用户名: 密码: 验证码:
马铃薯凝集素修饰聚乙二醇—聚(乳酸—羟基乙酸)共聚物纳米粒经鼻入脑的递药特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血脑屏障的存在限制了大多数具有治疗活性的药物(尤其是多肽蛋白类药物)进入中枢神经系统发挥疗效。鼻脑通路的存在为多肽蛋白类药物避开血脑屏障、直接转运入脑提供了可能。但多肽蛋白药物的透黏膜吸收能力差,易被鼻腔中的酶降解,加上鼻纤毛的清除作用,使得经鼻转运入脑的药量仍然很低,无法达到满意的治疗效果。纳米递药系统能够有效减少多肽蛋白药物的降解,而且有望通过载体的跨膜转运增加药物的吸收。但普通纳米粒仍然存在透鼻黏膜吸收能力有限、鼻腔滞留时间短等局限。
     凝集素是一类具有高度特异性糖基结合活性的蛋白质或糖蛋白,含有一个或多个可与单糖或寡糖特异且可逆结合的非催化结构域,利用其生物粘附特性可促进黏膜对药物的吸收。本课题选择马铃薯凝集素(Solanum tuberosum lectin, STL)作为靶向功能分子,将其修饰到聚乙二醇-聚(乳酸-羟基乙酸)共聚物(PEG-PLGA)纳米粒的表面,构建一种新型的递药系统(STL-NP)。STL能与鼻腔嗅黏膜上选择性高表达的糖基受体(N-乙酰氨基葡萄糖)特异结合,延长递药系统在鼻黏膜,尤其是嗅黏膜上的滞留时间,诱导黏膜的胞吞转运,增加包载药物经鼻入脑的转运量,以期提高对中枢神经系统疾病的治疗效果,并降低潜在的外周副作用。
     本课题研究分为两个部分。第一部分首先构建了STL修饰的PEG-PLGA纳米粒(STL-NP),并对该纳米递药系统进行表征。采用Calu-3细胞模型对其体外细胞摄取以及细胞毒性进行评价。通过测定载香豆素-6的NP和STL-NP鼻腔给药后在血和脑组织中的浓度,结合离体成像观察纳米粒鼻腔给药后的脑分布情况,评价该递药系统的脑靶向性,并探索其经鼻入脑的转运通路。
     第一部分第一章采用复乳/溶媒蒸发法制备了PEG-PLGA纳米粒,利用纳米粒表面的马来酰亚胺基团与巯基化凝集素共价连接,得到马铃薯凝集素修饰的PLGA纳米粒(STL-NP).该纳米粒粒径约110nm,Zeta电位约-30mV。X—射线光电子能谱(XPS)分析结果显示,STL-NP纳米粒表面的主要元素含量发生变化,表明STL连接至纳米粒的表面。红细胞凝集实验证实纳米粒表面连接的凝集素仍保持其凝集红细胞的生物活性,并且该凝集作用可被STL特异性糖基(N-乙酰氨基葡萄糖)抑制。
     第一部分第二章采用Calu-3细胞模型考察NP和STL-NP的细胞摄取及细胞毒性。结果显示,Calu-3细胞对STL-NP和NP的摄取均呈时间、浓度、温度依赖性。Calu-3细胞对STL-NP有更快的胞吞速度和更强的胞吞能力。特异糖基抑制试验结果显示,STL介导纳米粒与细胞表面糖蛋白的特异性结合是促进细胞摄取的重要条件。胞吞抑制剂的摄取抑制试验结果显示:STL-NP首先通过STL与细胞表面的N-乙酰氨基葡萄糖残基结合促使其吸附在细胞表面;随即细胞通过包被凹陷、穴样凹陷以及巨胞饮途径将纳米粒内吞:入胞后,通过各期内体,部分纳米粒进入溶酶体逐渐降解,而部分纳米粒逃脱溶酶体继续转运或在高尔基体的参与下被胞吐排出细胞;内吞和转运过程是能量消耗的过程。MTT实验结果显示,STL-NP在浓度小于25mg/mL时无细胞毒性,仅在浓度达50mg/mL时显示轻微细胞毒性。蟾蜍上腭离体模型的结果显示,NP和STL-NP对蟾蜍上腭黏膜纤毛无明显毒性。以上结果说明,STL-NP是一种有效且安全的鼻用递药系统。
     第一部分第三章以香豆素-6为荧光探针定量测定NP和STL-NP鼻腔给药后在血和脑组织中的浓度,结果显示STL修饰后纳米粒的鼻腔吸收和脑转运速度增快,入脑量提高(p<0.01),而吸收入血量降低(p<0.05),对嗅球、大脑和小脑的脑靶向效率分别为NP的1.92、2.45和1.89倍(p<0.01)。以近红外染料DiR为荧光探针进行离体组织脏器的成像观察。结果显示,STL-NP组在0.25~8h时间范围内脑部探针信号均强于NP。STL-NP和NP鼻腔给药后主要分布于肾、肝、脾、肺等脏器。STL-NP鼻腔给药后15min,探针信号即在嗅脑、大脑、脑干等部位广泛分布。嗅球、前嗅核部位的探针信号在2h后逐渐减弱,而脑干、大脑、小脑部位的信号可持续8h以上。提示STL的修饰促进了鼻黏膜对纳米粒的吸收,STL-NP主要沿嗅通路和三叉神经通路转运入脑,其中三叉神经通路的转运更为持久。
     本课题第二部分以碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)为模型药物,制备了载bFGF的STL修饰PLGA纳米粒(STL-bFGF-NP)并进行表征,采用同位素标记法对纳米粒鼻腔给药后脑内递药特性进行考察。采用Aβ25-35和IBO海马区共同注射建立AD大鼠模型,通过Morris水迷宫实验评价bFGF各制剂组对AD模型大鼠空间学习记忆障碍的改善作用,结合生化指标测定和免疫组化研究观察海马区的病理变化。然后对STL-bFGF-NP鼻腔连续给药3周后的短期毒性进行考察,观察鼻黏膜的细胞分化和形态的变化情况,以及对主要脏器(心、肝、脾、肺、肾)的毒性情况。
     第二部分第一章采用复乳/溶媒蒸发法制备包载bFGF的PLGA纳米粒(bFGF-NP),该纳米粒与巯基化STL共价连接制得STL-bFGF-NP. bFGF-NP和STL-bFGF-NP粒径均为110nm左右,Zeta电位为-30mV左右。STL-bFGF-NP的包封率和载药量较bFGF-NP会有所降低。bFGF-NP在血浆和鼻黏膜匀浆液中的稳定性较bFGF明显提高。bFGF-NP在血浆和鼻洗液中虽有一定的突释(0.5h的释放量分别为11.40%和6.32%),但24h累积释放量分别为73.09%和41.91%,显示出一定的缓释作用。
     第二部分第二章采用碘标记法对STL-bFGF-NP鼻腔给药后的脑内递药特性及体内分布进行考察。结果显示,bFGF溶液、bFGF-NP和STL-bFGF-NP鼻腔给药后入脑量均较bFGF溶液静脉给药提高,其中STL-bFGF-NP在嗅球、大脑、小脑中的AUC0-24h分别为bFGF溶液静脉给药组、bFGF溶液鼻腔给药组、bFGF-NP组的1.79~5.17倍(p<0.05)、1.61~3.21倍(p<0.05)和1.19~2.06倍(p<0.05),脑靶向效率也分别提高3.61~10.5倍(p<0.01)、1.33~2.69倍(p<0.05)和1.18~2.06倍(p<0.01)。STL-bFGF-NP鼻腔给药后转运到三个脑组织的直接转运百分率均大于70%,尤其对嗅球的直接转运百分率高达90%,说明STL修饰后促进了药物经嗅通路转运入脑。体内分布结果显示,bFGF各制剂组鼻腔给药后在各脏器的分布均显著低于静脉给药组,尤其在肾、肝、脾中分布的减少有利于降低bFGF的外周副作用,提高其临床应用性。bFGF-NP和STL-bFGF-NP组在各脏器中的分布较bFGF溶液鼻腔给药组无显著性差异。
     第二部分第三章药效学研究结果显示,bFGF各制剂组对AD模型大鼠的空间记忆障碍有不同程度的改善作用,其中STL-bFGF-NP组(20μg/kg/d)显示出更快的学习速度。bFGF-NP高剂量组(40μg/kg/d)和STL-bFGF-NP组在长期和短期记忆考察中均显示出更好的记忆效果。STL-bFGF-NP治疗可降低AD大鼠海马AChE活性,提高ChAT水平至AD模型组的2.04倍,对胆碱能神经纤维具有维持存活和营养保护的作用;且能够减轻Aβ斑块在海马区的沉积减少海马区神经细胞的凋亡,从而对AD模型大鼠海马区神经细胞发挥保护作用。
     第二部分第四章对STL-bFGF-PLGA纳米粒进行了为期3周的短期毒性考察,结果显示鼻黏膜及心、肝、脾、肺等脏器均未发生明显的组织病理学改变。由于肾脏是bFGF的主要毒性靶器官,鼻腔给药组的变性程度较静脉给药组明显减轻,提示鼻腔给药可减轻药物的肾毒性。
While enormous progress has been made regarding our understanding of the pathogenic mechanisms of central nervous system (CNS) disorders, there are few effective drugs for treating these diseases. A key obstacle for developing drugs for treating CNS diseases is the blockage of exogenous substances entrance into the brain by the blood-brain barrier (BBB). Many studies have indicated that intranasal administration could offer noninvasive delivery of large molecules to directly enter into the CNS through olfactory pathways or the trigeminal nerve pathway, effectively bypassing the BBB. However, after administrated nasally, the total amount of these macromolecules accessing the brain was reported to be very low, because of the poor capacity of penetration through nasal mucosa, the enzymatic degradation, limited absorption area and the rapid mucociliary clearance. The encapsulation of peptides and proteins into nanometer-sized particles has been shown to protect them from degradation and facilitate their transport across the mucosal barrier. In spite of various advantages, there remains the following "nose-brain barrier" for nanoparticles:first of all, the penetration of nanoparticles through the tight junctions between the nasal epithelium cells is negligible and the endocytosis of the nanoparticles is limited; secondly, the residence time of nanoparticles in nasal cavity is short (within15to20min) because of the mucociliary clearance, which seemed to be not long enough for complete absorption of the formulations.
