用户名: 密码: 验证码:
固定化微球菌降解废水中邻苯二甲酸酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻苯二甲酸酯(Phthalic Acid Esters,简称PAEs)属于典型的持久性有机污染物,具有内分泌干扰作用。本论文选择邻苯二甲酸二丁酯(Di-n-butyl phthalate,简称DBP)为代表性污染物,从选育高效降解微生物入手,研究了DBP的生物降解特性,探讨了高效微生物的固定化,考察了生物强化技术去除废水中DBP的特性,利用末端限制性片段长度多态性(T-RFLP)方法监测了微生物群落结构的动态变化。选题具有重要的理论意义和应用价值。论文工作取得以下主要研究成果:(1)分离获得一株DBP高效降解菌,经鉴定为微球菌(Micrococcus sp.)。该菌株能够以DBP为唯一碳源和能源生长。葡萄糖的存在不影响DBP的降解,低浓度DBP的存在对葡萄糖的降解趋势也不产生影响,但高浓度DBP会对葡萄糖的降解产生抑制。微量金属离子的加入会促进菌株Micrococcus sp.的生长,并促进DBP的降解。GC/MS分析结果表明,DBP的生物降解途径为:邻苯二甲酸二丁酯首先水解成邻苯二甲酸单丁酯,然后变成邻苯二甲酸及相应的醇,最后降解为CO2和H2O。
     (2)研究了微生物固定化方法,重点探讨了克服PVA固定化微生物颗粒水溶膨胀性问题。综合比较固定化微生物颗粒的生物活性、机械性能以及化学稳定性,PVA-SA载体是包埋固定化微生物的适宜材料。优化了PVA固定化微生物的适宜条件,在该条件下制备的固定化微生物,膨胀率为15%,相对生物活性为61%。
     (3)利用PVA为载体固定化Micrococcus sp.,结果发现,与游离微生物相比,固定化微生物的最佳pH和温度范围有所拓宽,显示出固定化微生物的优势。比较了固定化微生物的不同保藏方法,发现真空冷藏是保藏固定化微生物的较适宜方式。固定化微生物颗粒使用30d后,其膨胀率在20%以内,相对生物活性在90%以上。固定化Micrococcus sp.菌降解DBP的过程可以用Haldane抑制动力学方程描述。
     (4)在活性污泥处理系统中引入固定化高效降解菌Micrococcus sp.可以加速反应器的启动。当DBP初始浓度为50mg/L时,固定化细胞对DBP的强化去除作用不明显;当DBP初始浓度在100~500mg/L范围内,引入固定化高效降解菌可以显著提高反应器中DBP的去除。T-RFLP分析结果表明,固定化高效降解菌存在于反应器运行的整个运行过程中,投加高效降解菌会影响活性污泥中微生物的群落结构。
Phthalic acid esters (PAEs for short) are global toxic organic pollutants, belonging to atypical persistent organic pollutants (POPs), they are endocrine-disrupting chemicals. PAEshave been widely existed in the environment, and their pollutions are increasing annually inour country, which may cause serious environmental contamination and ecological risk.Microbial degradation is a key route for PAEs removal from the environment. In this paper,Di-n-butyl phthalate (DBP for short) was selected as a representative PAEs, firstly, ahigh-efficient microorganism capable of degrading DBP was isolated and identified, then thecharacteristics and mechanism of DBP biodegradation was investigated, the microbialimmobilization method using PVA as carrier was optimized, finally, the DBP removal fromwastewater by bioaugmentated systems was studied, and the dynamics of microbialcommunity structure was analyzed by Terminal Restriction Fragment Length Polymorphism(T-RFLP). The results have an important theoretic and practical significance for the removalof recalcitrant pollutants from wastewater.
     The main conclusions obtained from this study are as follows:
     (1) A high-efficient stain capable of degrading DBP was isolated and identified asMicrococcus sp., which can use DBP as sole carbon and energy source. DBP as high as500mg/L did not inhibit the growth of Micrococcus sp. The strain can use DBP and glucosesimultaneously. The degradation of DBP was not affected by the existence of glucose, DBP atlow concentration did not influence the degradation trend of glucose; however, DBP at highconcentration inhibited the glucose degradation at some degree. The addition of trace metallicelements could stimulate the bacterial growth and enhance DBP degradation. The results ofgas chromatography-mass spectrometry (GC/MS) analysis indicated the pathway of DBPdegradation was as follows: DBP was hydrolyzed to mono-butyl phthalate, then to phthalicacid, and finally to be completely degraded to carbon dioxide.
     (2)The microbial immobilization methods using polyvinyl alcohol (PVA) were studied,focusing on overcoming the swelling performance of immobilized cell beads. Based on thecomprehensive comparison of biologic activity, mechanical strength and chemical stability,PVA-SA was a suitable carrier for microbial immobilization. During immobilization processusing PVA as carrier, after cross-linking in saturated boric acid, the resulted immobilized cell beads were stored at4℃for24h, the swelling ratio of immobilized cell beads couldsignificantly decreased, and the biological activity of the beads did not obviously affected.The immobilization conditions using PVA as carrier were optimized, and the swelling ratioand relative biological activity of the immobilized cells prepared at this condition was15%and61%, respectively.
     (3)The microbial cells of Micrococcus sp. were entrapped by PVA carrier, the resultsindicated that after immobilization, the immobilized cells showed wider range of optimal pHand temperature in comparison with the free cells, suggesting the advantages of immobilizedmicrobial cells. The different methods for the storage of the immobilized cells was studied, itwas found that vacuum storage was a suitable storage method, the immobilized cells beadscould retain90%of its initial activity after12months in vacuum storage at4℃. The physicalcharacteristics and microbial activity of the beads changed with time, and stabilized finally.The swelling ratio and relative biological activity of the immobilized beads was less than20%and more than90%, respectively after30days application. The DBP degradation process byimmobilized Micrococcus sp. could be described by the Haldane inhibition kinetics equation.
     (4)The introduction of immobilized Micrococcus sp. into the activated sludge processcould speed up the start-up of the reactor. When the initial DBP concentration was50mg/L,the effect of the bioaumentation on the removal rate of DBP was not obvious; however, whenthe initial DBP concentration increased to the range of100-500mg/L, the introduction of theimmobilized cells could significantly enhanced the removal rate of DBP. The analyticalresults of T-RFLP indicated that the immobilized Micrococcus sp. could exist in the wholeoperational process. The introduction of the immobilized Micrococcus sp. had a significantimpact on microbial community structure of the activated sludge system.
引文
Acevedo F, Pizzul L, Castillo MP, et al. Degradation of polycyclic aromatic hydrocarbons by theChilean white-rotfungus Anthracophyllum discolor. Journal of Hazardous Materials,2011,185:212-219.
    Agarwal D K, Lawrence WH, Autian J. Antifertility and mutagenic effects in mice from parenteraladministration of DEHP. Journal of Toxicological and Environmental Health,1985,16:71-84.
    Aleshchenkova ZM, Smsonova AS, Semochkina NF, et al. Utilization of isophthalic acid esters byRhodococci.Microbiology,1997,66:515-518.
    Amir S, Hafidi M, Merlina G, et al. Fate of phthalic acid esters during composting of bothlagooning and activated sludges.Process Biochemistry,2005,40:2183~2190.
    An M, Lo K V. Activated sludge immobilization using the PVA-alginate-borate method. Journal ofEnvironmental Science and Health A,2001,36:101-115.
    Ariga O, Takagi H, Nishizawa H, et al. Immobilization of microorganisms with PVA hardened byiterative freezing and thawing. Journal of Fermentation Technology,1987,65:651-658.
    Bai YH, Sun QH, Sun RH, et al. Bioaugmentation and adsorption treatment of coking wastewatercontaining pyridine and quinoline using zeolite-biological aerated filters.EnvironmentalScienceand Technology,2011,45:1940-1948.
