用户名: 密码: 验证码:
石墨烯/二氧化钛杂化材料的制备及其催化的光解水制氢
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日益增长的能源需求、化石能源的逐渐枯竭以及使用核能带来的环境问题,促进了对洁净可再生替代能源的研究热潮。环境友好的氢能是潜在的替代能源之一,有益于同时解决能源和环境问题。然而,与之相关的氢能生产、储存、运输和使用问题均存在不小的挑战。就氢气的制备而言,当前仍是基于化石燃料的转换,满足不了低碳经济的要求,同时还以消耗化石能源为代价;而利用太阳能以半导体为光催化剂光催化分解水制氢则被认为是最终解决能源问题的有效途径之一。
     为了实现有效地光催化分解水制氢,研究者对半导体光催化剂进行了广泛的探索。二氧化钛被认为是一种重要的光催化剂,具有优异的光电性能、化学稳定性、低成本等优点。催化剂的光吸收能力、能级水平及光生载流子的转换过程,包括光生载流子的产生、复合、分离、迁移和捕获等,都影响光催化制氢的效率。3.2eV的宽带隙导致二氧化钛对太阳光的利用率低,在很大程度上限制了二氧化钛在光催化方面的应用。为了拓展二氧化钛的光吸收范围,形态修饰、非金属元素(C、N、S、P等)的掺杂等是普遍采用的措施。
     另一方面,石墨烯是一种性能优异的碳材料,在室温下具有较高的载流子迁移率(>200000cm2V-1s-1)。基于石墨烯的半导体杂化材料研究取得了很大的进展,其中包括二氧化钛与石墨烯的杂化材料。已有报道表明石墨烯可阻止载流子的复合、促进电荷的转移并提高光催化分解水制氢的效率。
     为获得可见光驱动的、稳定和高效的光催化剂用于太阳能光催化分解水制氢,本论文从二氧化钛的氮掺杂、石墨烯的改性、引入染料作为光敏剂三个方面着手,或者这几个方面的综合应用,制备了一系列二氧化钛与石墨烯的杂化材料。分别利用红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱、原子力显微镜(AFM)、X射线光电子能(XPS)等手段对所制备材料进行了表征。以甲醇水溶液作为光催化产氢体系,通过在线气相色谱仪检测评价了这些材料的光催化活性。
     首先,利用Hummers方法从石墨制备石墨氧化物(GO)。GO含有羟基、羧基等含氧官能团,具有很高的水溶性。通过硼氢化钠还原,GO中的共轭结构得到了重建,该产物称之为酸化石墨烯(RG-COOH)=P25与RG-COOH混合得到二氧化钛与酸化石墨烯的杂化材料TRG-COOH.结果证明,由于RG-COOH的引入,杂化材料的带隙从P25的3.25eV降低到2.80eV。TRG-COOH的光催化制氢效率从P25的8.2μmol h-1g-1提高到73.1μmol h-1g-1,是P25的8.9倍。
     其次,利用溶剂热法制备了氮掺杂的二氧化钛与石墨烯的杂化材料NTG。以乙二胺为氮源,从商业P25制备了氮掺杂二氧化钛NT,再以NT和GO为原料由水热法制备了NTG。XPS分析结果表明二氧化钛与石墨烯之间存在化学键Ti-C的连接。N的含量是1.43at.%。通过紫外漫反射得出NTG的带隙降低到2.69eV。光吸收拓展到可见光区增强了杂化材料光催化制氢的效率。通过荧光光谱分析证实激发电子从二氧化钛的导带转移到作为电子库的石墨烯。在紫外光照射下,P25、NT、TG和NTG的制氢效率分别为76.1、270.0、370.2和716.0μmol h-1g-1, NTG的光催化效率是P25的9.2倍。在可见光照射下,光催化制氢效率分别为8.2、41.0、57.8和112.0μmol h-1g-1, NTG的光催化效率是P25的13.6倍。
     在NTG的基础上,为了进一步提高光催化剂的效率,从P25、乙二胺和氮掺杂石墨烯(NG)通过溶剂热方法制备了氮掺杂二氧化钛与氮掺杂石墨烯的杂化材料NTNG。由氮化锂与四氯化碳溶剂热反应制备了NG。通过XPS分析,NTNG中N的含量是8.6at.%,而NG的N含量是3.5at.%;从NTNG中C1s的高分辨信号上看出Ti-C化学键的形成。石墨烯的N掺杂及Ti-C键接对进一步增强NTNG的光吸收性能均做出了贡献。荧光光谱分析中的荧光猝灭表明NT和NG之间存在相互作用。NG的快速电子转移过程避免了光催化剂光生电子和空穴的复合。电负性较高的N原子具有孤对电子,与石墨烯片层的碳结合成键,改变了邻近碳原子的自旋密度,诱导出更高的载流子密度成为光催化制氢的活性点。紫外光照射下,NTNG的光催化制氢效率为996.8μmol h-1g-1,是P25的13.1倍。
     最后,利用有机染料在可见光区吸收性较强的特点拓宽杂化材料的光吸收性能。以曙红(EY)、P25和GO为起始原料,制备了染料敏化的二氧化钛与石墨烯杂化材料T-G-EY。通过紫外可见漫反射结果中明显看出,该材料在400-600nm处有强吸收,其带隙是2.75eV。在T-G-EY的荧光光谱中,观察到了荧光猝灭,证明成分间存在相互作用。在500W氙灯照射下T-G-EY的光催化制氢效率为84.2μmol h-1g-1,是P25的10.2倍。
     本论文的研究结果表明,利用石墨烯及其衍生物与二氧化钛的结合方式能不同程度地提高光催化剂光催化分解水制氢的活性。活性的提高归因于石墨烯的存在使得光生载流子快速分离、抑制其在光催化剂体表或者体内的复合。氮掺杂拓宽了光吸收的范围,同时诱导产生具有更高载流子浓度的活性区域,更利于还原甲醇水溶液中质子。这些因素在光催化分解水制氢的过程中起到了协同作用。
Driven by the increase in energy needs and the gradually decrease in fossil fuel resources, and also the environmental concerns of nuclear energy, clean and renewable alternative energy recourses are highly demanded. Hydrogen energy has been regarded as one of the potential energy alternatives to simultaneously address energy and environmental problems because of its environmental friendliness. Several challenges are encountered associated with the hydrogen production, storage, transportation and application. Conversion of fossil fuel resources is the most widely adopted method currently for hydrogen to production, which therefore can not fulfill the requirement of low carbon economy as a consequence of our fossil fuel-based energy system. Photocatalytic hydrogen production from water splitting via semiconductor nanomaterials has long been considered the ultimate solution as an alternative route for solar energy utilization.
