用户名: 密码: 验证码:
纳米磁粉/石墨烯异质结构材料的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米磁粉/石墨烯异质结构微粉由于其稳定的化学和物理性质,在包括环境、能源、生物医药、催化等的很多领域中具有广泛的应用前景。因此,对磁性石墨烯基异质结构微粉的制备和其性质研究最近几年备受关注。本论文结果如下:
     1形状可控的单分散Fe3O4纳米粒子的热分解制备及其磁性
     我们采用热分解法,使用十二烷二醇为还原剂,成功地合成了形状和尺寸可控的单分散Fe3O4纳米颗粒。通过调节表面活性剂的使用比例,纳米颗粒的形状可容易地控制为球形、立方体和六边形。通过对上百纳米粒子的HRTEM照片和单个纳米粒子STEM图像的分析,我们发现六边形的纳米颗粒为截角八面体,并且其表面出现了很多热力学不稳定的{100}和{111}高能晶面。磁性测量结果表明,截角八面体纳米晶在室温下表现为铁磁性。通过缓慢蒸发溶剂,截角八面体纳米晶可自组装成有序的二维和三维超晶格,这种有序的三维超晶格具有体心立方结构。截角八面体超晶格结构的研究为新一代纳米器件的推广以及应用提供了一种新的方向和设计思路。
     2Fe3O4/graphene异质结构微粉的制备及其微波吸收特性。
     我们通过一个简单的多羟基法成功地制备出了Fe3O4/graphene异质结构微粉。并在纳米尺度上,对其形态、化学和晶体结构进行了系统的表征。我们发现,每个Fe3O4纳米颗粒是具有立方尖晶石结构的多晶材料。我们采用FT-IR光谱、拉曼光谱,热重/差热分析(TG-DTA), X射线衍射(XRD),透射电子显微镜(TEM)等手段对Fe3O4/graphene异质结构微粉的化学价键、表面成分以及形貌结构等进行了详细的表征。微波吸收研究表明,Fe3O4/graphene异质结构微粉/石蜡(50wt%)复合材料在1.48mm的厚度时,其反射损耗值可达-30.1分贝,其匹配频率为17.2GHz。与单纯的Fe3O4纳米颗粒相比,Fe3O4/graphene异质结构微粉表现出良好的微波吸收特性。其微波吸收机理可用界面反射模型描述。
     3FeCo/graphene异质结构微粉的制备及其微波吸收特性。
     我们通过简单的多羟基合成法成功地制备出了颗粒膜状的CoFe2O4/graphene异质结构微粉,然后在氢气氛围中进行热处理制备得到了FeCo/graphene异质结构微粉。结合FeCo合金纳米颗粒优越的磁性质和石墨烯优良的导电性和密度小的特点,相比CoFe2O4纳米颗粒和CoFe2O4/graphene, FeCo/graphene异质结构微粉显示出了优异的吸波特性。FeCo/graphene异质结构微粉/石蜡(50wt%)复合材料在1.48-10mm的厚度范围内其反射损耗在1.5-18GHz的频率范围内均大于10dB。当吸波体的厚度为2.5mm时,在9GHz处出现最大的反射吸收值(-40dB)。其微波吸收机理可用界面反射模型描述。
     4Fe/graphene的异质结构微粉的制备及其微波吸收特性。
     我们使用硼氢化钠作为还原剂,通过水溶液还原法成功地制备出了Fe/graphene异质结构微粉。结合Fe纳米颗粒优越的磁性质和石墨烯优良的导电性和密度小的特点,Fe/graphene异质结构微粉显示出了优异的吸波特性。当Fe/graphene异质结构微粉/石蜡(50wt%)复合材料的厚度为2.6mm时,吸波体在2.5GHz处具有-43dB的反射吸收值。其微波吸收机理可用界面反射模型描述。
     综上所述,对磁性石墨烯基异质结构材料微波吸收特性的研究表明,石墨烯基磁性材料在未来轻质雷达波吸收材料的设计中具有广泛的潜在应用。
     5Fe3O4/graphene异质结构材料用于固定化酶。
     我们首次使用Fe3O4/graphene异质结构微粉用于固定化猪胰脂肪酶。结合Fe304纳米颗粒易分离的特点和石墨烯大的比表面积等优势,Fe3O4/graphene异质结构微粉在固定化脂肪酶时具有高的载酶量,并且可通过外加磁场轻易地从溶液中分离出来。猪胰脂肪酶(PPL)固定在Fe3O4/graphene异质结构微粉上后可多次重复使用并仍能保持很高的催化活性。另外经过Fe3O4/graphene异质结构材料固定化后的脂肪酶具有非常好的热稳定性。我们的工作表明Fe3O4/graphene异质结构材料为未来固定化酶领域提供了一个新的途径和策略,为未来绿色化学和可持续发展的实际应用提供了一种新的思考方式。
Nano-magnetic powders/graphene hybrids have been applicated in various fields, including environments, energy, biomedicine, catalysis and so on, owning to its stable chemical and physical properties. Therefore, the fabrication of nano-magnetic powders/graphene hybrids has attracted much attention in recent years. In the thesis, the achievements are as follows:
     1. Shape-cotrolled synthesis and magnetic properties of monodispersed Fe3O4nanoparticles through thermal decomposition