    Bai YH, Sun QH, Zhao C, et al. Microbial degradation and metabolic pathway of pyridine by aParacoccus sp. strain BW001. Biodegradation,2008,19:915-926.
    Bai YH, Sun QH, Zhao C, et al. Simultaneous biodegradation of pyridine and quinoline by twomixed bacterial strains.Applied Microbiology and Biotechnology,2009,82:963-973.
    Bai YH, Sun QH, Zhao C, et al. Bioaugmentation treatment for coking wastewater containingpyridine and quinoline in a sequencing batch reactor.Applied Microbiology andBiotechnology,2010a,87:1943-1951.
    Bai YH, Sun QH, Xing R, et al. Removal of pyridine and quinoline by bio-zeolite composed ofmixed degrading bacteria and modified zeolite. Journal of Hazardous Materials,2010b,181:916-622.
    Baipai S K, Sharma S. Investigation of swelling/degradation behaviour of alginate beadscrosslinked with Ca2+and Ba2+ions. Reactive and Functional Polymers,2004,59:129-141.
    Bathe S, Mohan TVK, Wuertz S, et al. Bioaugmentation of a sequencing batch biofilm reactor byhorizontal gene transfer. Water Science and Technology,2004,49:337-344.
    Bathe S, Schwarzenbeck N, Hausner M. Plasmid-mediated bioaugmentation of activated sludgebacteria in a sequencing batch moving bed reactor using pNB2. Letter in AppliedMicrobiology,2005,41:242-247.
    Bathe S, Schwarzenbeck N, Hausner M. Bioaugmentation of activated sludge towards3-chloroaniline removal with a mixed bacterial population carrying a degradativeplasmid.Bioresource Technology,2009,100:2902-2909.
    Bathe S. Conjugal transfer of plasmid pNB2to activated sludge bacteria leads to3-chloroanilinedegradation in enrichment cultures. Letter in Applied Microbiology,2004,38:527-531.
    Beauchesne I, S Barnabe A. Plasticizers and related toxic degradation products in wastewatersludges. Water Science and Technology,2008,57:367-374.
    Beaudet R, Lévesque M J, Villemur R, et al. Anaerobic biodegradation of pentachlorophenol in acontaminated soil inoculated with a methanogenic consortium or with Desulfitobacteriumfrappieri strain PCP-1. Applied Microbiology and Biotechnology,1998,50:135-141.
    Boon N, Top E M, Verstrate W, et al. Bioaugmentation as a tool to protect the structure andfunction of an activated-sludge microbial community against a3-chloroaniline shockload.Appliedand Environmental Microbiology,2003,69:1511-1520.
    Bouchez T, Patureau D, Dabert P, et al. Ecological study of a bioaugmentation failure.Environmental Microbiology,2000,2:179-190.
    Cao G M, Zhao Q X, Sun XB, et al. Characterization of nitrifying and denitrifying bacteriacoimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilizedcells. Enzyme and Microbial Technology,2002,30:49-55.
    Cavaleiro A J, Sousa D Z, Alves M M. Methane production from oleate: assessingthebioaugmentation potential of Syntrophomonas zehnderi. Water Research,2010,44:4940-4947.
    Cea M, Jorquera M, Rubilar O, et al. Bioremediation of soil contaminated with pentachlorophenolby Anthracophyllum discolor and its effect on soil microbial community. Journal ofHazardous Materials,2010,181:315-323.
    Chang BV, Yang CM, Cheng CH et al. Biodegradation of phthalate esters by two bacteria strains.Chemosphere,2004,55:533~538
    Chang C C, Tseng S K. Immobilization of Alcaligenes eutrophus using PVA crosslinked withsodium nitrate. Biotechnology Techniques,1998,12:865-868.
    Chang I S, Kim C I, Nam B U. The influence of poly-vinyl-alcohol (PVA) characteristics on thephysical stability of encapsulated immobilization media for advanced wastewater treatment.Process Biochemistry,2005,40:3050-3054.
    Chatterjee S, Dutta TK. Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC4818.Biochemistry and Biophysics Research Communication,2003,309:36-43
    Chen K C, Chen J J, Houng J Y. Improvement of nitrogen-removal efficiency using immobilizedmicroorganisms with oxidation-reduction potential monitoring. Journal of IndustrialMicrobiology and Biotechnology,2000,25:229-234.
    Chen K C, Chen S J, Houng J Y. Improvement of gas permeability of denitrifying PVA gel beads.Enzyme and Microbial Technology,1996,18:502-506.
    Chen K C, Wu J Y, Huang C C, et al. Decolorization of azo dye using PVA-immobilizedmicroorganisms. Journal of Biotechnology,2003,101:241-252.
    Chong N M, Pai S L, Chen C H. Bioaugmentation of an activated sludge receiving pH shockloading.Bioresource Technology,1997,59:235-240.
    Ciric L, Griffiths R I, Philp J C, et al. Field scale molecular analysis for the monitoring of bacterialcommunity structures during on-site diesel bioremediation. Bioresource Technology,2010,101:5235-5241.
    Colombo M, Cavalca L, Bernasconi S, et al. Bioremediation of polyaromatic hydrocarboncontaminated soils by native microflora and bioaugmentation with Sphingobiumchlorophenolicum strain C3R: a feasibility study in solid-and slurry-phase microcosms.International Biodeterioration Biodegradation,2011,65:191-197.
    Comeau Y, Greer C W, Samson R. Role of inoculum preparation and density on thebioremediationof2,4-D-contaminated soil by bioaugmentation. Applied Microbiology andBiotechnology,1993,38:681-687.
    Cosgrove L, McGeechan P L, Handley P S, et al. Effect of biostimulation and bioaugmentation ondegradation of polyurethane buried in soil.Applied and Environmental Microbiology,2010,76:810-819.
    Couto M, Monteiro E, Vasconcelos M T S D. Microcosm trials of bioremediation of contaminatedsoil of a petroleum refinery: comparison of natural attenuation, biostimulation andbioaugmentation. Environmental Science and Pollution Research,2010,17:1339-1346.
    Dabert P, Delgenès J P, Godon J J. Monitoring the impact of bioaugmentation on the start-up ofbiological phosphorus removal in a laboratory scale activated sludge ecosystem. AppliedMicrobiology and Biotechnology,2005,66:575-588.
    Dave R, Madamwar D. Esterification in organic solvents by lipase immobilized in polymer ofPVA alginate boric acid. Process Biochemistry,2006,41:951-955.
    Domde P, Kapley A, Purohit H J. Impact of bioaugmentation with a consortium of bacteria on theremediation of wastewater-containing hydrocarbons. Environmental Science and PollutionResearch,2007,14:7-11.
    Eichner C A, Erb R W, Timmis K N, et al. Thermal gradient gel electrophoresis analysis ofbioprotection from pollutant shocks in the activated sludge microbial community. Appliedand Environmental Microbiology,1999,65:102-109.
    Eikmeier H, Rehm H J. Stability of calcium-alginate during citric acid production by immobilizedAspergillus niger. Applied Microbiology and Biotechnology,1987,26:105-111.
    Emily J T M L, Vitor A P D S, Katja C F G, et al. Characteristics of and selection criteria forsupport materials for cell immobilization in wastewater treatment. Water Research,1996,30:2985-2996.
    Fang HHP, Liang D, Zhang T. Aerobic degradation of diethyl phthalate by Sphingomonas sp.Bioresource Technology,2007,98:717-720.
    Fantroussi S E, Agathos S N. Is bioaugmentation a feasible strategy for pollutant removal and siteremediation. Current Opinion in Microbiology,2005,8:238-275.