     Lectins are proteins or glycoproteins possessing at least one noncatalytic domain which binds reversibly to specific mono-or oligosaccharides. They specifically recognize and bind with carbohydrate residues on cell surface to initiate vesicular transport processes in cells. Thus, a novel Solanum tuberosum L. modified PLGA nanoparticles (STL-NP) were constructed to enhance the nose-to-brain delivery and decrease the potential peripheral toxicity,.
     In the first part, STL-conjugated PLGA nanoparticles (STL-NPs) were prepared and characterized. Cellular uptake of STL-NP was quantitatively and qualitatively evaluated using Calu-3cell line as an in vitro nasal epithelial model. The ability of STL-NP to mediate drug delivery to the brain after intranasal administration was subsequently evaluated by near infrared fluorescence probe based ex vivo image as well as quantitative determination of the blood and brain tissue concentrations of coumarin-6, a lipophilic fluorescent probe, associated to STL-NP and NP. At last, the safety of STL-NP was investigated by in vitro cytotoxicity and in situ ciliotoxicity experiments.
     To achieve this goal, maleimide-PEG-PLGA was blended with MePEG-PLGA to prepare nanoparticles by emulsion/solvent evaporation method. The resulting nanoparticles were surface-modified with STL through covalent coupling reaction of maleimide group with thiol group from thiolated STL. The nanoparticles prepared had an average volume weighted diameter of about110nm, and the Zeta potential were about-30mV. The results of X-ray photoelectron spectroscopy (XPS) analysis showed that the content of main elements on the surface of nanoparticles changed, which indicated that STL had been conjugated to the surface of NPs. Haemagglutination test showed that STL, treated through the covalent coupling procedure, still remain their carbohydrates binding bioactivity on the surface of nanoparticles, which could be specifically inhibited by chitin hydrolysates.
     Uptake of STL-NP by the Calu-3cells was time-, concentration-and concentration-dependent. STL induced strong mucoadhesion on the surface of Calu-3cells, and then triggered or facilitated the internalization of STL-NP. The preincubation with excess chitin hydrolysates heavily suppressed the uptake of STL-NP at37℃, but have little influence on NP uptake, implying that STL-mediated specific adhesion of STL-NP to cell surface glycoproteins was the requisite first step in the cellular uptake. The results of endocytosis inhibition experiment demonstrated that STL-NPs were endocytosed via an energy-dependent process, involving clathrin, caveolae, macropinocytosis, lysosome and golgi apparatus. NP and STL-NP presented no toxicity on Calu-3cells at the concentration below25mg/mL, while showed mild cytotoxicity after24-hour incubation when the concentration increased to50mg/mL. The STL-NP safety experiments showed mild cytotoxicity and negligible cilia irritation. These intriguing in vitro and in vivo results suggest that STL-NP might serve as a promising and safe drug delivery system for intranasal administration.
     Following intranasal administration, coumarin-6carried by STL-NP was rapidly absorbed into blood and brain. The AUC(0→12h) of coumarin-6in blood, olfactory bulb, cerebrum and cerebellum were about0.77-,1.48-,1.89-and1.45-fold of those of NP, respectively (p<0.05). STL-NP demonstrated1.89-2.45times (p<0.01) higher brain targeting efficiency in different brain tissues than unmodified NP. Enhanced accumulation of STL-NP in the brain was also observed by near infrared fluorescence probe image following intranasal administration. The kidney, liver, spleen and lung were the main distribution organs of STL-NP after intranasal administration. The fluorescence signal of STL-NP appeared in olfactory bulb, cerebrum and brainstem early at0.25h. The signal in olfactory bulb decreased gradually after2h, while the obvious signal in brainstem, cerebrum and cerebellum lasted for more than8h, which indicated that the trigeminal nervous transport was more persistent.
     In the second part, the basic fibroblast growth factor (bFGF) was selected as a model drug and incorporated into the STL-NPs. The in vivo distribution and brain delivery characteristics of bFGF were investigated by isotopic labeling method. The AD rat model was established by bilateral injection of Aβ25-35and Ibotenic acid (IBO) into rat hippocampus. The protective effects of STL-bFGF-NP treatment for spatial memory deficits in AD rats was evaluated by Morris water maze experiment. After a3-week continuously intranasal administration of STL-bFGF-NPs, the influence on the morphology and cells differentiation of the nasal mucosa, as well as main organs (heart, liver, spleen, lung, kidney) were examined to evaluate the short-term toxicity.
     The bFGF-NPs were prepared by double emulsion/solvent evaporation method, followed by surface modification with STL. The mean size of the resulting nanoparticles was about110nm and the zeta potential was-30mV. The encapsulation efficiency and drug loading capacity of STL-bFGF-NP slightly decreased compared with bFGF-NP. The stability of bFGF-NP in rat plasma and rabbit nasal mucosa tissue homogenate was increased obviously. A slight burst of bFGF from bFGF-NP was observed in both plasma and nasal washing fluid (11.40%and6.32%, respectively) in vitro release experiment, while a sustained release was followed (73.09%and41.91%, respectively) after incubation in plasma and nasal washing fluid for24h.
     bFGF was radioiodinated by iodogen method to study the in vivo distribution of the drug after absorption as well as its ability to be delivered to the brain. The results showed the AUC0-24h of125I-bFGF incorporated in bFGF-NP in olfactory bulb, cerebrum and cerebellum was1.20-1.55times of that treated with bFGF solution after intranasal administration, and the AUC0-24h of125I-bFGF carried by STL-bFGF-NP was increased to1.61-3.21times of that from bFGF solution. STL-bFGF-NP demonstrated1.33-2.69times and1.18-2.06times higher brain targeting efficiency in different brain tissue than bFGF solution and bFGF-NP. bFGF was distributed mainly in the kidney, liver and spleen absorbed into the circulatory system following intranasal administration, and radioactive counts in these organs were significantly decreased in comparison with the intravenous group. The distribution of125I-bFGF in both liver and spleen from bFGF-NP and STL-bFGF-NP showed no significant increase when compared with bFGF solution.
     The results of Morris water maze experiment indicated that STL-bFGF-NPs (20μg/kg/d, in) treatment showed more better spatial learning ability than bFGF solution (40μg/kg/d, in and iv) and bFGF-NPs (20μg/kg/d and40μg/kg/d, in) in AD rats. And the STL-bFGF-NPs (20μg/kg/d, in) and bFGF-NPs (40μg/kg/d, in) treatment showed significantly improved ability in both short-term and long-term memory. The decreased activity of AChE and improved level of ChAT in the hippocampus of AD rats could be observed by treatment with bFGF. The ChAT level in rats treated with STL-bFGF-NP (20μg/kg/d, in) was2.04-fold of that in AD model control rats. In combination with the immunohistochemisty results in hippocampal sections, bFGF treatment demonstrated a protective effect on the hippocampal cells in AD rats by decreasing the apoptosis of the nerve cells and lowering the deposition of Aβ plaque. The trophic action of bFGF on the central cholinergic system, including elevating the ChAT activity and maintaining cholinergic nerve function, could weaken the cholinergic system dysfunction and cognitive function impairment caused by AD.