     Monodispersed hexagonal Fe3O4nanocrystals with high-energy facets were successfully synthesized through a facile modified thermal decomposition method using low-cost1,2-duodecanediol as reducing agent. The shape of the nanocrystals could be easily controlled among spherical, cubic and hexagonal shape by adjusting the molar ratio of surfactants. The hexagonal nanocrystals are proved to have a truncated octahedral shape by analyzing the HRTEM photographs of more than one hundred nanoparticles and STEM images of individual nanocrystals. The truncated octahedral nanocrystals have a large percentage of high-energy{100} and{111} facets exposed, which is thermodynamically unstable. Magnetic measurements show that the truncated octahedral nanocrystals behave ferromagnetic at room temperatures. These Fe3O4nanocrystals could self-assemble into two-dimensional and three-dimensional superlattices. The corresponding FFT patterns show that the super crystal is a bcc structure. Our work reveals that the non-spherical superlattice may be applied in a new generation of nanodevices.
     2. Fabrication of FeO4graphene hybrids and their magnetic properies
     Novel Fe3O4graphene hybrids for applications including microwave-absorbing materials have been fabricated by a simple polyol method, and their morphology, chemistry and crystal structure have been characterized at the nanoscale. It is found that each Fe3O4graphene nanocomposite has a polycrystalline with an fcc spinel structure and an uniform chemical phase. It is suggested that individual Fe3O4nanoparticles chemically bond to the graphene sheets based on the analysis of Raman, FT-IR spectroscopy, thermogravimetry/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Microwave absorption measurement shows that the light-weight Fe3O4/graphene hybrids/paraffins (50wt%) composites have a maximum RL value of-30.1dB at a1.48mm matching thickness and17.2GHz matching frequency, suggesting a good quality of electromagnetic wave absorption. Theoretical analysis using transmission line theory and quarter-wave principles is adapted to describe the microwave absorption behavior of the Fe3O4/graphene hybrids/paraffins (50wt%) composites.
     3. Fabrication of FeCo/graphene hybrids and their magnetic properies
     FeCo/graphene hybrids have been fabricated by a simple polyol method followed by annealing in H2, and their morphology, chemistry and crystal structure have been characterized at the nanoscale. Microwave absorption measurement shows that the light-weight FeCo/graphene hybrids/paraffins (50wt%) composites are good quality of electromagnetic wave absorption in comparison with CoFe2O4and CoFe2O4/graphene hybrids. The reflection loss value is above-10dB in the frequency range of1.5-18GHz, when the thickness of the absorber was in the range of1.5-10mm. And the light-weight FeCo/graphene hybrids/paraffins (50wt%) composites have a maximum RL value of-40dB at a2.5mm matching thickness and9GHz matching frequency. Theoretical analysis using transmission line theory and quarter-wave principles is adapted to describe the microwave absorption behavior of the FeCo/graphene hybrids/paraffins (50wt%) composites.