     Titanium dioxide (T1O2) has been extensively studied and is highlighted as an important semiconductor photocatalyst due to the superior characteristics such as exceptional optoelectronic properties, strong oxidizing power, chemical stability, low cost, and so on. The catalytic efficiency in photocatalytic hydrogen generation is altered by the light absorption ability, the energy levels, the conversion processes of photogenerated charges including generation, recombination, separation, migration and trapping. The wide band gap of TiO2(3.2eV) leads to a low utilization efficiency of sunlight because only the ultraviolet light can meet the energy requirement of electron excitation from the valence band to the conduction band, which hinders the practical application of TiO2in photocatalysis. To extend the light absorption of TiO2, several strategies have been adopted such as the morphology modification, the doping of cation/anion and nonmetal elements (C, N, S, P, etc).
     On the other hand, graphene and its derivatives have been regarded as an important component for various functional composite materials owing to its intriguing properties such as superior mobility of charge carriers at room temperature (>200000cm2V-1s-1). Researches about graphene-based semiconductor photocatalysts, including TiO2/graphene nanocomposites, have recently made much rapid progress in the design and fabrication. It has been demonstrated that graphene retards the charge recombination, accelerates the electron transfer and improves the photocatalytic efficiency of hydrogen evolution from water-splitting. Currently, the development of visible-light-driven, stable and highly efficient photocatalysts is very crucial to large-scale hydrogen evolution utilizing solar energy.
     In order to obtain a desired performance, the present dissertation discusses the fabrication of a series of nanocomposites composed of titania with graphene&its derivatives. The nanocomposites were fabricated via different approaches, including the nitrogen doping of TiO2, the nitrogen doping of graphene, or an organic dye doping in enhancing the photocatalytic efficiency. These hybrids were characterized with Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and photoluminescent spectrometry, etc. The photocatalytic activity was evaluated by measuring the hydrogen evolution amount from the methanol aqueous solution by an on-lined gas chromatography (GC).
     Firstly, graphene oxide (GO) was prepared from graphite by Hummers'method. The obtained GO sheets contain hydroxyl and carboxyl functional groups on basal planes which allows GO to show a good dispersability in aqueous media, while the electric conductibility of GO is poor because of a mass of non-conjugated defects. Interestingly, the partial ion of conjugated structure in GO could be reconstructed by the reduction via sodium borohydride. TRG-COOH nanocomposites were prepared through simply blending TiO2with the partial reduced GO (RG-COOH), which has a red-shifted band gap of2.80eV as compared with that of P25(3.25eV). TRG-COOH nanocomposite showed a much improved photocatalytic activity under irradiation using500W Xenon lamp with a hydrogen evolution of73.1μmol·h-1·g-1as compared with that of P25(8.2μmol·h-1·g-1), which was increased about8.9times.
     Further, nanocomposites of N-doped TiO2with graphene oxide (NTG) were successfully prepared by hydrothermal process from GO and N-doped TiO2(NT) that was prepared via a solvothermal method from commercial P25with1,2-diaminoethane as a nitrogen resource. XPS spectra demonstrated the formation of Ti-C bond between TiO2and graphene. The as-prepared TNG has1.43%N atom, which showed a red-shifted band gap of2.69eV as measured from UV-vis diffuse reflectance spectroscopy. The extending of light absorption to the visible light region would enhance the photocatalytic activity for hydrogen evolution. The excited electrons would mostly transfer to graphene sheets as electron sinks, which was justified by the compared photoluminescence measurements of P25, NT, TG and NTG. UV light irradiation affords P25, NT, TG and NTG a photocatalytic efficiency of76.1,270.0,370.2and716.0μmol h-1g-1, respectively, which is to say that the photocatalytic efficiency of NTG was increased about9.2times as that of P25. The visible light irradiation under Xenon lamp produces a photocatalytic efficiency of8.2,41.0,57.8and112.0μmol·h-1·g-1for P25, NT, TG and NTG, respectively showing about a13.6times activity increase of NTG compared to P25.