     The short-term toxicity of STL-bFGF-NP was investigated following repeated intranasal administration for three weeks. No obvious histopathological changes was found in the nasal mucosa as well as the main organs (heart, liver, spleen, lung). For the kidney is the target organ for in vivo toxicity of bFGF, less vacuolar degeneration was observed in renal tubular epithelial cells, compared to that of the intravenous administraton of bFGF solution group. These results indicated that the renal toxicity could be obviously alleviated by intranasal administration.
引文
[1]Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions[J]. J Neuroimmune Pharmacol,2006, 1(3):223-236.
    [2]Pardridge WM. Blood-brain barrier delivery[J]. Drug Discov Today,2007, 12(1/2):54-61.
    [3]Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system:fact or'fiction? J Drug Target.1998;5(6):415-441.
    [4]Thorne RQ Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481-496.
    [5]Chen XQ, Fawcett JR, Rahman YE, Ala TA, Frey II WH. Delivery of nerve growth factor to the brain via the olfactory pathway[J]. J Alzheimers Dis,1998, 1(1):35-44.
    [6]Dufes C, Olivier JC, Gaillard F, Gaillard A, Couet W, Muller JM. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats[J]. Int J Pharm,2003,255:87-97.
    [7]Ross TM, Martinez PM, Renner JC, Thome RQ Hanson LR, Frey WH 2nd. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes:a non-invasive treatment strategy for multiple sclerosis[J]. J Neuroimmunol,2004, 151(1-2):66-77.
    [8]Thome RQ Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-1 to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration[J]. Neuroscience,2004, 127(2):481-496.
    [9]Ma YP, Ma MM, Cheng SM, Ma HH, Yi XM, Xu GL, Liu XF. Intranasal bFGF-induced progenitor cell proliferation and neuroprotection after transient focal cerebral ischemia[J]. Neurosci Lett,2008,437(2):93-97.
    [10]Illum L. Nasal drug drlivery-possibilities, problems and solutions[J]. J Control Release,2003,87(1-3):187-198.
    [11]Witschi C, Mrsny RJ. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm Res,1999,16(3):382-390.
    [12]史振祺,蒋新国.磷脂类衍生物作为鼻黏膜药物吸收促进剂的应用[J].国外医学药学分册,2003,30(4):241-245.
    [13]Ohtake K, Maeno T, Ueda H, Natsume H, MorimotoY Poly-L-argine predominantly increase the paracellular permeability of hydrophilic macromolecules across rabbit nasal epithelium in vitro [J]. Pharm Res,2003, 20(2):153-160.
    [14]Gwak HS, Cho YM, Chun IK. Analgesic effects of intra-nasal enkephalins[J]. J Pharm Pharmacol,2003,55(9):1207-1212.
    [15]Chavanpatill MD, Vavia PR The influence of absorption enhancers on nasal absorption of acyclovir[J]. Eur J Pharm Biopharm,2004,57?(3):483-487.
    [16]Suzuki Y, Makino Y Mucosal drug delivery using cellulose derivatives as a functional polymer[J]. J Control Rel,1999,62:101-107.
    [17]Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery[J]. J Control Release,2002,78(1-3):15-24.
    [18]Betbeder D, Sperandio S, Latapie JP, de Nadai J, Etienne A, Zajac JM, Frances B. Biovector nanoparticles improve antinociceptive efficacy of nasal morphine[J]. Pharm Res,2000,17(6):743-748.
    [19]Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery[J]. J Control Release,2002,78(1-3):15-24.
    [20]Shive MS, Anderson JM Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Adv Drug Deliv Rev,1997,28(1):5-24.
    [21]Illum L. Nanoparticulate systems for nasal delivery of drugs:a real improvement over simple systems[J]. J Pharm Sci,2007,96(3):473-483.
    [22]Schipper NQ Verhoef JC, Merkus FW. The nasal mucociliary clearance: relevance to nasal drug delivery[J]. Pharm Res,1991,8(7):807-814.
    [23]Gupta NK, Tomar P, Sharma V, Dixit VK Development and characterization of chitosan coated poly-(ε-caprolactone) nanoparticulate system for effective immunization against influenza[J]. Vaccine,2011,29(48):9026-9037.
    [24]Ruan Y. Yao L, Zhang B, Zhang S, Guo J. Antinociceptive properties of nasal delivery of neurotoxin-loaded nanopaticles coated with polysorbate-80[J]. Peptides,2011,32(7):1526-1529.
    [25]Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S. Lectin-conjugated PEG-PLA nanoparticles:preparation and brain delivery after intranasal administration[J]. Biomaterial,2006,27(18):3482-3490.
    [26]Sundaram S, Roy SK, Ambati BK, Kompella UB. Surface-functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium[J]. FASEB J,2009,23(11):3752-3765.
    [27]Peumans WJ, Van Damme EJ. Lectins as plant defense proteins[J]. Plant Physiol, 1995,109(2):347-352.
    [28]Wirth M, Fuchs A, Wolf M, Ertl B, Gabor F. Lectin-mediated drug targeting: preparation, binding characteristics, and antiproliferative activity of wheat germ agglutinin conjugated doxorubicin on Caco-2 cells[J]. Pharm Res,1998, 15(7):1031-1037.
    [29]Naisbett B, Woodley J. Binding of tomato lectin to the intestinal mucosa and its potential for oral drug delivery[J]. Biochem Soc Trans,1990,18(5):879-880.
    [30]Gabor F, Bogner E, Weissenboeck A, Wirth M The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery[J]. Adv Drug Deliv Rev, 2004,56(4):459-480.
    [31]Zhang N, Ping QN, Huang G, et al. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm.,2005,294(1-2):247-59.
    [32]Yin Y, Chen D, Qiao M, et al. Lectin-conjugated PLGA nanoparticles loaded with thymopentin:ex vivo bioadhesion and in vivo biodistribution. J Control Release, 2007,123(1):27-38.
    [33]Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat[J]. Exp Brain Res,1986,63(3):461-473.
    [34]Thome RG, Emory CR, Ala TA, Frey WH 2nd. Quantitative analysis of the olfactory pathway for drug delivery to the brain[J]. Brain Res,1995, 692(1-2):278-282.
    [35]Pastor LM, Frutos MJ, Grana L, Ramos D, Gallego-Huidobro J, Ccalvo A. Histochemical study of glycoconjugates in the nasal mucosa of the rat and guinea pig[J]. Histochem J,1992,24(10):727-736.
    [36]Melgarejo Moreno P, Hellin Meseguer D, Melgarejo Moreno C. Olfactory epithelium of the rat. Lectin-mediated histochemical studies[J]. An Otorrinolaringol Ibero Am,1998,25(5):471-480.
    [37]Gao X, Chen-J, Tao W, Zhu J, Zhang Q, Chen H, Jiang X. UEA I-bearing nanoparticles for brain delivery following intranasal administration[J]. Int J Pharm,2007,340(1-2):207-215.
    [38]Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo L, Zhang Q, Jiang X, Fang L, Lai R Odorranalectin-conjugted nanoparticles:preparation, brain delivery and pharmacodynamic study on Parkinson's disease following intranasal administration[J]. J Control Release,2011,151(2):131-138.
    [39]Allen AK, Desai NN, Neuberger A, Creeth JM. Properties of potato lectin and the nature of its glycoprotein linkages[J]. Biochem J,1978,171(3):665-674.
    [40]Allen AK, Bolwell GP, Brown DS, Sidebottom C, Slabas AR Potato lectin:a three-domain glycoprotein with novel hydroxyproline-containing sequences and sequence similarities to wheat-germ agglutinin[J]. Int J Biochem Cell Biol,1996, 28(11):1285-1291..
    [41]Van Damme EJ, Barre A, Rouge P, Peumans WJ. Potato lectin:an update model of a unique chimeric plant protein[J]. Plant J,2004,37(1):34.
    [42]李延清,孙志宏,刘长海,陈国梁.马铃薯凝集素的凝集作用及其影响因素[J].黑龙江畜牧兽医,2004,(8):71-72.
    [43]Qaddoumi M, Lee VH. Lectins as endocytic ligands:an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells[J]. Pharm Res,2004, 21(7):1160-1166.
    [44]Faitova J. Fibroblast growth factor-2[J]. Cesk Fysiol,2004,53(3):92-101.
    [45]Eriksson AE, Cousens LS, Weaver LH, Matthews BW. Three-dimensional structure of human basic fibroblast growth factor[J]. Proc Natl Acad Sci USA, 1991,88(8):3441-3445.