     4. Fabrication of Fe/graphene hybrids and their magnetic properies
     Fe/graphene hybrids were prepared by a simple reduced method, and their microwave absorption properties were studied. Microwave absorption measurement shows that the light-weight Fe/graphene hybrids/paraffins (70wt%) composites are good quality of electromagnetic wave absorption. The light-weight Fe/graphene hybrids/paraffins (70wt%) have a maximum RL value of-43dB at a2.6mm matching thickness and2.5GHz matching frequency. Theoretical analysis using transmission line theory and quarter-wave principles is adapted to describe the microwave absorption behavior of the Fe/graphene hybrids.
     5. Fabrication of Fe3O4/graphene hybrids for lipase immobilization
     Graphene decorated with magnetic Fe3O4nanoparticles are used to immobilize porcine pancreatic lipase for the first time. Fe3O4nanoparticles are found to be chemically bonded onto graphene sheets. Fe3O4/graphene hybrids show an excellent efficiency of immobilizing porcine pancreatic lipase, but, greatly dependent on the pH value, temperature and denaturant. The porcine pancreatic lipase immobilized on Fe3O4/graphene hybrids becomes recyclable and have a remarkable thermal-stability in comparison with a free porcine pancreatic lipase. Our work demonstrates that Fe3O4/graphene hybrids are high-quality and novel carriers for immobilizing lipase, which could be a good candidate for lipase immobilization.
引文
[1]R. Smalley, Congressional Hearing, Summer,1999.
    [2]王世敏,许祖勋,傅晶。《纳米材料制备技术》。北京:化学工业出版社。2002。
    [3]白春礼。《纳米科技现在与未来》。四川:四川教育出版社。1995。
    [4]徐国材。《纳米科技导论》。北京:高等教育出版社。2005。
    [5]倪星元,姚兰芳,沈军,周斌。《纳米材料制备技术》。北京:化学工业出版社。2008。
    [6]严密,彭晓领。《磁学基础与磁性材料》。浙江:浙江大学出版社。2006。
    [7]A. H. Lu, E. L. Salabas, F. Schuth, Magnetic nanoparticles:synthesis, rotection, functionalization, and application, Angew. Chem. Int. Ed.,2007,46,1222-1244.
    [8]R. H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater.,1999,200,359-372.
    [9]X. Batlle, A. Labarta, Finite-size effects in fine particles:magnetic and transport properties, J. Phys. D:Appl. Phys.,2002,35, R15-R42.
    [10]C. Kittel,1971, 《Introduction to solid state physics》, New York:Wiley
    [11]Q. A. Pankhurst, R. J. Pollard, Origin of the spin-canting anomaly in small ferromagnetic particles, Phys. Rev. Lett.,1991,67,248-250.
    [12]Z. J. Gu, X. Xiang, G. L. Fan, F. Li, Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction-oxidation route, J. Phys. Chem. C,2008,112,18459-18466.
    [13]M. Zheng, X. C. Xu, B. S. Zou, Y. J. Wang, Magnetic properties of nanosized MnFe2O4 particles, J. Magn. Magn. Mater.,1998,183,1-2,152-156.
    [14]W. Gong, H. Li, Z. Zhao, J. Chen, Ultrafine particles of Fe, Co, and Ni ferromagnetic metals, J. Appl. Phys.,1991,69,5119-5121.
    [15]R. H. Kodama, A. E. Berkowitz, E. J. Mcniff, S. Foner, Surface spin disorder in NiFe2O4 nanoparticles, Phys. Rev. Lett.,1996,77,394-397.
    [16]X. G. Li, T. Murai, A. Chiba, S. Takahashi, Particle features, oxidation behaviors and magnetic properties of ultrafine particles of Ni-Co alloy prepared by hydrogen plasma metal reaction, J. Appl. Phys.,1999,86,1867-1873.
    [17]X. H. Li, C. L. Xu, X. H. Han, L. Qiao, T. Wang, F. S. Li, Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition, Nanoscale Res. Lett.,2010,5,1039-1044.
    [18]J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis, Magnetic properties of nanophase cobalt particles synthesized in inversed micelles, J. Appl. Phys.,1994,76,6316-6318.
    [19]B. K. Rao, S. R. D. Debiaggi, P. Jena, Structure and magnetic properties of Fe-Ni clusters, Phys. Rev. B,1996,64,024418.
    [20]A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles:preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett.,2012,7,144-.
    [21]C.P. Bean, J. D. Livingston, Superparamagnetism, J. Appl. Phys.,1959,30,120S-129S.