     In order to further enhance the photocatalytic efficiency, nanocomposites of nitrogen-doped TiO2and nitrogen-doped graphene (NTNG) were prepared via solvothermal method from P25,1,2-diaminoethane and N-doped graphene. N-doped graphene was obtained via mixing lithium nitride (Li3N) with tetrachloromethane (CCl4) through solvothermal approach. The nitrogen content in NTNG was measured as8.6atom%which is much higher than that of NG (3.5atom%) from XPS analysis. The formation of C-Ti bond between TiO2and NG was demonstrated from the high resolution Cls XPS spectra of NTNG, which endowed a enhanced of light absorption. The observed photoluminescent quenching indicated that a strong interaction between the excited state of NT and NG, the fast electron-transportation process avoids the recombination of photo-generated charges, either the electron or the holes. The electronegative N atom with lone electron pair bonding with C atoms in the graphene sheet would change the spin density and induce a higher charge density for the active sites. The UV light irradiation endows P25, NT and NTNG a photocatalytic efficiency of76.1,270.0and996.8μmol·h-1·g-1, respectively showing that the photocatalytic efficiency of NTNG was increased about13.1times as that of P25.
     Finally, eosin Y (EY) dye sensitized nanocomposite of TiO2with graphene (T-G-EY) were prepared by hydrothermal process starting from EY, TiO2(P25) and graphene oxide (GO). T-G-EY showed a narrower band gap of2.75eV and a very strong absorption in the visible region of400-600nm from the UV-vis diffuse reflectance absorption spectra. Photoluminescent quenching was also observed, illustrating the interactions between each component in the nanocomposite. The photocatalytic efficiency of T-G-EY for hydrogen evolution from methanol aqueous solution under a500W Xenon lamp irradiation was measured as84.2μmolh-1g-1.
     The proposed strategy in this dissertation by the incorporation of graphene&its derivatives with titania enhanced effectively the photocatalytic activity in various degree. TiO2/graphene nanocomposites showed an enhanced photocatalytic activity, which is attributed to the narrowing of band gap and the enhancement of light absorption, the fast separation of photo-generated electron-hole pairs and the retardation of the bulk or surface recombination of photo-induced charges derived from the superior mobility of charge carriers. Nitrogen doping extended the light absorption region further and induced the active region with higher charge density for the reduction of proton in methanol aqueous solution. Improvement in the photocatalytic efficiency for hydrogen evolution is attributed to the synergistic effect of each components in the nanocomposites.
引文
[1]Muradov N Z, Veziroglu T N. "Green" path from fissil-based to hydrogen economy:an overview of carbon-neutral technologeds [J]. Int. J. Hydrogen Energy,2008,33(23): 6804-6839.
    [2]Navarro R M, Pea M A, Fierro J L, et al. Hydrogen production reactions from carbon feedstocks:fossil fuels and biomass [J]. Chem Rev,2007,107:3952-3991.
    [3]Cormos C C, Starr F, Tzimas E, et al. Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture [J]. Int J Hydrogen Energy,2008,33: 1286-1294.
    [4]Hochbaum A I, Yang P D. Semiconductor nanowires for nenrgy conbversion [J]. Chem Rev, 2010,110:527-546.
    [5]Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation [J]. Chem Rev,2010,110:6503-6570.
    [6]毛宗强.氢能:21世纪的绿色能源[M].北京:化学工业出版社,2005.1
    [7]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [8]Turner J, Sverdrup G, Mann M K, et al. Renewable hydrogen production [J]. Int J Energy Res,2008,32:379-407.
    [9]Mao S S, Chen X. Selected nanotechnologies for renewable energy applications[J]. Int J Energy Res,2007,31:619-636.
    [10]Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure [J]. J Am Chem Soc,2003,125:3082-3089.
    [11]Kudo A, Kato H, Nakagawa, S. Water splitting into H2 and O2 on new Sr2 M2O7 (M= Nb and Ta) photocatalysts with layered perovskite structures:factors affecting the photocatalytic activity [J]. J Phys Chem B,2000,104:571-575.
    [12]Kim H G, Hwang D W, Bae S W, Jung J H, et al. Photocatalytic water splitting over La2Ti207 synthesized by the polymerizable complex method [J]. Catal Lett,2003,9: 193-198.
    [13]Ikeda S, Hara M, Kondo J N, et al. Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water [J]. Chem Mater,1998,10:72-77.
    [14]Bard A. Photoelectrochemistry [J]. Science,1980,207:139-144.
    [15]Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals [J]. Am Mineral,2000,85:543-556.
    [16]Michael Gra"tzel. Photoelectrochemical cells [J]. Nature,2001,414:338-344.
    [17]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem Rev,1995,95:735-758.
    [18]Kaneko M, kura I. Photocatalysis:Science and technology [M]. Springer-Verlag:New York, 2002.
    [19]Sang W B, Sang M J, Suk J H, et al. Photocatalytic overall water splitting with dual-bed system under visible light irradiation [J]. Int J Hydrogen Energy,2009,34:3243-3249.
    [20]Zheng X, Wei L, Zhang Z, et al. Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation [J]. Int J Hydrogen Energy,2009,34: 9033-904.