    [46]辛洪启,林剑,洪岸.碱性成纤维细胞生长因子(bFGF)相关结合蛋白[J].生物工程进展,2002,22(1):15-18.
    [47]Nugent MA, Iozzo RV Fibroblast growth factor-2[J]. Int J Biochem Cell Biol, 2000,32(2):115-120.
    [48]Brown KJ, Hendry LA, Parish CR. Acidic and basic fibroblast growth factor bind with differing affinity to the same heparin sulfate proteoglycan on BALB/c 3T3 cells:implications for potentiation of growth factor action by heparin[J]. J Cell Biochem,1995,58(1):6-14.
    [49]Coutts JC, Gallagher JT. Receptors for fibroblast growth factors[J]. Immunol Cell Biol,1995,73(6):584-589.
    [50]Olwin BB, Rapraeger A. Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate[J]. J Cell Biol,1992, 118(3):631-639.
    [51]Feng S, Wang F, Matsubara A, Kan M, McKeehan WL. Fibroblast growth factor receptor 2 limits and receptor 1 accelerates tumorigenicity of prostate epithelial cells[J]. Cancer Res,1997,57(23):5369-5378.
    [52]Zhang JD, Cousens LS, Barr PJ, Sprang SR. Three-dimensional structure of human fibroblast growth factor, a structureal homolog of interleukin 10 [J]. Proc Natl Acad Sci USA,1991,88(8):3446-3450.
    [53]Beenken A, Mohammadi M. The FGF family:biology, pathophysiology and therapy[J]. Nat Rev Drug Discov,2009,8(3):235-253.
    [54]Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation[J], Cytokine Growth Factor Rev,2005,16(2):107-137.
    [55]Aoyagi A, Nishikawa K, Saito H, Abe H. Characterization of basic fibroblast growth factor-mediated acceleration of axonal branching in cultured rat hippocampal neurons[J]. Brain Res,1994,661(1-2):117-126.
    [56]Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R. Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension[J]. Proc Natl Acad Sci USA,1986,83(9):3012-3016.
    [57]Sun D, Bullock MR, Mcginn MJ, Zhou Z, Altememi N, Hagood S, Hamm R, Colello RJ. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury[J]. Exp Neurol,2009, 216(1):56-65.
    [58]周思朗,陈俊抛,涂晓文,曹东林,袁岱军.碱性成纤维生长因子对阿尔茨海默病模型大鼠的影响[J].第一军医大学学报,2003,23(6):611-613.
    [59]周思朗,张积仁,陈俊抛,涂晓文.bFGF促进痴呆大鼠学习记忆能力恢复及可能机制[J].中风与神经疾病杂志,2005,22(1):45-47.
    [60]Chadi Q Fuxe K. Analysis of trophic responses in lesioned brain:focus on basic fibroblast growth factor mechanisms[J]. Braz J Med Biol Res,1998, 31(2):231-241.
    [61]Eves EM, Skoczylas C, Yoshida K, et al. FGF induce a switch in death receptor pathways in neuronal cells[J]. J Neurosci,2001,21(14):4996-5006.
    [62]周思朗,陈俊抛,曹东林,涂小文,袁岱军.碱性成纤维细胞生长因子影响痴呆大鼠海马神经发生[J].中国现代医学杂志,2004,14(8):67-69.
    [63]Lindahl B, Westling C, Gimenez-Gallego G, Common binding sites for beta-amyloid fibrils and fibroblast growth factor-2 in heparin sulfate from human cerebral cortex[J]. J Biol Chem,1999,274(43):30631-30635.
    [64]洪岸,朱大明,蒲含林,孙奋勇,戴云.重组碱性成纤维细胞生长因子对β淀粉样蛋白诱导新生大鼠海马神经细胞凋亡的抑制作用[J].暨南大学(学报),2004,25(2):134-139.
    [65]Mark R, Keller J, Kruman I, et al. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons[J]. Brain Res, 1997,756(1-2):205-214.
    [66]沈维高,何欣,张丽聪,刘艳波.碱性成纤维细胞生长因子对衰老模型大鼠海马神经元保护作用的研究[J].中国老年学杂志,2007,27(2):122-124.
    [67]Kirschner PB, HenshawR, Weise J, Trubetskoy V, Finklestein S, Schulz JB, Beal MF. Basic fibroblast growth factor protects against excitotoxicity and chemical hypoxia in both neonatal and adult rats[J]. J Cereb Blood Flow Metab,1995, 15(4):619-623.
    [68]Kwon YK. Expression of brain-derived neurotrophic factor mRNA stimulated by basic fibroblast growth factor and platelet-derived growth factor in rat hippocampal cell line[J]. Mol Cell,1997,7(3):320-325.
    [69]Nakagami Y, Saito H, Matsuki N. Basic fibroblast growth factor and brain-derived neurotrophic factor promote survival and neuronal circuit formation in organotypichippocampal culture[J]. J Pharmacol,1997, 75(4):319-326.
    [70]周思朗,陈俊抛.碱性成纤维细胞生长因子对阿尔茨海默病模型大鼠脑内神经细胞增殖的影响[J].广东医学,2003,24(4):366-368.
    [71]叶建新,林航,穆军山,崔晓萍,殷红兵,林敏,武雷,翁婧,林晓姝.碱性成纤维生长因子对血管性痴呆大鼠学习记忆能力的影响[J].实用医学杂志,2009,25(20):3383-3386.
    [72]钟慧君,于永清,郭玉麟.碱性成纤维生长因子治疗神经系统疾病106例疗效观察[J].医学理论与实践,1999,12(8):457-458.
    [73]Vemuri S, Beylin I, Sluzky V, Stratton P, Eberlein G, Wang YJ. The stability of bFGF against thermal denaturation[J]. J Pharm Pharmacol,1994,46(6):481-486.
    [74]Liu SD, Yu SW, Zhang JH, et al. The stability of bFGF activity in different chemical preparation[J]. Chin J Coll Biol,2003,25(4):235-237.
    [75]张琪,王广基,孙建国.放射性同位素示踪法和酶联免疫法研究重组人碱性成纤维细胞生长因子在家兔体内的药代动力学[J].中国药科大学学报,2004,35(6):536-539.
    [76]刘秀文,汤仲明,宋海峰,朱宝珍,王丽萍,张洋.猕猴静脉推注加滴注重组人碱性成纤维细胞生长因子后的药代动力学[J].中国药理学与毒理学杂志,2002,16(3):220-222.
    [77]尤启才,符志莉.重组人碱性成纤维细胞生长因子在大鼠和猴体内的药代动力学[J].中国药房,2002,11(2):62-64.
    [78]Deguchi Y, Naito T, Yuge T, Furukawa A, Yamada S, Pardridge WM, Kimura R. Blood-brain barrier transport of 1251-labeled basic fibroblast growth factor[J]. Pharm Res,2000,17(1):63-69.
    [1]Pardridge WM. Blood-brain barrier delivery[J]. Drug Discov Today,2007, 12(1/2):54-61.
    [2]Chen XQ, Fawcett JR, Rahman YE, Ala TA, Frey Ⅱ WH. Delivery of nerve growth factor to the brain via the olfactory pathway[J]. J Alzheimers Dis,1998, 1(1):35-44.
    [3]Dufes C, Olivier JC, Gaillard F, Gaillard A, Couet W, Muller JM. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats[J]. Int J Pharm,2003,255:87-97.
    [4]Ross TM, Martinez PM, Renner JC, Thome RG, Hanson LR, Frey WH 2nd. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes:a non-invasive treatment strategy for multiple sclerosis[J]. J Neuroimmunol,2004, 151(1-2):66-77.
    [5]Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-1 to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration[J]. Neuroscience,2004, 127(2):481-496.
    [6]Ma YP, Ma MM, Cheng SM, Ma HH, Yi XM, Xu GL, Liu XF. Intranasal bFGF-induced progenitor cell proliferation and neuroprotection after transient focal cerebral ischemia[J]. Neurosci Lett,2008,437(2):93-97.
    [7]Blum L. Nasal drug drlivery-possibilities, problems and solutions[J]. J Control Release,2003,87(1-3):187-198.
    [8]Witschi C, Mrsny RJ. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm Res,1999,16(3):382-390.
    [9]Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery[J]. J Control Release,2002,78(1-3):15-24.
    [10]Betbeder D, Sperandio S, Latapie JP, de Nadai J, Etienne A, Zajac JM, Frances B. Biovector nanoparticles improve antinociceptive efficacy of nasal morphine[J]. Pharm Res,2000,17(6):743-748.