    [22]R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, D. M. Tricker, Single-domain circular nanomagnets, Phys. Rev. Lett.,1999.83 (5),1042-1045.
    [23]S. Bedanta, W. Kleemann, Supermagnetism, J. Phys. D:Appl. Phys.,2009,42 (1),013001
    [24]R. Skomski, Nanomagnetics, J. Phys. Condens. Mater.,2003,15, R841-896.
    [25]R. C. O'Handley,2000, Modern magnetic materials:principles and applications (Weinheim: Wiley-VCH).
    [26]E. F. Kneller, F. E. Luborsky, Particle size dependence of coercivity and remanence of singe-domain particles, J. Appl. Phys.,1963,34,656-658.
    [27]都有为,徐明祥,吴坚,史莹冰,陆怀先,薛荣华,镍超细微颗粒的磁性,1992,41,149-154.
    [28]X. H. Li, G. G Tan, W. Chen, B. F. Zhou, D. S. Xue, Y. Peng, F. S. Li, N. J. Mellors, Nanostructured and magnetic studies of virtually monodispersed NiFe2O4 nanoparticles synthesized by a liquid-solid-solution assisted hydrothermal route, J. Nanopart. Res.,2012,14, 751.
    [29]S. Peng, C. Wang, J. Xie, S. H. Sun, Synthesis and stabilization of monodisperse Fe nanoparticles, J. Am. Chem. Soc.,2006,128,10676-10677.
    [30]S. H. Sun, C. B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices, J. Appl. Phys.,1999,85,4325-4330.
    [31]丁星兆,柳襄怀,纳米材料的结构、性能及应用,材料导报,1997,11,1-5.
    [32]H. J. Kim, J. B. Lee, Y. M. Kim, M. H. Jung, Z. Jaglicic, P. Umek, J. Dolinsek, Synthesis, structure and magnetic properties of β-MnO2 nanorods, Nanoscale Res. Lett.,2007,2,81-86.
    [33]H. J. Fecht, E. Hellstern, Z. Fu, W. L. Johnson, Nanocrystalline metals and compounds prepared by high energy ball milling, Adv. Powder Metall.,1989,2,111-122.
    [34]M. Ghosh, K. Biswas, A. Sundaresan, C. N. R. Rao, MnO and NiO nanparticles:synthesis and magnetic properties, J. Mater. Chem.,2006,16,106-111.
    [35]F. Bloch, Zur theorie des austauschproblems und der remanenzerscheinung der ferromagnetika, Zeitschrift fur Physik,1932,74,5-6,295-335.
    [36]S. D. Bader, Colloquium:opportunities in nanomagnetism, Rev. Mod. Phys.,2006,78,1-15.
    [37]G. W. Qin, Y. P. Ren, N. Xiao, B. Yang, L. Zuo, K. Oikawa, Development of high density magnetic recording media for hard disk drives:materials science issues and challenges, Int. Mater. Rev.,2009,54,157-179.
    [38]T. Osaka, T. Asahi, J. Kawaji, T. Yokoshima, Development of high-performance magnetic thin film for high-density magnetic recording, Electrochimica Acta,2005,50,4576-4585.
    [39]L. C. Zhou, G. Y. Li, T. C. An, Y. F. Li, Synthesis and characterization of novel magnetic Fe304/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment, Res. Chem. Intermed.,2010,36,277-288.
    [40]P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G X. Xie, Z. F. Liu, Use of iron oxide nanomaterials in wastewater treatment:a review, Sci. Total Environ.,2012,424,1-10.
    [41]G. Z. Chen, S. Desinan, R. Rosei, F. Rosei, D. L. Ma, Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane, Chem. Eur. J.,2012,18, 7925-7930.
    [42]A. H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth, Nanoengineering of a magnetically separable hydrogenation catalyst, Angew. Chem. Int. Ed.2004,43,4303-4306.
    [43]C. Reig, M. D. C. Beltran, D. R. Munoz, Magnetic field sensors based on giant magnetoresistance (GMR) technology:applications in electrical current sensing, Sensors,2009,9, 7919-7942.
    [44]E. Amstad, M. Textor, E. Reimhult, Stabilization and functionalization of iron oxide nanoparticles for biomedical applications, Nanoscale,3011,3,2819-2843.