    [21]李志军,王红英.纳米二氧化钛的性质及应用进展[J].广州化工,2006,34(1):23-25.
    [22]Ulrike Diebold. The surface science of titanium dioxide [J]. Surf sci rep,2003,48:53-229.
    [23]朱艳,陆涛.纳米二氧化钛的性质及应用进展[J].钛工业研究进展,2009,26(3):13-15.
    [24]Mayo M J, Siegel R W, Narayanasamy A, et al. Mechanical properties of nanophase TiO2 as determined by nanoindentation [J]. J Mater Res,1990,5:1073-1082.
    [25]Suryanarayana C. Structure and properities of nanocrystalline materials [J]. Bull Mater Sci, 1994,17:307-346.
    [26]Hoffman M R, Martin S T, Choi W, et al. Environmental application of semiconductor photocatalysis [J]. Chem Rev,1995,95:69-96.
    [27]Bellinger D C. Interpretation of small effete sizes in oeeupationaland environmental neurotoxieology:individual versus populationrisk [J]. Neuro Toxieology,2007,28: 245-251.
    [28]Pustovit V N, Shahbazyan T V. Quantum-size effects in SERTS from noble-metal nanoparticles [J]. Microelectro J,2005,36:559-563.
    [29]Brus L. Semiconductors-squeezing light from silicon [J]. Nature,1991,353:301-302.
    [30]Spanhel L, Haase M, Weller H, et al. Photochemistry of colloidal semiconductors [J]. J Am Chen Soc,1987,109:5649-5655.
    [31]Suyama Y, Kato A. TiO2 produced by vapor-phase oxygenolysis of TiCl4 [J]. J Am Chem Soc,1976,59:146-149.
    [32]Jaturong J, Sorapong P, Yoshikazu S, et al. Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method [J]. J Solid State Chem,2007,180:1743-1749.
    [33]Feng X, Zhai J, Jiang L. The fabrication and awitchable superhydrophobicity of TiO2 nanorod films [J]. Angew Chem Int Ed,2005,44:5115-5118.
    [34]Zhang Y X, Li G H, Jin Y X, et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires [J]. Chen Phys Lett,2002,365:300-304.
    [35]Lasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube [J]. Langmuir,1998,14:3160-3163.
    [36]Xia X H, Liang Y, Wang Z. Synthesis and photocatalytic properties of TiO2 nanostructurs [J]. Mater Res Bull,2008,43:2187-2195.
    [37]Kim C S, Moon B K, Park J H, et al. Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant [J]. J Cryst Growth,2003,257:309-315.
    [38]Li X L, Peng Q, Yi J X, et al. Near monodisperse TiO2 nanoparticles and nanorods [J]. Chen Eur J,2006,12:2383-2391.
    [39]Akihiko K, Yugo M. Heterogeneous photocatalyst materials for water splitting [J]. Chem Soc Rev,2009,38:253-278.
    [40]Mao L Q, Li Q L, Dang H X, et al. Synthesis of nanocrystalline TiO2 with high photocativity and large specific surface area by sol-gel method [J]. Mater Res Bull,2005, 40(2):201-208.
    [41]Zori M H, Sileimani-Gorgani A. Ink-jet printing of micro-emulsion TiO2 nano-particles ink on the surface of glass [J]. Journal of the eurapean ceramic society,2012,32(16): 4271-4277.
    [42]Lin J, Lin Y, Liu P, et al. Hotifluid annealing forcrystalline titanium dioxide nanoparticles in stable suspension [J]. J Am Chen Soc,2002,124:11514-11518.
    [43]Kim C S, Moon B K, Park J H, et al. Solvothermaolsynthesis of nanocrystalline T1O2 in toluene with surfactant [J]. J Cryst Growth,2003,254:405-410.
    [44]Li G L, Wang G H. Synthesis of nanometer-sized TiO2 particles by a microemulsion method [J]. Nanostruct Mater,1999,11:663-668.
    [45]Chen X, Mao S S. Titanium dioxide nanomaterials:synthesis, propertied, modifications and applications [J]. Chen Rec,2007,107:2891-2959.
    [46]章金兵,徐敏,周小英.固相法合成纳米Ti02[J].有色金属:冶炼部分,2005,6:42.45.
    [47]Duillard C, Baldassare D, Duchamp C, et al. Photocatalytic degradation and mineralization of z malodorous compound (dimethyldisulfide) using a continous flow reactor [J]. Catal Today,2007,122(1):160-167.
    [48]Coleman H M, Mimonses V, Leslie G, et al. Degradation of 1,4 dioxane in water using TiO2 based photocatalytic and H2O2/UV processes [J]. J Hazard Mater,2007,146(3): 496-501.
    [49]Kunmu L, Suryanarayanan V, Kuochuan H. A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells [J]. Sol Energ Mat Sol C,2007,91(15): 1416-1420.
    [50]Schrauzer G N, Guth T D. Photocatalytic reactions:photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. J Am Chem Soc,1977,99:7189-7193.
    [51]Chen, X. Chin. J. Titanium dioxide nanomaterials and their energy applications [J]. Catal. 2009,30; 839-851.