    Farrell A, Quilty B. The enhancement of2-chlorophenol degradation by a mixed microbialcommunity when augmented with Pseudomonas putida CP1. Water Research,2002,36:2443-2450.
    Gao B, Wang P, Zhou H D. Sorption of phthalic acid esters in two kinds of landfill leachates bythe carbonaceous sorbents. Bioresource Technology,2013,136:295-301.
    Gentry T J, Rensing C, Pepper I L. New approaches for bioaugmentation as a remediationtechnology.Critical Reviews in Environmental Science and Technology,2004,34:447-494.
    Giddings C G S, Liu F, Gossett J M. Microcosm assessment of Polaromonas sp. JS666as abioaugmentation agent for degradation of cis-1,2-dichloroethene in aerobic, subsurfaceenvironments. Ground Water Monitoring and Remediation,2010,30:106-113.
    Goldstein R M, Mallory L M, Alexander M. Reasons for possible failure of inoculation to enhancebiodegradation.Applied and Environmental Microbiology,1985,50:977-983.
    Hallmann M. Photodegradation of di-n-butyl-ortho-phthalate in aqueous solution.Journal ofPhotochemistry and Photobiology.1992,66:215-223.
    Han L P, Wang J L, Shi H C et al. Bioaugmentation: a new strategy for removal of recalcitrantcompounds in wastewater--a case study of quinolone. Journal of Environmental Science,2000,12:22-25.
    Hashimoto S, Furakawa K. Immobilization of activated sludge by PVA–boric acid method.Biotechnology and Bioengineering,1987,30:52-59.
    Hashizume K, Nanya J, Toda C et al. Phthalate esters detected in various water samples andbiodegradation of the phthalates by microbes isolated from river water. Biology andPharmaceutical Bulletin,2002,25:209-214.
    He F, Hu W R, Li Y Z. Investigation of isolation and immobilization of a microbial consortium fordecoloring of azo dye4BS. Water Research,2004,38:3596-3604.
    He ZX, Xiao HL Tang L, et al. Biodegradation of di-n-butyl phthalate by a stable bacterialconsortium, HD-1, enriched from activated sludge. Bioresource Technology,2013,128:526-532.
    Hestbjerg H, Willumsen P A, Christensen M, et al. Bioaugmentation of tar-contaminated soilsunder field conditions using Pleurotus ostreatus refuse from commercial mushroomproduction. Environmental and Toxicological Chemistry,2003,22:692-698.
    Hisash T H, Feng Y J, Ho C M, et al. PVA-alginate immobilized cells for anaerobic ammoniumoxidation (anammox) process. Journal of Industrial Microbiology and Biotechnology,2008,35:721-727.
    Hrenovic J, Tibljas D, Ivankovic T, et al. Sepiolite as carrier of the phosphate-accumulatingbacteria Acinetobacter junii.Applied Clay Science,2010,50:582-587.
    Hsieh Y L, Tseng S K, Chang Y J. Nitrification using polyvinyl alcohol-immobilized nitrifyingbiofilm on an O2-enriching membrane.Biotechnology Letters,2002,24:315-319.
    Hu J, Wang J L. Degradation of chlorophenols in aqueous solution by gamma radiation. RadiationPhysics and Chemistry,2007,76:1489-1492.
    Hutzinger O, Staples C A. The Handbook of Environmental Chemistry:Volume3AnthropogenicCompounds Part Q. Springer-Verlag Berlin Heidelberg,2003,143-146.
    Ichijo H, Nagasawa I, Yamauchi A. Immobilization of biocatalysts with poly(vinyl alcohol)supports. Journal of Biotechnology,1990,14:169-178.
    Idris A, Zain N A M, Suhaimi M S. Immobilization of Baker‘s yeast invertase in PVA-alginatematrix using innovative immobilization technique. Process Biochemistry,2008,43:331-338.
    Jansson J K, Bj rkl f K, Elvang A M, et al. Biomarkers for monitoring efficacy of bioremediationby microbial inoculants. Environmental Pollution,2000,107:217-223.
    Jansson J K. Marker and reporter genes: illuminating tools for environmental microbiologists.Current Opinion in Microbiology,2003,6:310-316.
    Jeon C, Park J Y, Yoo Y J. Novel immobilization of alginic acid for heavy metal removal.Biochemical Engineering Journal,2002,11:159-166.
    Jiang HL, Maszenan A M, Tay J H. Bioaugmentation and coexistence of two functionally similarbacterial strains in aerobic granules.Applied Microbiology and Biotechnology,2007,75:1191-1200.
    Jiang HL, Tay J H, Maszenan A M, et al. Enhanced phenol biodegradationand aerobic granulationby twocoaggregating bacterial strains. Environmental Science and Technology,2006,40:6137-6142.
    Jiao Y, Zhao QL, Jin WB, et al. Bioaugmentation of a biological contact oxidation ditch withindigenousnitrifying bacteria for in situ remediation of nitrogen-rich stream water.Bioresource Technology,2011,102:990-995.
    Jin RF, Yang H, Zhang AL et al. Bioaugmentation on decolorization of C.I. Direct Blue71byusinggenetically engineered strain Escherichia coli JM109(pGEX-AZR). Journal ofHazardous Materials,2009,163:1123-1128.
    Kao W C, Wu J Y, Chang C C, et al. Cadmium biosorption by polyvinyl alcohol immobilizedrecombinant Escherichia coli. Journal of Hazardous Materials,2009,169:651-658.
    Kasai Y, Kodama Y, Takahata Y, et al. Degradative capacities and bioaugmentation potential ofan anaerobic benzene-degrading bacterium strain DN11. Environmental Science andTechnology,2007,41:6222-6227.
    Katsivela E, Moore E R B, Kalogerakis N. Monitoring of the degradation activities and thediversity of the microbial community degrading refinery waste sludge. Water Air and SoilPollution,2004,4:75-85.
    Khoo K M, Ting Y P. Biosorption of gold by immobilized fungal biomass. BiochemicalEngineering Journal,2001,8:51-59.
    Kim J W, Rainina E I, Mulbry W W, et al. Enhanced-rate biodegradation of organophosphateneurotoxins by immobilized nongrowing bacteria. Biotechnology Progress,2002,18:429-436.
    Kim S Y, An J Y, Kim B W. Improvement of the decolorization of azo dye by anaerobic sludgebioaugmented with Desulfovibrio desulfuricans. Biotechnologyand Bioprocess Engineering,2007,12:222-227.
    KimWH,NishijimaW, BaesAU, et al. Micropollutant removal with saturated biologicalactivatedcarbon(BAC) inozonation-BAC process.Water Science and Technology,1997,36:283-298.
    KisoY, KonT, KitaoT, et al. Rejection properties of alkyl phthalates with nano filtrationmembranes.JournalofMembraneScience,2001,182:205-214.
    Klemba M, Jakobs B, Wittich R M, et al. Chromosomal integration of tcb chlorocatecholdegradation pathway genes as a means of expanding the growth substrate range of bacteria toinclude haloaromatics.Applied and Environmental Microbiology,2000,66:3255-3261.
    Kluwe W M, McConnell E F, Huff J E,et al. Corcinogenicity testing of phthalate esters and relatedcompound by the National Toxicity Program and the National Cancer Institute.Environmentaland Health Perspectives,1982,45:129~133.
    Lanthier M, Tartakovsky B, Villemur R, et al. Microstructure of anaerobic granules bioaugmentedwith Desulfitobacterium frappieri PCP-1. Applied and Environmental Microbiology,2002,68:4035-4043.
    Lenz M, Marie Enright A, O‘Flaherty V, et al. Bioaugmentation ofUASB reactors withimmobilized Sulfurospirillum barnesii for simultaneous selenate and nitrate removal.AppliedMicrobiology and Biotechnology,2009,83:377-388.