    [45]T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. V. Rechenberg, Superparamagnetic nanoparticles for biomedical applications:possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater.,2005,293,483-496.
    [46]http://zh.wikipedia.org/wiki/%E9%93%81%E7%A3%81%E6%B5%81%E4%BD%93
    [47]黄娟娟,片状磁性金属及合金纳米颗粒的微波磁性与微波吸收特性研究,兰州大学博士毕业论文,2007.
    [48]王世敏,许祖勋,傅晶。《纳米材料制备技术》。北京:化学工业出版社。2002
    [49]Y. J. Suh, H. D. Jang, H. Chang, W. B. Kim, H. C. Kim, Size-controlled synthesis of Fe-Ni alloy nanoparticles by hydrogen reduction of metal chlorides, Powder Technol.,2006,161, 196-201.
    [50]N. M. Hwang, D. K. Lee, Charged nanoparticles in thin film and nanostructure growth by chemical vapour deposition, J. Phys. D:Appl. Phys.,2010,43,483001.
    [51]S. J. Oh, C. J. Choi, S. J. Kwon, S. H. Jin, B. K. Kim, J. S. Park, Mossbauer analysis on the magnetic properties of Fe-Co nanoparticles synthesized by chemical vapor condensation process, J. Magn. Magn. Mater.,2004,280,147-157.
    [52]C. J. Choi, X. L. Dong, B. K. Kim, Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation, Scripta. Mater.,2001,44,2225-2229.
    [53]Z. H. Wang, C. J. Choi, J. C. Kim, B. K. Kim, Z. D. Zhang, Characterization of Fe-Co alloyed nanoparticles synthesized by chemical vapor condensation, Mater. Lett.,2003,57, 3560-3564.
    [54]D. Li, C. J. Choi, B. K. Kim, Z. D. Zhang, Characterization of Fe/N nanoparticles synthesized by the chemical vapor condensation process, J. Magn. Magn. Mater.,2004,277,64-70.
    [55]J. S. Lee, S. S. Im, C. W. Lee, J. H. Yu, Y. H. Choa, S. T. Oh, Hollow nanoparticles of β-iron oxide synthesized by chemical vapor condensation, J. Nanopart. Res.,2004,6,627-631.
    [56]A. Hemberg, S. Konstantinidis, P. Viville, F. Renaux, J. P. Dauchot, E. Llobet, R. Snvders, Effect of the thickness of reactively sputtered WO3 submicron thin films used for NO2 detection, Sensor Actuat. B:Chem.,2012,171-172,18-24.
    [57]M. A. P. Yazdi, N. Fenineche, E. Aubry, A. Kaibi, A. Billard, Microstructure and magnetic properties of Ni3Fe solid solution thin films deposited by DC-magnetron sputtering, J. Alloy Compd.,2013,550,252-257.
    [58]R. Bussamara, D. Eberhardt, A. F. Feil, P. Migowski, H. Wender, D. P. D. Moraes, G. Machado, R. M. Papaleo, S. R. Teixeira, J. Dupont, Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface:a novel method to obtain a magnetic biocatalyst, Chem. Commun.,2013,49,1273-1275.
    [59]K. Maaz, G. H. Kim, Single domain limit for NixCo1-xFe2O4 (0    [60]C. Pereira, A. M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M. P. F. Garcia, A. Guedes, P. B. Tavares, J. M. Greneche, J. P. Araujo, C. Freire, Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles:tuning the particle size and magnetic properties through a novel one-step coprecipitation route, Chem. Mater.,2012,24,1496-1504.
    [61]X. G. Lu, G. Y. Liang, Y. M. Zhang, Structure and magnetic properties of FeCo-SiO2 nanocomposite synthesized by a novel wet chemical method, Mater. Lett.,2007,61,4928-4931.
    [62]C. J. Brinker, G. W. Scherer,1990, Sol-gel science:the physics and chemistry of sol-gel processing,
    [63]S. Wu, A. Z. Sun, W. H. Xu, Q. Zhang, F. Q. Zhai, P. Logan, A. A. Volinsky, Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method, J. Magn. Magn. Mater.,2012,324,3899-3905.