    [52]Chae J, Lee J, Jeong J H, et al. Hydrogen production from photo splitting of water using the Ga-incorporated TiO2s prepared by a solvothermal method and their characteristics [J]. Korean Chem Soc,2009,30:302-308.
    [53]Jing D, Zhang Y, Guo L. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution [J]. Chem Phys Lett,2005,415:74-78.
    [54]Sasikala R, Sudarsan V, Sudakar C, et al. Enhanced photocatalytic hydrogen evolution over nanaometer sized Sn and Eu doped titanium oxide [J]. Int. J. Hydrogen Energy,2008,33: 4966-4973.
    [55]O'Regan B, Grfitzel M. A low-cost high efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353(6346):737-739.
    [56]Shibata M, Kudo A, Tanaka A, et al. Photocatalytic activities of layered titanium compounds and their derivatives for H2 evolution form aqueous methanol solution [J]. Chem Lett,1987,16:1017-1018.
    [57]Miseki Y, Kusama H, Sugihara H, et al. Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe (Ⅲ) ion reduction under visible light [J]. J Phys Chem Lett,2010,1:1196-1200.
    [58]Kumar S Q Devi L G. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge, carrier transfer dynamics [J]. JPhys Chem A,2011,115:13211-13241.
    [59]Katherine V, Ashley B, Xavier D, et al. Nitrogen doped TiO2 for hydrogen production under visible light irradiation [J]. Solar Energy,2012,86:558-556.
    [60]Veluru J B, Manippady K K, Appukuttan S N, et al. Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostrures [J]. Int J Hydrogen,2012,37:8897-8904.
    [61]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [62]Chen X, Lou Y, Samia A C S, et al. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts:comparison to a commercial nanopowder [J]. Adv Funct Mater,2005,15:41-49.
    [63]Suda Y, Kawasak H I, Ueda T I, et al. Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method [J]. Thin Solid Films 2004, 453-454:162-166.
    [64]Kobayakawa K, Murakami K, Sato Y. Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea [J]. J Photochem Photobiol A,2004,170:177-179.
    [65]Torres G R, Lindgren T, Lu J, et al. Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation [J]. J Phys Chem B,2004,108:5995-6003.
    [66]Jiang Z, Yang F, Luo N, et al. Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis [J]. Chem Commun,2008,47:6372-6374.
    [67]Mi L, Xu P, Wang P N. Experimental study on the bandgap narrowings of TiO2 films calcined under N2 or NH3 atmosphere [J]. Appl Surf Sci,2008,255:2574-2580.
    [68]Yuan J, Chen M, Shi J, et al. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride [J]. Int J Hydrogen Energy 2006,31: 1326-1331.
    [69]Lin W C, Yang W D, Huang I L, et al. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst [J]. J Energy Fuels,2009,23: 2192-2196.
    [70]Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified N-TiO2 [J]. Science,2002,297:2243-2245.
    [71]Xu C, Shaban Y A, Ingler W B, et al. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting [J]. Sol Energy Mater Sol Cells,2007, 91:938-943.
    [72]Ji P F, Takeuchi M, Cuong T M, et al. Recent advances in visible light-responsive titanium oxide-based photocatalysts [J]. Res Chem Intermed,2010,36:327-347.
    [73]Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst [J]. Chem Commun,2000,15:1371-1372.
    [74]Borgarello E, Kiwi J, Gratzel M, et al.Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles [J]. J Am Chem Soc,1982,104: 2996-3002.
    [75]Umebayashi T, Yamaki T, Itoh H, et al. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations [J]. J Phys Chem Solids 2002,63:1909-1920.
    [76]Cao Y, Yang W, Zhang W, et al. Improved photocatalytic activity of Sn4+doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition [J]. New J Chem 2004,28:218-222.
    [77]Klosek S, Raftery D. Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol [J]. J Phys Chem B,2001,105:2815-2819.
    [78]Dholam R, Patel N, Adami M, et al. Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst [J]. Int J Hydrogen Energy, 2009,34:5337-5346.
    [79]Rengaraj S, Li X Z. Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension [J]. J Mol Catal A Chem,2006, 243:60-67.
    [80]Choi W Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J Phys Chem,1994,98:13669-13679.
    [81]Li M T, Jiang J G, Guo L J. Synthesis, characterization, and photoelectrochemical study of Cd1-xZnxS solid solution thin films deposited by spray pyrolysis for water splitting [J]. Int J Hydrogen Energy,2010,35:7036-7042.
    [82]Anderson S, Constable E C, Dareedwards M P, et al. Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser [J]. Nature, 1979,280:571-573.
    [83]Nguyen T V, Wu J C S, Chiou C H. Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight [J]. Catal Commun,2008,9: 2073-2076.
    [84]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353:737-740.
    [85]Robertson N. Catching the rainbow:light harvesting in dye-sensitized solar cells [J]. Angew Chem Int Ed,2008,47:1012-1014.
    [86]Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight [J]. Chem Lett,2005,34:8-13.
    [87]Maeda K, Eguchi M, Youngblood W J, et al. Niobium oxide nanoscrolls as building blocks for dye-sensitized hydrogen production from water under visible light irradiation [J]. Chem Mater,2008,20:6770-6778.
    [88]Nakahira T, Inoue Y, Iwasaki K, et al. Visible light sensitization of platinized titanium dioxide photocatalyst by surface-coated polymers derivatized with ruthenium tris(bipyridyl) [J]. Chem Rapid Commun,1988,9:13-17.