    [11]Illum L. Nanoparticulate systems for nasal delivery of drugs:a real improvement over simple systems[J]. J Pharm Sci,2007,96(3):473-483..
    [12]Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs[J]. Pharm Res,1994,11(8):1186-1189.
    [13]Vyas TK, Shahiwala A, Marathe S, Misra A. Intranasal drug delivery for brain targeting[J]. Curr Drug Deliv,2005,2(2):165-175.
    [14]Gabor F, Bogner E, Weissenboeck A, Wirth M. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery[J]. Adv Drug Deliv Rev, 2004,56(4):459-480.
    [15]Hanafusa S, Matsusue Y, Yasunaga T, et al. Biodegradable plate fixation of rabbit femoral shaft osteotomies. A comparative study[J]. Clin. Orthop. Relat Res.1995, (315):262-271.
    [16]Matsusue Y, Hanafusa S, Yamamuro T, et al. Tissue reaction of bioabsorbable ultra high strength poly (L-lactide) rod A long-term study in rabbits[J]. Clin. Orthop. Relat Res.1995, (317):246-253.
    [17]Langer R Tissue engineering:a new field and its challenges[J]. Pharm. Res. 1997,14(7):840-841.
    [18]Mooney DJ, Sano K, Kaufmann PM, et al. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges[J]. J. Biomed. Mater. Res.1997, 37 (3):413-420.
    [19]Eiselt P, Kim BS, Chacko B, et al. Development of technologies aiding large-tissue engineering[J]. Biotechnol. Prog.1998,14 (1):134-140.
    [20]Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres[J]. Science,1994, 263(5153):1600-1603.
    [21]Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery[J]. J Control Release,2002,78(1-3):15-24.
    [22]Yoncheva K, Gomez S, Campanero MA, Gamazo C, Irache JM. Bioadhesive properties of pegylated nanoparticles[J]. Expert Opin Drug Deliv,2005, 2(2):205-218.
    [23]Peumans WJ, Van Damme EJ. Lectins as plant defense proteins[J]. Plant Physiol, 1995,109(2):347-352.
    [24]Wirth M, Fuchs A, Wolf M, Ertl B, Gabor F. Lectin-mediated drug targeting: preparation, binding characteristics, and antiproliferative activity of wheat germ agglutinin conjugated doxorubicin on Caco-2 cells[J]. Pharm Res,1998, 15(7):1031-1037.
    [25]Naisbett B, Woodley J. Binding of tomato lectin to the intestinal mucosa and its potential for oral drug delivery[J]. Biochem Soc Trans,1990,18(5):879-880.
    [26]Qaddoumi M, Lee VH. (2004) Lectins as endocytic ligands:an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells. Pharm Res, 21(7):1160-1166.
    [27]Blanco-Prieto MJ, Campanero MA, Besseghir K, Heimagatner F, Gander B. Importance of single or blended polymer types for controlled in vitro release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA microspheres[J]. J Control Release,2004,96(3):437-448.
    [28]Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C. Protein C-loaded monomethoxypoly(ethylene oxide)-poly(lactic acid) nanoparticles[J]. Int J Pharm,2001,212(1):1-9.
    [29]Ruan Q Feng SS, Li QT. Effect of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process[J]. J Control Release,2002,84(3):151-160.
    [30]Beletsi A, Leontiadis L, Klepetsanis P, et al. Effect of preparative variable on the properties of poly (dl-lactic-co-glycolide)-methoxypoly (ethyleneglycol) copolymers related to their application in controlled drug delivery [J]. Int J Pharm, 1999,182(2):187-197.
    [31]Konstantinos A. Pegylated poly (lactide) and poly (lactide-co-glycolide) nanoparticles:prepareation, properties and possible applications in drug delivery[J]. Current Drug Delivery,2004, 1(4):321-333.
    [32]Lu W, Zhang Y, Tan YZ, Hu KL, Jiang XG, Fu SK. Cationic albumin-conjugated pegylated nanoparticles as nove drug carrier for brain delivery [J]. J Control Release,2005,107(3):428-448.
    [33]Huwyler J, Wu D, Pardridge WM Brain drug delivery of small molecules using immunoliposomes[J]. Proc Natl Acad Sci,1996,93(24):14164-14169.
    [34]Ellman GL. Tissue sulfhydryl groups[J]. Arch Biochem Biophys,1959, 82(1):70-77.
    [35]Khlebtsov BN, Khanadeev VA, Khlebtsov NG Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra. Langmuir[J].2008,24(16):8964-8970.
    [36]Hussain N, Jani PU, Florence AT. Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat[J]. Pharm Res.1997,14(5):613-618.
    [37]Hyuk SY, Tae GP. Biodegradable polymeric micelles composed od doxorubicin conjugated PLGA-PEG block copolymer[J]. J Control Release,2001, 70(1-2):63-70.
    [38]Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Livaniou E, Evangelatos G, Ithakissios DS. Effect of copolymer composition on the physicochemical characteristics, in vitro stability and biodistribution of PLGA-mPEG nanoparticles[J]. Int J Pharm,2003,259(1-2):115-127.
    [39]Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs[J]. Biomaterials,2004, 25(14):2843-2849.
    [40]Olivier JC, Huertas R, Lee HJ, et al. Synthesis of pegylated immunonanoparticles[J]. Pharm Res,2002,19(8):1137-1143.
    [41]Allen AK, Desai NN, Neuberger A, Creeth JM. Properties of potato lectin and the nature of its glycoprotein linkages[J]. Biochem J,1978,171(3):665-674.
    [42]Li Y, Pei Y, Zhang X, Gu Z, Zhou Z, Yuan W, Zhou J, Zhu J, Gao X. PEGylated PLGA nanoparticles as protein carriers:synthesis, preparation and biodistribution[J]. J Control Release,2001,71(2):203-211.
    [43]Xu FH, Zhang Q. Recent advances in the preparation progress of protein/peptide drug loaded PLA/PLGA microspheres[J]. Yao Xue Xue Bao,2007,42(1):1-7.
    [44]Ruan G, Ng JK, Feng SS. Effects of polymer, organic solvent and mixing strength on integrity of proteins and liposomes encapsulated in polymeric microspheres fabricated by the double emulsion process[J]. J Microencapsul, 2004,21(4):399-412.
    [45]Obeidat WM, Price JC. Viscosity of polymer solution phase and other factors controlling the dissolution of theophylline microspheres prepared by the emulsion solvent evaporation method[J]. J Microencapsul,2003,20(1):57-65.
    [46]Erden N, Celebi N. Factors influencing release of salbutamol sulphate from poly (lactide-co-glycolide) microspheres prepared by water-in-oil-in-water emulsion technique[J]. Int J Pharm,1996,137(1):57-66.
    [47]Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles:effect of particle size[J]. Pharm Res,1996,13(12): 1838-1845.
    [48]Weissenbock A, Wirth M, Gabor F. WGA-grafted PLGA-nanospheres: preparation and association with Caco-2 single cells[J]. J Control Release,2004, 99(3):383-392.
    [49]Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, Gao J. cRGD-functionalized polymer micelles for targeted doxorubicin delivery [J]. Angew Chem Int Ed,2004,43(46):6323-6327.
    [50]Gref R, Couvreur P, Barratt Q Mysiakine E. Surface-engineered nanoparticles for multiple ligand coupling[J]. Biomaterials,2003,24(24):4529-4537.
    [1]Schmidt MC, Peter H, Lang SR, Ditzinger G, Merkle HP. In vitro cell models to study nasal mucosal permeability and metabolism[J]. Advanced Drug Delivery Reviews,1998,29(1-2):51-79.
    [2]Wang C, Qiu ZY. Development of researches in caco-2 cell model[J]. Biomed Eng, 2005,22(3):633-636.
    [3]Forbes B, Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications[J]. Eur J Pharm Biopharm,2005,60(2):193-205.
    [4]Foster KA, Avery ML, Yazsanian M. Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery [J]. Int J Pharm,2000,208(1-2):1-11.
    [5]Macvinishl J, Cope Q Ropenga A. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR[J]. Br J Pharm acol,2007,150(8):1055-1065.
    [6]Witschi C, Mrsny RJ. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery [J]. Pharm Res,1999,16(3):382-390.
    [7]Li L, Mathias NR, Heran CL, Moench P, Wall DA, Smith RL. Carbopol-mediated paracellular transport enhancement in calu-3 cell layers[J]. J Pharm Sci,2006, 95(2):326-335.
    [8]Amoako-Tuffour M,Yeung PK, Agu RU. Permeation of losartan across human respiratory epithelium:an in vitro study with Calu-3 cells [J]. Acta Pharm,2009, 59(4):395-405.
