载电子设备中印制板边界条件的识别[J].振动与冲击, 2005, 23(4):96~98
    [119] Middleton,D.,An Introduction to Statistical Communication Theory [M],McGraw-Hill. 1960
    [120] Shinoguka,M. and J.H. Yang,Peak structural response to non-stationary random excitation[J]. J.Sound Vibration,1971,14(4):505-517
    [121] Yang,J.N. and S.C. Liu,Statistical Interpretation and Application of Response Spectrum[C],Proc. 7th WCEE6,1980:657-664
    [122] Lin,S.S. Application of Mechanical Reliability in Strength Design and Fatigue LifePrediction[C],Astronautic Press,Beijing,1988
    [123]赵少汴,王忠保.抗疲劳设计-方法与数据[M].北京:机械工业出版社,1997
    [124]汪凤泉.电子设备振动与冲击手册[M].北京:科学出版社,1998
    [125]陈清军,王汉东.地震作用下大型升船机结构的响应特征分析[J],振动与冲击,2005,24(4):52-55
    [126]陈英俊,甘幼琛,于希哲.结构随机振动[M].北京:人民交通出版社,1993
    [127]庄表中,陈乃立.随机振动的理论及实例分析[M].北京:地震出版社,1985
    [128]杨宇军,徐国华,叶松林,游少雄.插板式PCB的内置式减振新方法及其PSD动力学仿真[J].振动与冲击, 2007, 35(2): 39-42
    [129]杨宇军,陈建军,李维健.具有频率约束的电路板抗振优化设计问题研究[J].振动、测试与诊断. 2008,28(1): 31-34
    [130]杨宇军,李维健.空间计算机PCB抗振加固中的优化设计[C].第二届中国CAE工程分析技术年会暨2006全国计算机辅助工程(CAE)技术与应用高级研讨会. 2006:78-81
    [131]杨宇军. ANSYS动力学仿真技术在航天计算机机箱结构设计中的应用[J].电子机械工程. 2003,19(5): 42-47
    [132]王蕴辉,于宗光,孙再吉.电子元器件可靠性设计[M].北京:科学出版社. 2007
    [133]庄奕琪.微电子器件应用可靠性技术[M].北京:电子工业出版社.1996
    [134]孔学东,恩云飞.电子元器件实效分析与典型案例分析[M].北京:国防工业出版社. 2006
    [135]王长河.微电子器件抗恶劣环境可靠性设计技术[C].微电子技术可靠性设计技术文集.1997
    [136]陆廷孝等.可靠性设计与分析[M].北京:国防工业出版社.1995
    [137]孙青,庄奕琪,王锡吉,刘发.电子元器件可靠性工程[M].北京:电子工业出版社. 2002
    [138]张伟等.结构可靠性理论与应用[M].北京:科学出版社.2008
    [139]安伟光,蔡荫林,陈卫东.随机结构系统可靠性分析与优化设计[M].哈尔滨:哈尔滨工程大学出版社.2005
    [140]李良巧等.机械可靠性设计与分析[M].北京:国防工业出版社.1998
    [141]赵维涛,安伟光,严心池.结构系统同时考虑强度和疲劳的可靠性分析[J].哈尔滨工程大学学报,2004,25(5):614-617
    [142]贡金鑫,赵国藩.结构疲劳累计损伤与极限承载能力可靠度[J].大连理工大学学报,2002,42(6):714-718
    [143]陈卫东.结构动力可靠性分析[D].哈尔滨:哈尔滨工程大学,2000
    [144]黄兴建,孟光,荆建平,韩雪华.笔记本电脑的动力学分析与减振设计[J].振动与冲击,2004,23(3):83-86
    [145]陈颖,王东升,朱长春,张思箭.刚度不确定性结构在基础随机激励下的振动响应谱分析[J].振动与冲击,2004,23(3):87-90
    [146]李国强,楼国彪.利用局部振动频率识别框架结构构件刚度参数[J].振动、测试与诊断,2001,21(3):196-201
    [147]陈逊,赵玫,孟光.冲击环境下PBGA焊点动态特性分析[J].振动与冲击,2004,23(4):131-134
    [148]何明辉,刘得成,聂景旭.圆锥薄壳体瞬态动力响应分析[J].振动与冲击,2006,25(6): 157-161
    [149]张景绘等.工程随机振动理论[M].西安:西安交通大学出版社,1981
    [150]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004
    [151]徐赵东,郭迎庆. MATLAB语言在建筑抗震工程中的应用[M].北京:科学出版社,2004
    [152]邹立华.工程结构减振控制研究[D].成都:西南交通大学,2004
    [153]赵雷.随机参数结构动力分析方法及地震可靠度研究[D].成都:西南交通大学,1996
    [154]胡太彬.随机结构动力分析与动力可靠性优化设计[D].西安:西安电子科技大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700