    [89]Hirano K, Suzuki E, Ishikawa A, et al. Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light [J]. J Photochem Photobiol A,2000,136:157-161.
    [90]Dhanalakshmi K B, Latha S, Anandan S, et al. Dye sensitized hydrogen evolution from water [J]. Int J Hydrogen Energy,2001,26:669-674.
    [91]Ramireddy B, Pratyay B, Sunkara V M. Viable method for the synthesis of biphasic TiO2 nanocrystals with tunable phase composition and enabled visible-light photocatalytic performance [J]. Appl Mater Interfaces,2012,4:1239-1246.
    [92]Houlding V H, Gratzel M. Photochemical hydrogen generation by visible light. Sensitization of titanium dioxide particles by surface complexation with 8-hydroxyquinoline [J]. J Am Chem Soc,1983,105:5695-5696.
    [93]Abe R, Hara K, Sayama K, et al. Steady hydrogen evolution from water on eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation [J]. J Photochem Photobiol A,2000,137:63-69.
    [94]Xiang Q J, Yu J G. Photocatalytic activity of hierarchical flower-like TiO2 superstructures with dominant {001} facets [J]. Chin J Catal,2011,32:525-531.
    [95]Geim A K, Novoselov K S. The rise of graphene [J]. Nat mater,2007,6:183-191.
    [96]Landau L D. Zur Theorie der phasenumwandlungen II. Phys Z Sowjetunion 1937,11: 26-35.
    [97]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306:666-669.
    [98]Yarris L. Falling into the gap. Berkeley Lab researches take a critical first, step toward grapheme transistors. Science@Berkeley Lab,2007, November 30. http://www.lbl.gov/Science-Articles/Archive/sabl/2007/Nov/gap.html
    [99]Allen M J, Tun g V C, Kaner R B. Honeycomb Carbon:A Review of Graphene [J]. Chem Rev,2010,110:132-145.
    [100]Laszl6 P B, Peter N I, Philippe L. Graphene:nanoscale processing and recent applications [J]. Nano Sale,2012,4:1824-1839.
    [101]Si Y, Samulski E T. Synthesis of water soluble graphene [J]. Nano Lett,2008,8: 1679-1682.
    [102]Shen J F, Hu Y Z, Li C, et al. Layer-by-layer self-assembly of graphene nanoplatelets [J]. Langmuir,2009,25:6122-6128.
    [103]Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide [J]. J Phys Chem B,2006,110:8535-8539.
    [104]Dhakate S R, Chauhan N, Sharma S, et al. An approach to produce single and double layer graphene from re-exfoliation of expanded graphite [J]. Carbon,2011,49:1946-1954.
    [105]Khan U, O'Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene [J]. Small,2010,6:864-871.
    [106]Lu J, Yang J X, Wang J Z, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids [J]. ACS Nano, 2009,3:2367-2375.
    [107]Hamilton C E, Lomeda J R, Sun Z Z, et al. High-yield organic dispersions of unfunctionalized graphene [J]. Nano Lett,2009,9:3460-3462.
    [108]Economopoulos S P, Rotas G, Miyata Y, et al. Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene [J]. ACS Nano,2010,4: 7499-7507.
    [109]Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions [J]. J Am Chem Soc,2009,131:3611-3620.
    [110]Li X L, Zhang G Y, Bai X D, et al. Highly conducting graphene sheets and Langmuir-Blodgett films [J]. Nat Nanotechnol,2008,3:538-542.
    [111]Lee J H, Shin D W, Makotchenko V G, et al. One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets [J]. Adv Mater 2009,21(43): 4383-4387.
    [112]Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nat Nanotechnol, 2009,4(4):217-224.
    [113]Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458:872-826.
    [114]Jiao L Y, Wang X R, Diankov G, et al. Facile synthesis of high-quality graphene nanoribbons [J]. Nat Nanotechnol,2010,5:321-325.
    [115]Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium [J]. Nat Mater,2008, 7(5):406-411.
    [116]Dedkov Y S, Fonin M, Rudiger U, et al. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide [J]. Phys Rev Lett,2008,100(1):107602/1-176802/4.
    [117]Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition [J]. Nano Lett,2009,9(1):30-35.
    [118]Wu J S, Pisula W, Mullen K. Graphenes as potential material for electronics [J]. Chem Rev, 2007,107(3):718-747.
    [119]Zhi L J, Mullen K. A bottom-up approach from molecular nanographenes to unconventional carbon materials [J] J Mater Chem,2008,18:1472-1484.
    [120]Yang X Y, Dou X, Rouhanipour A, et al. Two-dimensional graphene nanoribbons [J]. J Am Chem Soc,2008,130:4216-4217.
    [121]Yan X, Cui X, Li L S. Synthesis of large, stable colloidal graphene quantum dots with tunable size [J]. J Am Chem Soc,2010,132(17):5944-5945.
    [122]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45:1558-1565.
    [123]Stankovich S, Piner R D, Nguyen S T, et al. Synthesis andexfoliation of isocyanate-treated graphene oxide nano-platelets [J]. Carbon,2006,44(15):3342-3347.