    [9]Berger JT, Voynow JA, Peters KW, Rose MC. Respiratory carcinoma cell lines. MUC genes and glycoconjugates[J]. Am J Respir Cell Mol Biol,1999,20(3): 500-510.
    [10]Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles[J]. Int J Pharm,2003, 262(1-2):1-11.
    [11]Tamai T, Patsch W, Lock D, Schonfeld G Receptors for homologous plasma lipoproteins on a rat hepatoma cell line[J]. J Lipid Res,1983,24(12):1568-1577.
    [12]Jiang XG, Cui JB, Fang XL, Wei Y, Xi NZ. Toxicity of drugs on nasal mucocillia and the method of its evaluation[J]. Yao Xue Xue Bao,1995,30(11):848-853.
    [13]Lovati MR, Manzoni C, Corsini A, Granata A, Fumaqalli R, Sirtori CR.7S globulin from soybean is metabolized in human cell cultures by a specific uptake and degradation system[J]. J Nutr,1996,126(11):2831-2842.
    [14]Wu-Pong S. The role of multivalent cations in oligonucleotide cellular uptake[J]. Biochem Mol Biol Int,1996,39(3):511-519.
    [15]Qaddoumi M, Lee VH. Lectins as endocytic ligands:an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells[J]. Pharm Res,2004, 21(7):1160-1166.
    [16]Jiang S, Rhee SW, Gleeson PA et al. Capacity of the Golgi Apparatus for Cargo Transport Prior to Complete Assembly[J]. Mol Biol Cell,2006,17(9): 4105-4117.
    [17]Gabor F, Schwarzbauer A, Wirth M Lectin-mediated drug delivery:binding and uptake of BSA-WGA conjugates using the Caco-2 model[J]. Int J Pharm,2002, 237(1-2):227-239.
    [18]秦绿叶,刘爽,汪沉然等.巨胞饮的机制及功能的研究进展[J].2006,37(1):41-44.
    [19]Werner U, Kissel T. In-vitro cell culture models of the nasal epithelium:a comparative histochemical investigation of their suitability for drug transport studies[J]. Pharm Res,1996,13(7):978-988.
    [20]Yi SM, Harson RE, Zabner J, Welsh MJ. Lectin binding and endocytosis at the apical surface of human airway epithelia[J]. Gene Ther,2001,8(24):1826-1832.
    [21]Faulkner LE, Panagotopulos SE, Johnson JD, Woollett LA, Hui DY, Witting SR, Maiorano JN, Davidson WS. An analysis of the role of a retroendocytosis pathway in ABCAl-mediated cholesterol efflux from macrophages[J]. J Lipid Res,2008,49(6):1322-1332.
    [22]Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis[J]. Physiol Rev,1997,77(3): 759-803.
    [23]Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration[J]. Mater Sci Eng Res,2001,34(2):147-230.
    [24]Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to Hepatitis B vaccine[J]. Mol Pharm,2011,8(2):405-415.
    [25]Touri A, Virtanen I, Uusitalo H. Lectin binding in the anterior segment of the bovine eye[J]. Histochem J,1983,26(10):787-798.
    [26]Wirth M, Hamilton G, Gabor F. Lectin-mediated drug targeting: quantification of binding and internalization of wheat germ agglutinin and solanum tuberosum lectin using Caco-2 and HT-29 cells[J]. J Drug Target,1998,6(2):95-104.
    [27]Tuma PL, Hubbard AL. Transcytosis:crossing cellular barriers[J]. Physiol Rev, 2003,83(3):871-932.
    [28]Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells[J]. Biomaterials, 2009,30(14):2790-2798.
    [1]Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles[J]. Int J Pharm,2003, 262(1-2):1-11.
    [2]周涛,韩或,巩伟丽,赵春林.活体动物体内成像技术及其在生物医学中的应用进展[J].中国体视学与图像分析,2007,12(1):69-74.
    [3]施锋,李宏洋,彭孝军.生物分析用近红外荧光染料研究进展[J].精细化工,2003,20(5):268-272.
    [4]Texier I, Goutayer M, Da Silva A, Guyon L, Djaker N, Josserand V, Neumann E, Bibette J, Vinet F. Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging[J]. J Biomed Opt,2009,14(5):054005.
    [5]Xin H, Chen L, Gu J, Ren X, Wei Z, Luo J, Chen Y, Jiang X, Sha X, Fang X. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ε-caprolactone) nanoparticles:In vitro and in vivo evaluation[J]. Int J Pharm,2010, 402(1-2):238-247.
    [6]Yuan J. Estimation of variance for AUC in animal studies[J]. J Pharm Sci,1993, 82(7):761-763.
    [7]Zhang QZ, Zha LS, Zhang Y, Jiang WM, Lu W, Shi ZQ, Jinag XG, Fu SK The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats[J]. J Drug Target,2006,14(5):281-290.
    [8]Thome RQ Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-1 to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration[J]. Neuroscience,2004, 127(2):481-496.
    [9]Liu QF, Shen YH, Chen J, Gao XL, Feng CC, Wang L, Zhang QZ, Jiang XG Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles[J]. Pharm Research (accepted).
    [10]诸葛启钏,主译.大鼠脑立体定位图谱[M],2005,北京:人民卫生出版社:64.
    [11]Illum L. Transport of drugs from the nasal cavity to the central nervous system[J]. Eur J Pharm Sci,2000,11:1-18.
    [12]Lundh B, Brockstedt U, Kristensson K. Lectin-binding pattern of neuroepithelial and respiratory epithelial cells in the mouse nasal cavity[J]. Histochem J,1989, 21(1):33-43.
    [13]Pastor LM, Frutos MJ, Grana L, Ramos D, Gallego-Huidobro J, Calvo A. Histochemical study of glycoconjugates in the nasal mucosa of the rat and guinea pig[J]. Histochem J,1992,24(10):727-736.
    [14]Frey II WH, Liu J, Chen XQ, Thorne RG, Fawcett JR, Ala TA, Rahman YE. Delivery of 125I-NGF to the brain via the olfactory route[J]. Drug Delivery,1997, 4(2):87-92.
    [15]Kyrkanides S, Yang M, Tallents RH, Miller JN, Brouxhon SM, Olschowka JA. The trigeminal retrograde transfer pathway in the treatment of neurodegeneration[J]. J Neuroimmunol,2009,209(1-2):139-142.
    [16]Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system:mechanisms and experimental considerations[J]. J Pharm Sci,2010, 99(4):1654-1673.
    [1]成银霞,杜冠华.防治神经退行性疾病的药物研究进展[J].中国医药导刊,2006,8(5):320-322.
    [2]王蓉,李林.神经营养因子与神经元退行性变疾病[J].基础医学与临床,2005,25(8):692-696.
    [3]Faitova J. Fibroblast growth factor-2[J]. Cesk Fysiol,2004,53(3):92-101.
    [4]Beenken A, Mohammadi M. The FGF family:biology, pathophysiology and therapy[J]. Nat Rev Drug Discov,2009,8(3):235-253.
    [5]Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation[J]. Cytokine Growth Factor Rev,2005,16(2):107-137.
    [6]周思朗,陈俊抛,涂晓文,曹东林,袁岱军.碱性成纤维生长因子对阿尔茨海默病模型大鼠的影响[J].第一军医大学学报,2003,23(6):611-613.
    [7]周思朗,陈俊抛.碱性成纤维细胞生长因子对阿尔茨海默病模型大鼠脑内神经细胞增殖的影响[J].广东医学,2003,24(4):366-368.
    [8]叶建新,林航,穆军山,崔晓萍,殷红兵,林敏,武雷,翁婿,林晓姝.碱性成纤维生长因子对血管性痴呆大鼠学习记忆能力的影响[J].实用医学杂志,2009,25(20):3383-3386.
    [9]钟慧君,于永清,郭玉麟.碱性成纤维生长因子治疗神经系统疾病106例疗效观察[J].医学理论与实践,1999,12(8):457-458.
    [10]张琪,王广基,孙建国.放射性同位素示踪法和酶联免疫法研究重组人碱性成纤维细胞生长因子在家兔体内的药代动力学[J].中国药科大学学报,2004,35(6):536-539.
    [11]刘秀文,汤仲明,宋海峰,朱宝珍,王丽萍,张洋.猕猴静脉推注加滴注重组人碱性成纤维细胞生长因子后的药代动力学[J].中国药理学与毒理学杂志,2002,16(3):220-222.
    [12]尤启才,符志莉.重组人碱性成纤维细胞生长因子在大鼠和猴体内的药代动力学[J].中国药房,2002,11(2):62-64.