    [64]O. M. Lemine, K. Omri, B. Zhang, L. E. Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties, Superlattice Microst.,2012,52,793-799.
    [65]J. N. Solanki, Z. V. P. Murthy, Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method:a topical review, Ind. Eng. Chem. Res.,2011,50,12311-12323.
    [66]J. Solla-Gullon, E. Gomez, E. Valles, A. Aldaz, J. M. Feliu, Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion, J. Nanopart. Res.,2010,12,1149-1159.
    [67]P. Xu, X. J. Han, M. J. Wang, Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique, J. Phys. Chem. C.,2007,111,5866-5870.
    [68]倪小敏。《磁性金属镍、钴纳米组装结构的控制合成与性质研究》。中国科学技术大学博士论文。2006。
    [69]H. X. Guo, H. Cheng, F. Li, Z. P. Qin, S. P. Cui, Z. R. Nie, Shape-controlled synthesis of FeNi3 nanoparticles by ambient chemical reduction and their magnetic properties, J. Mater. Res., 2012,27,1522-1530.
    [70]S.F.Moustafa, W.M.Daoush, Synthesis of nano-sized Fe-Ni powder by chemical process for magnetic applications, J. Mater. Proc. Tech.2007,181,59-63.
    [71]G. X. Tong, J. G. Guan, In Situ Generated H2 Bubble-Engaged Assembly:A One-Step Approach for Shape-Controlled Growth of Fe Nanostructures, Chem.Mater.2008,20 (10), 3535-3539.
    [72]S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller, Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev.2008,108,2064-2110.
    [73]Y. M. Lee, C. W. Park, H. K. Choi, B. H. Koo, C. G. Lee, Effect of nucleating agents on synthesis of CoNi alloy particles via polyol process, Met. Mater. Int.,2008,14,117-121.
    [74]Z. Beji, T. B. Chaabane, L. S. Smiri, S. Ammar, F. Fievet, N. Jouini, J. M. Greneche, Synthesis of nickel-zinc ferrite nanoparticles in polyol:morphological, structural and magnetic studies, Phys. Stat. Sol. (a),2006,203,504-512.
    [75]E. B. Flint, K. S. Suslick, The temperature of cavitation, Science,1991,253,1397-1399.
    [76]R. A. Mukh-Qasem, A. Gedanken, Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles, J. Colloid Interface Sci.,2005,284,489-494.
    [77]K. V. P. M. Shafi, A. Gedanken, R. B. Goldfarb, I. Felner, Sonochemical preparation of nanosized amorphous Fe-Ni alloys, J. Appl. Phys.,1997,81,6901-6905.
    [78]K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Prog. Ctyst. Growth Charact. Mater.,2007,53,117-166.
    [79]K. He, C. Y. Xu, L. Zhen, W. Z. Shao, Hydrothermal synthesis and characterization of single-crystalline Fe3O4 nanowires with high aspect ratio and uniformity, Mater. Lett.,2007,61, 3159-3162.
    [80]W. Zhang, F. L. Shen, R. Y. Hong, Solvothermal synthesis of magnetic Fe3O4 microparticles via self-assembly of Fe3O4 nanoparticles, Particuology,2011,9,179-186.
    [81]X. Wang, J. Zhuang, Q. Peng, Y. D. Li, A general strategy for nanocrystal synthesis, Nature 2005,437,121-124.
    [82]X. Wang, Y. D. Li, Monodisperse nanocrystals:general synthesis, assembly, and their applications, Chem. Commun.,2007,2901-2910.
    [83]J. Park, J. Joo, S. G. Kwon, Y. J. Jang, T. Hyeon, Synthesis of monodisperse spherical nanocrystals, Angew. Chem. Int. Ed.2007,46,4630-4660.
    [84]H. Zeng, S. Sun, Syntheses, Properties, and Potential Applications of Multicomponent magnetic Nanoparticles, Adv. Funct. Mater.2008,18,391-400.
    [85]http://lianyungang028295.11467.com/product/1695708.asp
    [86]L. Y. Zheng, B. Z. Cui, L. X. Zhao, W. F. Li, G, C. Hadjipanayis, Sm2Co17 nanoparticles synthesized by surfactant-assisted high energy ball milling, J. Alloys Compd.,2012,539,69-73.