    Lestan D, Lamar R T. Development of fungal inocula for bioaugmentation of contaminated soils.Applied and Environmental Microbiology,1996,62:2045-2052.
    Lestan D, Le tan M, Chapelle J A, et al. Biological potential of fungal inocula forbioaugmentation of contaminated soils. Journal of Industrial Microbiology,1996,16:286-294.
    Leung K T, So J S, Kostrzynska M,et al. Using a green fluorescent protein gene-labeledp-nitrophenoldegrading Moraxella strain to examine the protective effect of alginateencapsulation against protozoan grazing. Journal of Microbiological Methods,2000,39:205-211.
    Li JX, Gu JD, Pan L. Transformation of dimethyl phthalate, dimethyl isophthalate and dimethylterephthalate by Rhodococcus rubber Sa and modeling the processes using the modifiedGompertz model. International Biodeterioration Biodegradation,2005a,55:223-232.
    Li JX, Gu JD, Yao JH. Degradation of dimethyl terephthalate by Pasteurella multocidaSa andSphingomonas paucimobilis Sy isolated from mangrove sediment. Journal of HazardousMaterials,2005b,56:158-165.
    Li JX, Gu JD. Biodegradation of dimethyl terephthalate by Pasteurella multocidaSa follows analternative biochemical pathway. Ecotoxicology,2006,15:391-397.
    Li M, Fiorenza S, Chatham J R, et al.1,4-Dioxane biodegradation at low temperatures inArcticgroundwater samples. Water Research,2010,44:2894-2900.
    Li Q X, Kang C B, Zhang C K. Waste water produced from an oilfield and continuous treatmentwith an oil-degrading bacterium. Process Biochemistry,2005,40:873-877.
    Liang D W, T Zhang, et al. Denitrifying degradation of dimethyl phthalate.Applied Microbiologyand Biotechnology,2007,74:221-229.
    Long Z E, Huang Y H, Cai Z L, et al. Immobilization of Acidithiobacillus ferrooxidans by aPVA-boric acid method for ferrous sulphate oxidation. Process Biochemistry,2004,39:2129-2133.
    Lozinsky V I, Plieva F M. Poly(vinyl alcohol) cryogels employed as matrices for cellimmobilization.3. Overview of recent research and developments. Enzyme and MicrobialTechnology,1998,23:227-242.
    Lozinsky V I, Solodova E V, Zubov A L, et al. Study of cryostructuration of polymer systems. XI.The formation of PVA cryogels by freezing-thawing the polymer aqueous solutionscontaining additives of some polyols. Journal of Applied Polymer Science,1995,58:171-178.
    Lozinsky V I, Zubov A L, Titova E M. Poly(vinyl alcohol) cryogels employed as matrices for cellimmobilization.2. Entrapped cells resemble porous fillers in their effects on the properties ofPVA-cryogel carrier. Enzyme and Microbial Technology,1997,20:182-192.
    Marchesi J R, Sato T, Weightman R J, et al. Design and evaluation of useful bacterium-specificPCR primers that amplify genes coding for bacterial16S rRNA. Applied and EnvironmentalMicrobiology,1998,64:795-799.
    Margesin R, Schinner F. Efficiency of indigenous and inoculated cold-adapted soilmicroorganisms for biodegradation of diesel oil in alpine soils.Applied and EnvironmentalMicrobiology,1997,63:2660-2664.
    Marx J L. Phthalic acid esters-biological impact uncertain. Science,1972,178:46-47.
    Mashetty SB, Manohar S, Karegoudar, TB. Degradation of3-hydroxybenzoic acid by Bacillusspecies. Indian Journal of Biochemistry and Biophysics,1999,33:145~148
    Matteo V. Phthalate esters in freshwaters asmarkers of contamination sources-a site study in Italy.Environment International,1997,23:337-347.
    Mayotte T J, Dybas M J, Criddle C S. Bench-scale evaluation of bioaugmentation to remediatecarbon tetrachloride-contaminated aquifer materials. Ground Water,1996,34:358-367.
    Meng Z Q, Zhao Y, Lu Z M, et al. Development of an advanced biological treatment system usingbioaugmentation technology for the treatment of eutrophic drinking water resources. Clean,2009,37:970-981.
    Mertens B, Boon N, Verstraete W. Slow-release inoculation allows sustained biodegradationofγ-hexachlorocyclohexane. Applied and Environmental Microbiology,2006,72:622-627.
    Meylan W M, Howard P H. Computer estimation of the atmospheric gas phase reaction rate oforganic compounds with hydroxyl radicals and ozone.Chemosphere,1993,26:2693~2699.
    Mitsumata T, Hasegawa C, Kawada H, et al. Swelling and viscoelastic properties of poly(vinylalcohol) physical gels synthesized using sodium silicate. Reactive and Functional Polymers,2008,68:133-140.
    Mohan S V, Falkentoft C, Nancharaiah Y V, et al. Bioaugmentation of microbial communities inlaboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid.Bioresource Technology,2009,100:1746-1753.
    Mohan S V, Rao N C, Prasad K K, et al. Bioaugmentation of an anaerobic sequencing batchbiofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for thetreatment of sulphate bearing chemical wastewater. Process Biochemistry,2005,40:2849-2857.
    Morán A C, Müller A, Manzano M, et al. Simazine treatment history determines a significantherbicide degradation potential in soils that is not improved by bioaugmentation withPseudomonas sp. ADP. Journal of Applied Microbiology,2006,101:26-35.
    M rch Y A, Donati I, Strand B L. Effect of Ca2+, Ba2+, and Sr2+on alginatemicrobeads.Biomacromolecules,2006,7:1471-1480.
    Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for cleaning up of soilscontaminated with aromatic compounds. Microbiological Research,2010,165:363-375.
    Muftah H E N, Shaheen A A M, Souzan M. Biodegradation of phenol by Pseudomonas putidaimmobilized in polyvinyl alcohol (PVA) gel. Journal of Hazardous Materials,2009,164:720-725.
    Muftah H E N, Sulaiman A Z, Souzan M. Continuous biodegradation of phenol in a spouted bedbioreactor (SBBR). Biochemical Engineering Journal,2010,160:565-570.
    Nagadomi H, Hiromitsu T, Takeno K, et al. Treatment of aquarium water by denitrifyingphotosynthetic bacteria using immobilized in polyvinyl alcohol beads. Journal of Bioscienceand Bioengineering,1999,87:189-193.
    NakamiyaK, Hashinoto S, Ito H, et al. Microbial treatment of bis(2-ethylhexyl) phthalateinpolyvinyl chloride with isolated bacteria. Journal of Bioscience Bioengineering,2005,99:115-119.
    Nalli S, Cooper DG, Nicell JA. Metabolites from the biodegradation of di-ester plasticizers byRhodococcus rhodochrous. Science of the Total Environments,2005,366:286-294.
    Nemergut D R, Wunch K G, Johnson R M, et al. Benzo[a]pyrene removal by Marasmiellustroyanus in soil microcosms. Journal of Industrial Microbiology andBiotechnology,2000,25:116-119.
    Nussinovitch A, Aboutboul Y, Gershon Z, et al. Changes in mechanical, structural and denitrifyingproperties of entrapped Pseudomonas stutzeri bacteria preparation. Biotechnology Progress,1996,12:26-30.
    Nussinovitch A, Nussinovitch M, Shapira R, et al. Influence of immobilization of bacteria, yeastsand fungal spores on the mechanical properties of agar and alginate gels. Food Hydrocolloids,1994,8:361-372.
    Nussinovitch A. Resemblance of immobilized Trichoderma viride spores in an alginate matrix to acomposite material. Biotechnology Progress,1994,10:551-554.