    [13]Deguchi Y, Naito T, Yuge T, Furukawa A, Yamada S, Pardridge WM, Kimura R. Blood-brain barrier transport of 1251-labeled basic fibroblast growth factor[J]. Pharm Res,2000,17(1):63-69.
    [14]Vemuri S, Beylin I, Sluzky V, Stratton P, Eberlein G, Wang YJ. The stability of bFGF against thermal denaturation[J]. J Pharm Pharmacol,1994,46(6):481-486.
    [15]Liu SD, Yu SW, Zhang JH, et al. The stability of bFGF activity in different chemical preparation[J]. Chin J Coll Biol,2003,25(4):235-237.
    [16]王小平,容蓉,田景振.多肽类药物分析方法的研究进展[J].食品与药品,2009,11(9):55-58.
    [17]Jung SL, Jin WB, Yoon KJ, Seung JL, Dong KH, Ki DP. Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle[J]. Int J Pharm,2008,346:57-63.
    [18]张纲,谭颖徽,卢来春,张蓉,王建华,杜俊兰.bFGF-PLA缓释纳米微球的制备及体外释药的研究[J].重庆医学,2006,35(11):1002-1004.
    [19]Desai MP, Labhasetwar V, Ami don GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles:effect of particle size[J]. Pharm Res,1996, 13(12):1838-1845.
    [20]Pean JM, Boury F, Venier-Julienne MC, et al. Why does PEG400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres[J]. Pharm Res,1999,16(8):1294-1299.
    [21]Rosa GD, Iommelli R, La Rotonda MI, et al. Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres[J]. J Control Release,2000,69(2):283-295.
    [22]Uchida T, Yoshida K, Ninomiya A, et al. Optimization of preparative conditions for polylactide (PLA) microspheres containing ovalbumin[J]. Chem Pharm Bull (Tokyo),1995,43(9):1569-1573.
    [23]Guzman-Casado M, Cardenete A, Gimenez-Gallego Q et al. Myo-inositol hexasulphate and low molecular weight heparin binding to human acidic fibroblast growth factor:a calorimetric and FTIR study. Int J Biol Macromol, 2001,28(4):305-313.
    [24]Roghani M, Mansukhani A, Dell'Era P, Bellosta P, Basilico C, Rifkin DB, Moscatelli D. Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding[J]. J Biol Chem,1994, 269(6):3976-3984.
    [25]Jeon O, Kang SW, Lim HW, Hyung Chung J, Kim BS. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel[J]. Biomaterials,2006, 27(8):1598-1607.
    [1]Baird A, Esch F, Mormede P, Ueno N, Ling N, Bohlen P, Ying SY, Wehrenberg WB, Guilemin R. Molecular characterization of fibroblast growth factor: distribution and biological activity in various tissues[J]. Recent Prog Horm Res, 1986,42:143-205.
    [2]Baird A, Walicke PA. Fibroblast growth factors[J]. Br Med Bull,1989, 45(2):438-452.
    [3]李立新,叶诸榕,朱建辉,等.碱性成纤维细胞生长因子的自分泌与反应性星形细胞胶质化[J].中华病理学杂志,1997,26(1):8-11.
    [4]Morrison RS, Sharma A, de Vellis J, Bradshaw RA. Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture[J]. Proc Natl Acad Sci USA,1986,83(19):7537-7541.
    [5]Fisher M, Meadows ME, Do T, Weise J, Trubetskoy V, Charette M, Finklestein SP. Delayed treatment with intravenous basic fibroblast growth factor reduces infarct size following permanent focal cerebral ischemia in rats[J]. J Cereb Blood Flow Metab,1995,15(6):953-959.
    [6]Mattson MP, Kumar KN, Wang H, Cheng B, Michaelis EK. Basic FGF regulates the expression of a functional 71kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons[J]. J Neurosci,1993, 13(11):4575-4588.
    [7]Nozaki K, Finklestein SP, Beal MF. Delayed administration of basic fibroblast growth factor protects against N-methyl-D-aspartate neurotoxicity in neonatal rats[J]. Eur J Pharmacol,1993,232(2-3):295-297.
    [8]Deguchi Y, Naito T, Yuge T, Furukawa A, Yamada S, Pardridge WM, Kimura R. Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor[J]. Pharm Res,2000,17(1):63-69.
    [9]Chen XQ, Fawcett JR, Rahman YE, Ala TA, Frey Ⅱ WH. Delivery of nerve growth factor to the brain via the olfactory pathway[J]. J Alzheimers Dis,1998, 1(1):35-44.
    [10]Mazue G, Bertolero F, Garofano L, Brughera M, Carminati P. Experience with the preclinical assessment of basic fibroblast growth factor (bFGF)[J]. Toxicol Lett,1992,64-65:329-338.
    [11]钱隽,唐晓峰,万丹晶,朱建华.小分子多肽HLP核素示踪分析方法研究[J].高等学校药学学报,2006,27(7):1247-1249.
    [12]Zhang QZ, Zha LS, Zhang Y, Jiang WM, Lu W, Shi ZQ, Jinag XG, Fu SK. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats[J]. J Drug Target,2006,14(5):281-290.
    [13]Mazue G, Bertolero F, Garofano L, Brughera M, Carminati P. Experience with the preclinical assessment of basic fibroblast growth factor (bFGF)[J]. Toxicol Lett,1992,64-65:329-338.
    [14]Bogousslavsky J, Victor SJ, Salinas EO, Pallay A, Donnan GA, Fieschi C, Kaste M, Orgogozo JM, Chamorro A, Desmet A. European-Australian fiblast (trafermin) in acute stroke Group, Fiblast (trafermin) in acute stroke:results of the European-Australian phase Ⅱ/Ⅲ safety and efficacy trial[J]. Cerebrovas. Dis, 2002,14(3-4):239-251.
    [15]Paciaroni M, Bogousslavsky J. Trafermin for stroke recovery:is it time for another randomized clinical trial?[J]. Expert Opin Biol Ther,2011, 11(11):1533-1541.
    [16]张琪,王广基,孙建国.放射性同位素示踪法和酶联免疫法研究重组人碱性成纤维细胞生长因子在家兔体内的药代动力学[J].中国药科大学学报,2004,35(6):536-539.
    [17]Kuo BS, Nordblom GD, Wright DS. Perturbation of epidermal growth factor clearance after radioiodination and its implication[J]. J Pharma Sci,1997, 86(3):290-292.
    [1]St George-Hyslop PH, Petit A. Molecular biology and genetics of Alzheimer's disease[J]. C R Biol,2005,328 (2):119-130.
    [2]陈新平,陈彪.阿尔茨海默病病因学及发病机制研究进展[J].中国现代神经疾病杂志,2005,5(3):152-155.
    [3]Wilcock GK, Esiri MN, Bowen DM, et al. Alzheimer's disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities[J]. J Neurol Sci,1982,57(2-3):407-417.
    [4]Beach TQ Kuo YM, Spiegel K, et al. The cholinergic deficit coincides with Abeta deposition at the earlist histopathologic stages of Alzheimer disease[J]. J Neuropathol Exp Neurol,2000,59(4):308-313.
    [5]张洁,龙颖,胡昔奇,曹萍,郑尧帆,李先辉.阿尔茨海默症动物模型的研究进展及其评价[J].中国民族民间医药,2009,(10):18-20.
    [6]罗焕敏,翁文.老年性痴呆动物模型的制作与选择[J].中华老年多器官疾病杂志,2007,6(1):12-16.
    [7]Woodruff-Park DS, Trojanowshi JQ. The older rabbit as an animal model: implication fro Alzheimer's disease[J]. Neurobiol Aging,1996,17(2):283-290.
    [8]Price DL, Sisodia SS. Cellular and molecular biology of Alzheimer's disease and animal models[J]. Ann Rev Med,1994,45:435-436.
    [9]Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein[J]. Nature, 1995,373(6514):523-527.
    [10]Giovannelli L,Casamenti F, Scali C, Bartolini L, Pepeu G Differential effects of amyloid peptides beta-(1-40) and beta-(25-35) injections into the rat nucleus basalis[J]. Neuroscience,1995,66(4):781-792.
    [11]李静,周华东,王延江,张猛,许志强.海马注射β-淀粉样蛋白建立阿尔茨海默症大鼠模型的实验研究[J].中国临床神经科学,2008,16(5):467-471.
    [12]Games D, Khan KM, Sorlano FQ Keim PS, Davis DL, Bryant K, Lieberburg I. Lack of Alzheimer pathology after P-amyloid protein injections in rat brain[J]. Neurobiol Aging,1992,13(5):569-576.