    [87]V. Velasco, A. Martinez, J. Recio, A. Hernando, P. Crespo, Synthesis and characterization of FePt nanoparticles by high energy ball milling with and without surfactant, J. Alloys Compd., 2012,536S,S13-S16.
    [88]Z. G. Zhang, Y. H. Liu, G. C. Yao, G Y. Zu, Y. Hao, Synthesis and Characterization of NiFe2O4 Nanoparticles via Solid-State Reaction, Int. J. Appl. Ceram. Technol.,2013,10,142-149.
    [1]B. C. Wang, J. Q. Wei, L. Qiao, T. Wang, F. S. Li, Influence of the interface reflections on the microwave reflection loss for carbonyl iron/paraffin composite backed by a perfect conduction plate, J. Magn. Magn. Mater.,2012,324,761-765.
    [2]I. Kong, S. H. Ahmad, M. H. Abdullah, D. Hui, A. N. Yusoff, D. Puryanti, Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites, J. Magn. Magn. Mater.,2010,322,3401-3409.
    [3]T. Inui, K. Konishi, K. Oda, Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites, IEEE Trans. Magn.,1999,35,3148-3150.
    [4]J. Q. Wei, Z. Q. Zhang, B. C. Wang, T. Wang, F. S. Li, Microwave reflection characteristics of surface-modified Fe5oNi5o fine particle composites, J. Appl. Phys.,2010,108,123908.
    [5]H. B. Yi, X. H. Li, L. Qiao, T. Wang, F. S. Li, Enhanced microwave electromagnetic properties of Coo.4Feo.6/Ce203 nanocomposites, J. Phys. D:Appl. Phys.,2011,44,485001.
    [1]Z. Li, C. Kubel, V. I. Parvulescu, R. Richards, Size tunable gold nanorods evenly distributed in the channels of mesoporous silica, ACS Nano.2008,2,1205-1212.
    [2]S.Kumar, T. Nann, Shape control of II-VI semiconductor nanomaterials, Small 2006,2, 316-329.
    [3]P. W. Voorhees, The theory of Ostwald ripening, J. Statistical Phys.,1985,38,231-252.
    [4]Z. W. Quan, J. Y. Fang, Superlattices with non-spherical building blocks, Nano Today,2010,5, 390-411.
    [1]W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc.,1958,80, 1339.
    [2]J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single-and bi-layer graphene membranes, Solid State Commun.,2007, 143,101-109.
    [3]Y. S. Fu, P. Xiong, H. Q. Chen, X. Q. Sun, X. Wang, High photocatalytic activity of magnetically separable manganese ferrite-graphene heteroarchitectures, Ind. Eng. Chem. Res., 2012,51,725-731.
    [4]J. F. Shen, Y. Z. Hu, M. Shi, N. Li, H. W. Ma, M. X. Ye, One Step Synthesis of Graphene Oxide-Magnetic Nanoparticle Composite, J. Phys. Chem. C.,2010,114,1498-1503.
    [5]X. Y. Yang, X. Y. Zhang, Y. F. Ma, Y. Huang, Y. S. Wang, Y. S. Chen, Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, J. Mater. Chem., 2009,19,2710-2714.
    [6]H. M. Sun, L. Y. Cao, L. H. Lu, Magnetite/reduced graphene oxide nanocomposites:one step solvothermal synthesis and use as a novel platform for removal of dye pollutants, Nano Res.,2011, 4,550-562.
    [7]J. M. Thomas, P. A. Midgley, T. J. V. Yates, J. S. Barnard, R. Raja, I. Arslan, M. Weyland, The chemical application of high-resolution electron tomography:bright Field or Dark Field?, Angew. Chem. Int. Ed.,2004,43,6745-6747.
    [8]F. He, J. T. Fan, D. Ma, L. M. Zhang, C. Leung, H. L. Chan, The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding, Carbon,2010,48,3139-3144.
    [9]J. R. Liu, M. Itoh, K. I. Machida, Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range, Appl. Phys. Lett.,2003,83,4017-4019.
    [10]Z. W. Li, Z. H. Yang, L. B. Kong, Enhanced microwave magnetic and attenuation properties for Z-type barium ferrite composites with flaky fillers, J. Appl. Phys.,2011,110,063907.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700