    Padoley K V, Rajvaidya A S, Subbarao T V, et al. Bioaugmentation of pyridine in a completelymixed activated sludge process. Bioresource Technology,2006,97:1225-1236.
    Pan XL, Wang JL, Zhang DY. Biosorption of Pb(II) by Pleurotus ostreatus immobilized incalcium alginate gel.Process Biochemistry,2005,40:2799-2803.
    Park D, Lee D S, Kim Y M, et al. Bioaugmentation of cyanide-degrading microorganisms in afull-scale cokes wastewater treatment facility. Bioresource Technology,2008,99:2092-2096.
    Park E J, Seo J K, Kim M R, et al. Salinity acclimation of immobilized freshwater denitrifier.Aquacultural Engineering,2001,24:169-180.
    Patel DS, Desai AJ, Desai JD. Biodegradation of dimethyl terephthalate by Comamonasacidovorans D-4. Indian Journal of Experimental Biology,1998,36:321-324.
    Pattanapipitpaisal P, Brown N L, Macaskie L E. Chromate reduction by Microbacteriumliquefaciens immobilized in polyvinyl alcohol. Biotechnology Letters,2001,23:61–65.
    Peng XW, Li XG, Peng LJ. Behavior of stable carbon isotope of phthalate acid esters duringphotolysis under ultraviolet irradiation.Chemosphere,2013,92:1557-1562.
    Petri I, Hr ak D, Fingler S, et al. Insight in the PCB-degrading functional community inlong-term contaminated soil under bioremediation. Journal of Soils and Sediments,2011,11:290-300.
    Phelps T J, Siegrist R L, Korte N E, et al. Bioremediation of petroleum hydrocarbons in soilcolumn lysimeters from Kwajalein island. Applied Biochemistry and Biotechnology,1994,45:835-845.
    Plangklang P, Reungsang A. Bioaugmentation of carbofuran by Burkholderia cepacia PCL3in abioslurry phase sequencing batch reactor. Process Biochemistry,2010,45:230-238.
    Poopal A C, Laxman R S. Hexavalent chromate reduction by immobilized Streptomyces griseus.Biotechnology Letters,2008,30:1005-1010.
    Pradeep S, Faseela P, Josh M K S. Fungal biodegradation of phthalate plasticizer in situ.Biodegradation,2013,24:257-267
    Pramanik S, Khan E. Effects of cell entrapment on growth rate and metabolic activity of purecultures commonly found in biological wastewater treatment. Biochemical EngineeringJournal,2009,46:286-293.
    Qu YY, Zhou JT, Wang J, et al. Population dynamics in bioaugmented membrane bioreactor fortreatment of bromoamine acid wastewater.Bioresource Technology,2009,100:244-248.
    Qu YY, Zhou JT, Wang J, et al. Bioaugmentation of bromoamine acid degradation withSphingomonas xenophaga QYY and DNA fingerprint analysis of augmented systems.Biodegradation,2006,17:83-91.
    Quan XC, Shi HC, Liu H, et al. Removal of2,4-dichlorophenol in a conventional activated sludgesystem through bioaugmentation. Process Biochemistry,2004,39:1701-1707.
    Quan X C, Shi H C, Wang J L, et al. Biodegradation of2,4-dichlorophenol in sequencing batchreactors augmented with immobilized mixed culture. Chemosphere,2003a,50:1069-1074.
    Quan X C, Shi H C, Zhang Y M, et al. Biodegradation of2,4-dichlorophenol in an air-lifthoneycomb-like ceramic reactor. Process Biochemistry,2003b,38:1545-1551.
    Quan XC, Tang H, Ma JY. Effects of gene augmentation on the removal of2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrateconditions. Journal of Hazardous Materials,2011,185:689-695.
    Quan XC, Tang H, Xiong WC, et al. Bioaugmentation of aerobic sludge granules with a plasmiddonor strain forenhanced degradation of2,4-dichlorophenoxyacetic acid. Journal ofHazardous Materials,2010,179:1136-1142.
    Raina V, Suar M, Singh A, et al. Enhanced biodegradation of hexachlorocyclohexane(HCH) incontaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation,2008,19:27-40.
    Rostron W M, Stuckey D C, Yong A A. Nitrification of high strength ammonia wastewaters:comparative study of immobilisation media. Water Research,2001,35:1169-1178.
    Saavedra J M, Acevedo F, González M, et al. Mineralization of PCBs by the genetically modifiedstrain Cupriavidus necator JMS34and its application for bioremediation of PCBs in soil.Applied Microbiology and Biotechnology,2010,87:1543-1554.
    Sarkar J, Chowdhury P P, Dutta T K. Complete degradation of di-n-octyl phthalate by Gordoniasp strain Dop5. Chemosphere,2013,90:2571-2577
    Sasaki H, Nonaka J, Sasaki T, et al. Ammonia removal from livestock wastewater byammonia-assimilating microorganisms immobilized in polyvinyl alcohol. Journal ofIndustrial Microbiology and Biotechnology,2007,34:105-110.
    Satoh H, Okabe S, Yamaguchi Y, et al. Evaluation of the impact of bioaugmentation andbiostimulation by in situ hybridization and microelectrode. Water Research,2003,37:2206-2216.
    Schütte U M E, Abdo Z, Bent S J, et al. Advances in the use of terminal restriction fragmentlength polymorphism (T-RFLP) analysis of16S rRNA genes to characterize microbialcommunities. Applied Microbiology and Biotechnology,2008,80:365-380.
    Selvaratnam S, Schoedel B A, McFarland B L, et al. Application of reverse transcriptase PCR formonitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batchreactor. Applied and Environmental Microbiology,1995,61:3981-3985.
    Selvaratnam S, Schoedel B A, McFarland B L, et al. Application of the polymerase chain reaction(PCR) and reverse transcriptase/PCR for determining the fate of phenol-degradingPseudomonsa putida ATCC11172in bioaugmeted sequencing batch reactor. AppliedMicrobiology and Biotechnology,1997,47:236-240.
    Seo J K, Jung I H, Kim M R, et al. Nitrification performance of nitrifiers immobilized inPVA(polyvinyl alcohol) for a marine recirculating aquarium system. AquaculturalEngineering,2001,24:181-194.
    Shan G B, Xing J M, Liu H Z, et al. Biodesulfurization using Pseudomonas delafieldii in magneticpolyvinyl alcohol beads. Letters in Applied Microbiology,2005,40:30-36.
    Sheng P X, Wee K H, Ting Y P, et al. Biosorption of copper by immobilized marine algal biomass.Biochemical Engineering Journal,2008,136:156-163.
    Silva M L B D, Alvarez P J J. Enhanced anaerobic biodegradation ofbenzene-toluene-ethylbenzene-xylene–ethanol mixtures in bioaugmented aquifer columns.Applied and Environmental Microbiology,2004,70:4720-4726.
    Simon M A, Bonner J S, Page C A, et al. Evaluation of two commercial bioaugmentation productsforenhanced removal of petroleum from a wetland. Ecological Engineering,2004,22:263-277.
    Singer A C, van der Gast C J, Thompson I P. Perspectives and vision for strain selection inbioaugmentation. Trends in Biotechnology,2005,23:74-77.
    Siripattanakul S, Wirojanagud W, McEvoy J M, et al. A feasibility study of immobilized and freemixed culture bioaugmentationfor treating atrazine in infiltrate.Journal of HazardousMaterials,2009,168:1373-1379.
    Stallwood B, Shears J, Williams P A, et al. Low temperature bioremediation of oil-contaminatedsoil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritimeAntarctica. Journal of Applied Microbiology,2005,99:794-802.
    Staples C A, Peterson D R, Parkerton T H, et al. The environmental fate of phthalate esters: aliterature review. Chemosphere,1997,35:667-749.