    [13]Stein-Beherens B, Adams K, Yeh M, Sapolsky R. Failure of beta-amyloid protein fragment 25-35 to cause hippocampal damage in the rat[J]. Neurobiol Aging, 1992,13(5):577-580.
    [14]Dunnett SB, Whishaw IQ, Jones GH, Bunch ST. Behavioral, biochemical and histochemical effects of different neurotoxic amino acids injected into nucleus basalis magnocellularis of rat[J]. Neuroscience,1991,20(2):653-669.
    [15]Wenk GL, Harrington CA, Tucker DA, Ranee NE, Walker LC. Basal forebrain neurons and memory:a biochemical, histological, and behavioral study of differential vulnerability to ibotenate and quisqualate[J]. Behav Neurosci,1992, 106(6):909-923.
    [16]Morimoto K, Yoshimi K, Tonohiro T, Yamada N, Oda T, Kaneko I. Co-injection of beta-amyloid with ibotenic acid induces synergistic loss of rat hippocampal neurons[J]. Neuroscience,1998,84(2):479-487.
    [17]Dornan WA, Kang DE, McCampbell A, Kang EE. Bilateral injections of beta A(25-35)+IBO into the hippocampus disrupts acquisition of spatial learning in the rat[J]. Neuroreport,1993,5(2):165-168.
    [18]Nakamura S, Murayama N, Noshita T, Katsuragi R, Ohno T. Cognitive dysfunction induced by sequential injection of amyloid-beta and ibotenate into the bilateral hippocampus; protection by memantine and MK-801[J]. Eur J Pharmacol,2006,548(1-3):115-122.
    [19]Hedreen JC, Bacon SJ, Price DL. A modified histochemical technique to visualize acetylcholinesterase-containing axons[J]. J Histochem Cytochem,1985, 33(2):134-140.
    [20]李卫平,杨晓枫,刘晓加,陆兵勋,陈以慈,姚志彬.大脑皮质及海马乙酰胆碱酯酶纤维分布及其与痴呆关系的研究[J].中华老年医学杂志,1997,16(4):226-228.
    [21]Collerton D. Cholinergic function and intellectural decline in Alzheimer's disease[J]. Neuroscience,1986,19(1):1-28.
    [22]Koriyama Y, Chiba K, Mohri T. Propentofylline protects beta-amyloid protein-induced apoptosis in cultured rat hippocampal neurons[J]. Eur J Pharmacol,2003,458(3):235-241.
    [23]Sigurdsson EM, Lorens SA, HejnaMJ, Dong XW, Lee JM. Local and distant histopathological effects of unilateral amyloid-beta 25-35 injections into the amygdala of young F344 rats[J]. Neurobiol Aging,1996,17(6):893-901.
    [24]Stepanichev MY, Moiseeva YV, Lazareva NA, Gulyaeva NV. Studies of the effects of fragment (25-35) of beta-amyloid peptide on the behavior of rats in a radial maze[J]. Neurosci Behav Physiol,2005,35(5):511-518.
    [25]Fuentealba RA, Farias G, Scheu J, Bronfman M, Marzolo MP, Inestrosa NC. Signal transduction during amyloid-beta-peptide neurotoxicity:role in Alzheimer disease[J]. Brain Res,2004,47(1-3):275-289.
    [26]Gonzalo-Ruiz A, Perez JL, Sanz JM, Geula C, Arevalo J. Effects of lipids and aging on the neurotoxicity and neuronal loss caused by intracerebral injections of the amyloid-beta peptide in the rat[J]. Exp Neurol,2006,197(1):41-55.
    [27]Stepanichev MY, Zdobnova IM, Zarubenko II, Moiseeva YV, Lazareva NA, Onufriev MV, Gulyaeva NV. Amyloid-beta (25-35)-induced memory impairments correlate with cell loss in rat hippocampus [J]. Physiol Behav,2004, 80(5):647-655.
    [28]Reyes AE, Chacon MA, Dinamarea MC, Cerpa W, Morgan C, Inestrosa NC. Acetylcholinesterase-Abeta complexes are more toxic than Abeta fibrils in rat hippocampus:effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss[J]. Am J Pathol,2004,164 (6):2163-2174.
    [29]Harkany T, Lengyel Z, Soos K, Penke B, Luiten PG, Gulya K. Cholinotoxic effects of β-amyloid (1-42) peptide on cortical projections of the rat nucleus basalis magnocellularis[J]. Brain Res,1995,695(1):71-75.
    [30]Auld DS, Kar S, Quirion R. Beta-amyloid peptides as direct cholinergic neuromodulators:a missing link?[J]. Trends Neurosci,1998,21(1):43-49.
    [31]聂晶,罗勇,黄燮南,陆远富,孙安盛,龚其海,石京山.淫羊藿苷对淀粉样p蛋白片段25-35所致大鼠学习记忆障碍的改善作用[J].中国药理学与病理学杂志,2008,22(1):31-37.
    [32]Abe K, Saito H. Effects of basic fibroblast growth factor on central nervous system function[J]. Pharmacol Res,2001,43(4):307-312.
    [33]Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O'Hare E, Esler WP, Maggio JE, Mantyh PW. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo[J]. J Neurosci,1998,18(6):2161-2173.
    [34]Huang HJ, Liang KC, Chen CP, Chen CM, Hsieh-Li HM. Intrahippocampal administration of A beta(1-40) impairs spatial learning and memory in hyperglycemic mice[J]. Neurobiol Learn Mem,2007,87(4):483-494.
    [35]Nag S, Tang F. Cholinergic lesions of the rat brain by ibotenic acid and 192 IgG-saporin:effects on somatostatin, substance P and neuropeptide Y levels in the cerebral cortex and the hippocampus[J]. Neurosci Lett,1998,252(2):83-86.
    [36]Ahmed MM, Hoshino H, Chikuma T, Yamada M, Kato T. Effect of memantine on the levels of glial cells, neuropeptides, and peptide-degrading enzymes in rat brain regions of ibotenic acid-treated alzheimer's disease model[J]. Neuroscience, 2004,126(3):639-649.
    [37]Xu XH, Pan YP, Wang XL. mRNA expression alterations of inward rectifier potassium channels in rat brain with cholinergic impairment[J]. Neurosci Lett, 2002,322(1):25-28.
    [38]Karlen A, Karlsson TE, Mattsson A, Lundstromer K, Codeluppi S, Pham TM, Backman CM, Ogren SO, Aberg E, Hoffman AF, Sherling MA, Lupica CR, Hoffer BJ, Spenger C, Josephson A, Brene S, Olson L. Nogo receptor 1 regulates formation of lasting memories[J]. Proc Natl Acad Sci USA,2009, 106(48):20476-20481.
    [39]Vanelzakker MB, Zoladz PR, Thompson VM, Park CR, Halonen JD, Spencer RL, Diamond DM. Influence of pre-training predator stress on the expression of c-fos mRNA in the hippocampus, amygdale and striatum following long-term spatial memory retrieval[J]. Front Behav Neurosci,2011,5:30.
    [40]Takao K, Toyama K, Nakanish K, Hattori S, Takamura H, Takeda M, Miyakawa T, Hashimoto R. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia[J]. Mol Brain,2008,1:11.
    [1]施春阳,杜光,方建国,汤杰,王文清.鱼腥草滴鼻剂局部刺激性与过敏性观察[J].中国医院药学杂志,2009,11:876-878.
    [2]高永平,刘会清,刘海燕,贾静,赵宝建,张驰.麻黄碱滴鼻5天对家兔鼻腔黏膜的影响[J].中国耳鼻咽喉头颈外科,2011,2:84-86.
    [3]已上市吸入气雾剂变更抛射剂研究技术要求.国家药品食品监督管理局,2011.
    [4]吉晓滨,杜洪,臧林泉等.豚鼠变应性鼻炎模型鼻黏膜的病理改变[J].山东大学耳鼻喉眼学报,2007,21(4):1-4.
    [5]Mazue G, Bertolero F, Garofano L, Brughera M, Carminati P. Experience with the preclinical assessment of basic fibroblast growth factor (bFGF)[J]. Toxicol Lett, 1992,64-65:329-338.
    [6]杜爱萍,邹万忠,付艳华,由江峰.肾小管上皮细胞损伤与成纤维细胞生长因子的关系[J].肾脏病与透析肾移植杂志,1997,6(3):221-224.
    [7]高月,吕秋军,陈鹏,陶来宝,谭洪玲,马增春,丁林茂.大鼠肌肉注射重 组人碱性成纤维细胞生长因子的毒性研究[J].中国新药杂志,2001,10(1):32-34.
    [8]朱建丽.成纤维细胞生长因子安全性研究进展[J].海峡药,2009,21(6):18-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700