    [124]Brodie B C. Surle poids atomique du graphite [J]. Ann Chim Phys,1986,59:466-472.
    [125]Staudenmaier L, Ber D. Preparation of graphitic acid [J]. Chem Ges,1898,31:1481-1487.
    [126]Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J Am Chem Soc,1958, 80(6):1339-1339.
    [127]Lv W, Tang D M, He Y B. et al. Low-temperature exfoliated graphenes:vacuum-promoted exfoliation and electrochemical energy storage [J]. ACS Nano,2009,3:3730-3736.
    [128]McAllister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J]. Chem Mater,2007,19:4396-4404.
    [129]Wu Z S, Ren W C, Gao L B, et al. Synthesis of high-quality graphene with a pre-determined number of layers [J]. Carbon,2009,47:493-499.
    [130]Yang D, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy [J]. Carbon,2009,47(1):145-152.
    [131]Lomeda J R, Doyle C D, Kosynkin D V, et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets [J]. J Am Chem Soc,2008,130: 16201-16206.
    [132]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nat Nanotechnol,2008,3(2):101-105.
    [133]Jung I, Dikin D A, Piner R D, et al. Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures [J]. Nano Lett,2008,8(2):4283-4287.
    [134]Wang H L, Robinson J T, Li X L, et al. Solvothermal reduction of chemically exfoliated graphene sheets [J]. J Am Chem Soc,2009,131(29):9910-9911.
    [135]Fan X B, Peng W C, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation [J]. Adv Mater 2008,20(23):4490-4493.
    [136]Ramesha G K, Sampath S. Electrochemical reduction of oriented graphene oxide films:an in situ raman spectroelectrochemical study [J]. J Phys Chem C,2009,113:7985-7985.
    [137]Gomez-Navarro C, Weitz R T, Bittner A M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets [J]. Nano Lett,2007,7(11): 3499-3503.
    [138]Matsumoto Y, Morita M, Kim S Y, et al. Photoreduction of graphene oxide nanosheet by uv-light illumination under H2 [J]. Chem Lett,2010,39(7):750-752.
    [139]Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance [J]. Adv Funct Mater 2009,19(12): 1987-1992.
    [140]Mohanty N, Nagaraja A, Armesto J, et al. High-throughput, ultrafast synthesis of solution-dispersed graphene via a facile hydride chemistry [J]. Small,2010,6(2):226-231.
    [141]Dreyer D R, Murali S, Zhu Y W, et al. Reduction of graphite oxide using alcohols [J]. J Mater Chem,2011,21:3443-3447.
    [142]Fan Z J, Kai W, Yan J, et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide [J]. ACS Nano,2010,5(1):191-198.
    [143]Gao J, Liu F, Liu Y L, et al. Environment-friendly method to produce graphene that employs vitamin c and amino acid [J]. Chem Mater,2010,22(7):2213-2218.
    [144]Bai H, Li C, Shi G. Functional Composite Materials Based on Chemically Converted Graphene [J]. Adv Mater,201,23(9):1089-1115.
    [145]Dmitry V K, Amanda L H, Alexander S, et al. Longitudinal unzipping of carbon nanotubes to form Graphene nanoribbons [J]. Nature,2009,458:872-876.
    [146]Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature,2009,458:877-880.
    [147]De Arco L G, Zhang Y, Schlenker C W, et al. Highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics [J]. ACS Nano,2010,4: 2865-2873.
    [148]Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films [J]. Nano Lett,2010,10:490-493.
    [149]Cai J M, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons [J]. Nature,2010,466:470-473.
    [150]Sinitskii A, Fursina A A, Kosynkin D V, et al. Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes [J]. Appl Phys Lett, 2009,95:253108/1-253108/3.
    [151]Sakamoto J, Heijst J V, Lukin O, et al. Two-dimensional polymers:just a dream of synthetic chemists? [J]. Angew Chem Int Ed,2009,48(6):1030-1069.
    [152]Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons [J]. Nat Mater,2009,8:235-258.
    [153]Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science,2009,323(5915):760-764.
    [154]Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nat Mater,2007,6:652-655.
    [155]Giovannetti G, Khomyakov P A, Brocks G, et al. Doping graphene with metal contacts [J]. J Phys Rev Lett,2008,101(2):026803-026806.
    [156]Chen W, Chen S, Qi D Cet al. Surface transfer p-type doping of epitaxial graphene [J]. J Am Chem Soc,2007,129(34):10418-10422.
    [l57]Ewels C P, Glerup M J. Nitrogen doping in carbon nanotubes [J]. Nanosci Nanotechnol, 2005,5(9):1345-1363.
    [158]Shao Y, Zhang S, Engelhard M H, et al. Nitrogen-doped graphene and its electrochemical applications [J]. Mater Chem,2010,20(35):7491-7496.
    [159]Long B, Manning M, BurkeM, et al. Non-covalent functionalization of graphene using self-assembly of alkane-amines [J]. Adv Funct Mater,2012,22:717-725.
    [160]Zhang J, Zou H, QingQ, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes [J]. J Phys Chem B,2003,107(16):3712-3718.
    [161]Che G, Lakshmi B B, Martin C R, et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method [J]. Chem Mater,1998,10(1): 260-267.
    [162]Maldonado S, Morin S, Stevenson K J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping [J]. Carbon,2006,44(8):1429-1437.