    Su D G, Tao C Y, Liu Z H, et al. Removal of PAEs by combined activated carbon-Fenton process.Environmental Science,2007,28:2734-2739.
    Szczesna A M, Antczak T, Bielecki S. Stability of extracellular proteinase productivity by Bacillussubtilis cells immobilized in PVA-cryogel. Enzyme Microbial Technology,2004,34:168-176.
    Szczesna A M, Galas E. Bacillus subtilis cells immobilised in PVA-cryogels. BiomolecularEngineering,2001,17:55-63.
    Tacx J C J F, Schoffeleers H M, Brands A G M, et al. Dissolution behavior and solution propertiesof polyvinylalcohol as determined by viscometry and light scattering in DMSO,ethyleneglycol and water. Polymer,2000,41:947-957.
    Tahhan R A, Ammari T G, Goussous S J, et al. Enhancing the biodegradation of total petroleumhydrocarbonsin oily sludge by a modified bioaugmentation strategy. InternationalBiodeterioration Biodegradation,2011,65:130-134.
    Takei T, Ikeda K, Ijima H, et al. Fabrication of Poly(vinyl alcohol) hydrogel beads crosslinkedusing sodium sulfate for microorganism immobilization. Process Biochemistry,2011,46:566-571.
    Tawabini BS, Al-Suwaiyan MS. Removal of dimethyl phthalate from water byUV-H2O2process.Journal of Environmental Engineering and Science,2004,3:289-294.
    Tezuka M, Okada S, Tamemasa O. Radiolytic decontamination of di-n-butyl phthalate from water.Radioisotopes,1978,27:306-310.
    Ting Y P, Sun G. Use of polyvinyl alcohol as a cell immobilization matrix for copper biosorptionby yeast cells. Journal of Chemical Technology and Biotechnology,2000,75:541-546.
    Tyagi M, da Fonseca M M R, de Carvalho C C C R. Bioaugmentation and biostimulationstrategies to improve the effectiveness of bioremediation process. Biodegradation,2011,22:231-241.
    Van der Gast C J, Whiteley A S, Starkey M, et al. Bioaugmentation strategies for remediatingmixed chemical effluents. Biotechnology Progress,2003,19:1156-1161.
    Van der Meer J R, Eggen R I L, Zehnder A J B, et al. Sequence analysis of the Pseudomonas sp.strain P51tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence forspecialization of catechol1,2-dioxygenases for chlorinated substrates. Journal ofBacteriology,1991,173:2425-2434.
    Van Herwijnen R, Joffe B, Ryngaert A, et al. Effect of bioaugmentation and supplementarycarbon sources on degradation of polycyclic aromatic hydrocarbons by a soil-derived culture.FEMS Microbiology and Ecology,2006,55:122-135.
    Van Limbergen H, Top E M, Verstraete W. Bioaugmentation in activated sludge: current featuresand future perspectives. Applied Microbiology and Biotechnology,1998,50:16-23.
    Vega D, Bastide J. Dimethylphthalate hydrolysis by specific microbial esterase. Chemosphere,2003,51:663~668
    Venkata M S, Falkentoft C, Nancharaiah Y V, et al. Bioaugmentation of microbial communities inlaboratory and pilotscale sequencing batch biofilm reactors using the TOLplasmid.Bioresource Technology,2009,100:1746-1753.
    Vogel T M. Bioaugmentation as a soil bioremediation approach. Current Opinion in Biotechnology,1996,7:311-316.
    Wang C, Li Y, Liu ZG, et al. Bioremediation of nitrobenzene-polluted sediments by Pseudomonasputida. Bulletin in Environmental Contamination and Toxicology,2009,83:865-868.
    Wang F, D rfler U, Schmid M, et al. Homogeneous inoculation vs. microbial hot spots of isolatedstrainand microbial community: what is the most promising approachin remediating1,2,4-TCB contaminated soils. Soil Biology and Biochemistry,2010,42:331-336.
    Wang J L. Effect of di-n-butyl phthalate (DBP) on activated sludge. Process Biochemistry,2004,39:1831-1836.
    Wang JL, Chen C. Biosorption of heavy metal by Saccharomyces cerevisiae: a review.Biotechnology Advances,2006,24:427-451.
    Wang JL, Chen LJ, Shi HC, et al. Microbial degradation of phthalic acid esters under anaerobicdigestion of sludge.Chemosphere,2000,41:1245-1248.
    Wang JL, Han LP, Shi HC, et al. Biodegradation of quinoline by gel immobilized Burkholderia sp.Chemosphere,2001,44:1041-1046.
    Wang J L, Hou WH, Qian Y. Immobilization of microbial cells using polyvinyl alcohol(PVA)-polyacrylamide gels. Biotechnology Techniques,1995a,10:203-208.
    Wang JL, Liu P, Qian Y. Biodegradation of phthlic acid ester by acclimated activatedsludge.Environmental International,1996,22:737-741.
    Wang JL, Liu P, Qian Y. Microbial degradation of di-butyl phthalate. Chemosphere,1995b,31:4051-4056.
    Wang J L, Liu P, Qian Y. Biodegradation of phthalic acid esters by immobilized microbial cells.Environment International,1997a,23:775-782.
    Wang JL, Liu P, Shi HC, et al. Biodegradation of phthlic acid esters in soil by indeginous andintroduced microorganisms. Chemosphere,1997b,35:1747-1754.
    Wang JL, Liu P, Shi HC, et al. Kinetics of phthlic acid ester degradation by acclimated activatedsludge. Process Biochemistry,1997c,32:567-571.
    Wang JL, Liu P, Shi HC, et al. Kinetics of biodegradation of phthlic acid esters in continuousculture system. Chemosphere,1998,37:257-264.
    Wang JL, Nigel H. The radial distribution and bioactivity of Pseudomonossp. immobilized incalcium alginate beads. Process Biochemistry,2000,35:465-469.
    Wang JL, Qian Y. Microbial degradation of4-chlorophenol by microorganisms entrapped incarrageenan-chitosan gels. Chemosphere,1999a,38:3109-3117.
    Wang JL, Qian Y. Microbial metabolism of di-butyl phthalate (DBP) by a denitrifying bacterium.Process Biochemistry,1999b,34:745-749.
    Wang J L, Quan X C, Han L P, et al. Microbial degradation of quinoline by immobilized cellsof Burkholderia pickettii. Water Research,2002a,36:2288-2296.
    Wang JL, Quan XC, Wu LB, et al. Bioaugmentation as a tool to enhance the removal of refractorycompound in coke plant wastewater. Process Biochemistry,2002b,38:777-781.
    Wang JL, Ye YC, Wu WZ. Comparison of biodegradation of di-n-methyl phthalate by free andimmobilized microbial cells. Biomedical and Environmental Science,2003,16:126-132.
    Wang J L, Zhang Y X, Wang Y Y, et al. An innovative reactor-type biosensor for BOD rapidmeasurement. Biosensors and Bioelectronics,2010,25:1705-1709.
    Wang JL, Zhao X, Wu WZ. Biodegradation of phthalic acid esters (PAEs) in soilbioaugmentedwith acclimated activated sludge, Process Biochemistry,2004,39:1837-1841.
    Wang MZ, Yang GQ, Min H, et al. Bioaugmentation with the nicotine-degrading bacteriumPseudomonas sp. HF-1in a sequencing batch reactor treating tobacco wastewater:degradation study and analysis of its mechanisms. Water Research,2009,43:4187-4196.
    Wang Y J, Yang X J, Li H Y, et al. Immobilization of Acidithiobacillus ferrooxidans with complexof PVA and sodium alginate. Polymer Degradation and Stability,2006,91:2408-2424.
    Wang Y J, Yang X J, Tu W, et al. High-rate ferrous iron oxidation by immobilized Acidithiobacillsferrooxidans with complex of PVA and sodium alginate. Journal of Microbiology Method,2007a,68:212-217.
    Wang YP, Gu JD. Degradation of dimethyl isophthalate by Viarovorax paradoxus strain T4isolated from deep-ocean sediment of the South China Sea. Human Ecology and RiskAssessment,2006a,12:236-247.
    Wang YP, Gu JD. Degradability of dimethyl terephthalate by Variovorax paradoxus T4andSphingomonas yanoikuyae DOS01isolated from deep-ocean sediments. Ecotoxicology,2006b,15:549-557.
    Wang YY, Fan YZ, Gu JD. Aerobic degradation of phthalic acid by Comamonas acidovoransFy-1and dimethyl phthalate ester by two reconstituted consortia fromsewage sludge at high concentrations. World Journal of Microbiology andBiotechnology,2003,19:811-815.
    Wang Y, Tian Y, Han B, et al. Biodegradation of phenol by free and immobilized Acinetobacter sp.strain PD12. Journal of Environmental Sciences,2007b,19:222-225.
    Watanabe K, Teramoto M, Harayama S. Stable augmentation of activated sludge with foreigncatabolic genes harboured by an indigenous dominant bacterium.EnvironmentalMicrobiology,2002,4:577-583.
    WenQX, Chen ZQ, Zhao Y, et al. Performance and microbial characteristics of bioaugmentationsystems for polyacrylamide degradation.Journal of Polymer andthe Environment,2011,19:125-132.
    Wenderoth D F, Rosenbrock P, Abraham W R, et al. Bacterial community dynamics duringbiostimulation and bioaugmentation experiments aiming at chlorobenzene degradation ingroundwater. Microbiological Ecology,2003,46:161-176.
    Wenderoth D F, Rosenbrock P, Piper D, et al. Assessment of population dynamics of specificstrains in groundwater bioaugmentation experiments by two different molecular techniques.Water Air and Soil Pollution,2002,2:195-203.
    Wildeman S D, Linthout G, Van Langenhove H, et al. Complete lab-scale detoxification ofgroundwater containing1,2-dichloroethane. Applied Microbiology and Biotechnology,2004,63:609-612.
    Winchell L J, Novak P J. Enhancing polychlorinated biphenyl dechlorination in fresh watersediment with biostimulation and bioaugmentation. Chemosphere,2008,71:176-182.
    Winkler J, Timmis K N, Snyder R A. Tracking the response of Burkholderia cepaciaG45223-PR1in aquifer microcosms. Applied and Environmental Microbiology,1995,61:448-455.
    Wu D L, HuB L, et al. Anoxic biodegradation of dimethyl phthalate (DMP) by activated sludgecultures under nitrate-reducing conditions. Journal of Environmental Sciences,2007,19:1252-1256.
    Wu DL, Zheng P, Mahmood Q, et al. Isolation and characteristics of Arthrobacter sp.strain CW-1for biodegradation of PAEs. Journal of Zhejiang University-Science A,2006,8:1469-1474.
    Wu J Y, Huang S C, Chen C T, et al. Decolorization of azo dye in a FBR reactor usingimmobilized bacteria. Enzyme and Microbial Technology,2005,37:102-112.
    Wu K Y A, Wisecarver K D. Cell immobilization using PVA cross linked with boric acid.Biotechnology and Bioengineering,1992,39:447-449.
    Wu M H, Liu N, Xu G, et al. Electron beam radiolysis of diethyl phthalate in aqueous solutions.Environmental Engineering Science,2011,28:257-262.
    Xu XR, Li HB, Gu JD. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalateester by Pseudomonas fluorescens B-1. International Biodeterioration Biodegradation,2005,55:9-15.
    Xu XR, Li HB, Gu JD. Elucidation of n-butyl benzyl phthalate biodegradation usinghigh-performance liquid chromatography and gas chromatography-mass spectrometry.Analytical and Bioanalytical Chemistry,2006,386:370-375.
    Yang GP, Zhao XK, Sun XJ. Oxidative degradation of diethyl phthalate byphotochemically-enhanced Fenton reaction.Journal of Hazardous Materials.2005,126:112-118.
    Yang J X, He M Y, Wang G J. Removal of toxic chromate using free and immobilizedCr(VI)-reducing bacterial cells of Intrasporangium sp. World Journal of Microbiology andBiotechnology,2009,25:1579-1587.
    Yoshida T, Tanabe T, Chen A, et al. Method for the degradation of dibutyl phthalate in water bygamma-ray irradiation. Journal of Radioanalytical and Nuclear Chemistry,2003,255:265–269.
    Yu FB, Ali S W, Guan LB, et al. Bioaugmentation of a sequencing batch reactor withPseudomonas putidaONBA-17, and its impact on reactor bacterial communities. Journal ofHazardous Materials,2010,176:20-26.
    Yu FB, Shen B, Li SP. Isolation and characterization of Pseudomonas sp. strain ONBA-17degrading o-nitriobenzaldehyde. Current Microbiology,2006,53:457-461.
    Yu SQ, Hu J, Wang JL. Gamma radiation-induced catalytic degradation of p-nitrophenol (PNP) inthe presence of TiO2nanoparticles. Radiation Physics and Chemistry,2010a,79:1039-1046.
    Yu SQ, Hu J, Wang JL. Gamma radiation-induced degradation of p-nitrophenol (PNP) in thepresence of hydrogen peroxide (H2O2) in aqueous solution. Journal of Hazardous Materials,2010b,177:1061-1067.
    Yu ZT, Mohn W W. Bioaugmentation with resin-acid-degrading bacteria enhances resin acidremoval in sequencing batch reactors treating pulp mill effluents. Water Research,2001,35:883-890.
    Zain N A M, Suhaimi M S, Idris A. Hydrolysis of liquid pineapple waste by invertase immobilizedin PVA-alginate matrix. Biochemical Engineering Journal,2010,50:83-89.
    Zain N A M, Suhaimi M S, Idris A. Development and modification of PVA-alginate as a suitableimmobilization matrix. Process Biochemistry,2011,46:2122-2129.
    Zeng F, Cui K, Li X, et al. Biodegradation kinetics of phthalate esters by Pseudomonasfluoresences FS1. Process Biochemistry,2004,39:1125-1129.
    Zhang Z Y, Lei Z F, He X Y, et al. Nitrate removal by Thiobacillus denitrificans immobilized onpoly (vinyl alcohol) carriers. Journal of Hazardous Materials,2009,163:1090-1095.
    Zylstra G J, McCombie W R, Gibson D T, et al. Toluene degradation by Pseudomonas putida Fl:genetic organization of the tod operon. Applied and Environmental Microbiology,1988,54:1498-1503.
    安胜姬,郑松志,毛世忠,等.北京昆明湖水中有机污染物的分析及去除.环境化学,2000,19:284-287.
    陈德强,吴振斌,成水平,等. UV/H2O2体系光降解邻苯二甲酸二丁酯研究.环境科学研究,2005,18:50-52.
    程桂荪,刘小秧.增塑剂酞酸二丁酯的微生物降解.环境科学,1986,7:25-28.
    迟杰,王振坤.光照和营养盐对DBP在海河河口水中生物降解的影响.环境保护科学,2005,31:8-10.
    段春星,易筱绮,杨晓为,等.两株邻苯二甲酸二丁酯降解菌的分离鉴定及降解特性的研究,农业环境科学学报,2007,26(5):1937-2941.
    顾宗镰,谢思琴,周德智,城市生活垃圾中的酞酸酯的微生物降解,应用与环境生物学报,1995,l(3):245-251
    郭志顺,罗财红,张卫东,等.三峡库区重庆段江水中持久性有机污染物污染状况分析,中国环境监测,2006,22(4):45-48.
    国伟林,王西奎.城区大气与塑料大棚空气中酞酸酯的分析.环境化学,1997,16(4):382~387.
    韩关根,吴平谷,王惠华,等.水中邻苯二甲酸酯类化合物去除方法实验研究,中国公共卫生,2003,19(2):199-200.
    韩力平,王建龙,刘恒,等.固定化及游离态皮氏伯克霍尔德氏菌(Burkholderia pickettii)降解喹啉的试验研究,环境科学学报,2000,20:379-381.
    韩力平,王建龙,钱易.生物强化技术处理难降解有机废水,环境科学,1999,20:100-102.
    胡俊,王建龙.辐照降解4-氯酚的影响因素,清华大学学报,2006,46:1637-1640.
    贾宁,许恒智,胡亚丽,等.固相萃取-气相色谱法测定北京市水样中的邻苯二甲酸酯.分析试验室,2005,24:18-21.
    金朝晖,黄国兰,柴英涛,等.水体表面微层中酞酸酯的光降解研究.环境化学,1999,18:109-114.
    金偌菲,周集体,王竞,等.基因工程菌对偶氮染料脱色及生物强化作用.大连理工大学学报,2008,48:646-650.
    景伟文,韩文娟. UV/TiO2光催化降解水体中的邻苯二甲酸二甲酯,环境污染与防治,2013,35:40-44.
    李花子. BOD生物传感器的性能优化与应用研究[硕士学位论文],北京:清华大学,2002.
    梁威,胡洪营.印染废水生物强化处理技术研究进展.环境污染治理技术与设备,2004,5:8-11.
    刘春,黄霞,杨景亮.基因强化在难降解污染物生物处理和修复中的应用.微生物学通报,2008,35:286-290.
    刘金苓,钟玉鸣,王丽娇,等.厌氧氨氧化微生物的吸附、包埋固定化效果初探.环境科学学报,2010,30:470-476.
    刘军,王珂,贾瑞宝,等.臭氧一活性炭工艺对饮用水中邻苯二甲酸酯的去除.环境科学,2003,24:77-80.
    刘宁,徐刚,吴明红,等.邻苯二甲酸二丁酯的电子束辐射降解.核技术,2008,31:209-213.
    刘巍,胡中华,刘亚菲,等.新型固定化生物小球的研制及其处理模拟苯胺废水的特性.环境科学学报,2009,29:1195-1202.
    刘洋,陈双基,刘建国.生物强化技术在废水处理中的应用.环境污染治理技术与设备,2002,3:36-40.
    柳树文,李华.改善固定化微生物细胞粒子机械强度的研究.微生物学杂志,2005,25:32-34.
    鲁翌.邻苯二甲酸酯类化合物好氧生物降解的实验研究[博士学位论文],武汉:华中科技大学,2009.
    鲁翌,徐轶鸣,王琳,等.高效酞酸酯降解菌的驯化、筛选及其降解的研究,卫生研究,2007,36:671-673.
    马放,郭静波,赵立军,等.生物强化工程菌的构建及其在石化废水处理中的应用.环境科学学报,2008,28:885-891.
    孟平蕊,王西奎,徐广通,等.济南市土壤中酞酸酯的分析与分布.环境化学,1996,15:427-432.
    沙玉娟,夏星辉,肖翔群.黄河中下游水体中邻苯二甲酸酯的分布特征.中国环境科学,2006,26:120-124.
    山根靖弘,等编.环境污染物与毒性(有机篇).成都:四川科技出版社,1985,75-79.
    沈幸,刘云,邹惠仙,等.太湖水源地水体中半挥发性有机物的监测.环境污染与防治,2006,28:396-398.
    史坚,徐鸿.杭州市大气总悬浮颗粒物中酞酸酯的污染,环境污染与防治,2000,22:44-45.
    仝青,玛沈迎,阮玉英,等.呼和浩特市不同粒径空气颗粒物上酞酸酯的污染,环境科学学报,1999,19:159-163.
    王聪颖,王芳,王涛,等.生物强化和生物刺激对土壤中PAHs降解的影响.中国环境科学,2010,30:121-127.
    王海,张甲耀,魏明宝.生物强化技术在生物修复中的应用.环境科学与技术,2003,26:81-83.
    王建龙.生物固定化技术与水污染控制,北京:科学出版社,2002.
    王建龙,钱易.邻苯二甲酸酯生物降解研究,环境科学,1995,16:26-28.
    王建龙,施汉昌,钱易.聚乙烯醇(PVA)固定化微生物的研究和进展,工业微生物,1998,28:35-39.
    王建龙,施汉昌,钱易.固定化微生物技术在难降解有机污染物治理中的应用,环境科学研究,1999,12:60-34.
    王建龙,文湘华.现代环境生物技术,北京:清华大学出版社.2008.
    王建龙,吴立波,钱易.驯化活性污泥降解邻苯二甲酸脂类化合物的研究,环境科学,1998,19:18-20.
    王建龙,周定.固定化细胞技术在废水处理中的应用及前景,环境科学,1993,14:51-54.
    王剑锋,安立超,张文成. PVA铝盐法固定微生物技术用于焦化废水脱氮的研究.工业水处理,2005,25:39-42.
    王平,陈文亮,蔡维维,等.南京市大气气溶胶中酞酸酯的分布特征,环境化学,2004,23:447-450.
    王西奎,徐广通,王筱梅,等.邻苯二甲酸酯类化合物土壤吸附系数的测定及相关研究.环境污染与防治,1996,18:5-7.
    王侠.三峡库区城市给水厂典型有毒有害有机物分布研究[硕士学位论文],重庆:重庆大学.2007.
    王云.微生物固定化技术处理高浓度氨氮废水的研究[硕士学位论文],南京:南京理工大学.2008.
    吴立波,王建龙,黄霞,等.自固定化高效菌种强化处理焦化废水的研究,中国给水排水,1999,15:1-4.
    夏凤毅,郑平,周琪.邻苯二甲酸酯化合物生物降解与其化学结构的相关性.浙江大学学报,2004,30:141-146.
    邢林林,王竞,曲媛媛,等.生物强化对MBR系统生物特性及群落结构的影响.环境工程学报,2007,1:70-73.
    熊毅,长江三峡库区城市给水厂典型持久性有机污染物研究[硕士学位论文],重庆:重庆大学.2005.
    徐军祥,杨翔华,姚秀清,等.生物强化技术处理难降解有机污染物的研究进展.化工环保,2007,27:129-134.
    叶常明,田康.邻苯二甲酸酯类化合物生物降解动力学.环境科学学报,1989,9:37-40.
    余仲勋,臭氧-吸附剂联用工艺去除饮用水中邻苯二甲酸酯中试研究[硕士学位论文],重庆:重庆大学.2009.
    曾巧云,莫测辉,蔡全英,等.萝卜对邻苯二甲酸酯(PAEs)吸收累积特征及途径的初步研究.环境科学学报,2006,26:10-16.
    张雷,苗月,姜安玺.耐低温硝化细菌固定化技术及脱氮效果.化工进展,2010,29:1567-1570.
    张雅旎,王京刚,陈良杰,等.活性污泥的固定化及其性能研究.化工环保,2007,27:125-128.
    张亚雷,方振炜,徐德强.生物强化技术处理2,6-二叔丁基酚的研究.环境工程,2005,23:32-34.
    赵永富,郑正,汪昌保,等.高能辐射去除饮用水中邻苯二甲酸酯的影响因素,中国环境科学,2013,33:430-435.
    赵振华,全文熠,田德海,等.北京市大气飘尘中的酞酸酯污染.环境化学,1987,6:29-35.
    赵振华.酞酸酯对人与环境潜在危害的研究概况.环境化学,1991,10:64-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700