    [163]Di C A, Wei D, Yu G, et al. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors [J]. Adv Mater,2008,20(17):3289-3293.
    [164]Jin Z, Yao J, Kittrell C, et al. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets [J]. ACS Nano,2011,5(5):4112-4117.
    [165]Luo Z, Lim S, Tian Z, et al. Pyridinic N doped graphene:synthesis, electronic structure, and electrocatalytic property [J]. J Mater Chem,2011,21:8038-8044.
    [166]Cho Y J, Kim H S, Baik S Y, et al. Nitrogen-doping structure of nanosize graphitic layers [J]. J Phys Chem C,2011,115(9):3737-3744.
    [l67]Kudashov A G, Okotrub A V, Bulusheva L G, et al. Influence of Ni/Co catalyst composition on nitrogen content in carbon nanotubes [J]. J Phys Chem B,2004,108(26):9048-9053.
    [168]Liu J, Webster S, Carroll D L. Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method [J]. J Phys Chem B,2005,109(33):15769-15774.
    [169]Lv W X, Zhang R, Xia T L,et al. Influence of NH3 flow rate on pyridine-like N content and NO electrocatalytic oxidation of N-doped multiwalled carbon nanotubes [J]. Res,2011, 13(6):2351-2360.
    [170]Zhang C, Fu L, Liu N, et al. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources [J]. Adv Mater,2011,23:1020-1024.
    [171]Choucair M, Thordarson P, Stride J A. Production of graphene based on solvothermal synthesis and sonication [J]. Nat Nanotechnol,2009,4:30-33.
    [172]Deng D, Pan X, Yu L, et al. Toward N-doped graphene via solvothermal synthesis [J]. Chem Mater,2011,23(5):1188-1193.
    [173]Droppa R, Hammer P, Carvalho A C M, et al. Incorporation of nitrogen in carbon nanotubes [J]. J Non-Cryst Solids,2002,299-302:874-879.
    [174]Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique [J]. Nature,1997,388(6644):756-758.
    [175]Suenaga K, Colliex C, Demoncy N, et al. Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon [J]. Science,1997,278:653-655.
    [176]Panchakarla L S, Subrahmanyam K S, Sana S K, et al. Structure, and properties of boron and nitrogen-doped graphene [J]. Adv Mater,2009,21:4726-4730.
    [177]Ghosh A, Late D J, Panchakarla L S, et al. NO2 and humidity sensing characteristics of few-layer graphene [J]. J Exp Nanosci,2009,4:313-322.
    [178]Guo B, Liu Q, Chen E, et al. Controllable N-doping of graphene [J]. Nano Lett,2010, 10(12):4975-4980.
    [179]Sheng Z H, Shao L, Chen J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis [J]. ACS Nano,2011,5(6):4350-4358.
    [180]Li X, Wang H, Robinson J T, et al. Simultaneous nitrogen doping and reduction of graphene oxide [J]. J Am Chem Soc,2009,131(43):15939-15944.
    [181]Golberg D, Bando Y, Bourgeois L, et al. Large-scale synthesis and HRTEM analysis of single-walled B-and N-doped carbon nanotube bundles [J].Carbon,2000,38:2017-2027.
    [182]Morant C, Andrey J, Prieto P, et al. XPS characterization of nitrogen-doped carbon nanotubes[J]. Phys Status Solidi A,2006,203(6):1069-1075.
    [183]Suenaga K, Johansson M P, Hellgren N, et al. Carbon nitride nanotubulite-densely-packed and well-aligned tubular nanostructures [J]. Chem Phys Lett,1999,300:695-700.
    [184]Suenaga K, Johansson M P, Hellgren N, et al. Chem Phys Lett,1999,300:695.
    [185]Wang Y, Shao Y Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing [J]. ACS Nano,2010,4(4):1790-1798.
    [186]Jeong H M, Lee J W, Shin W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes [J]. Nano Lett, 2011,11(6):2472.
    [187]Lin Y C, Lin C Y, Chiu P W. Controllable graphene N-doping with ammonia plasma [J]. ApplPhys Lett,2010,96(13):133110-133113.
    [188]Long D, Li W, Ling L, et al. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide [J]. Langmuir,2010,26(20): 16096-16102.
    [189]Wang D W, Gentle I R, Lu G Q. Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene [J]. Electrochem Commun,2010,12:1423-1427.
    [190]Zhang L M, Diao S O, Nie Y F, et al. Photocatalytic patterning and modification of graphene [J]. J Am Chem Soc,2011,133(8):2706-2713.
    [191]Akhavan O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol [J]. Carbon,2011,49:11-18.
    [192]Zhang J T, Xiong Z G, Zhao X S. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation [J]. J Mater Chem,2011,21:3634-3640.
    [193]Nethravathi C, Nisha T, Ravishankar N, et al. Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide [J]. Carbon,2009, 47:2054-2059.
    [194]Li Q, Guo B D, Yu J G, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets [J]. J Am Chem Soc,2011, 133(28):10878-10884.
    [195]Xiang Q J, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 Composites [J]. J Phys Chem C,2011,115(15): 7355-7363.
    [196]Zhu M S, Chen P L, Liu M H. Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst [J]. ACS Nano, 2011,5(6):4529-4536.
    [197]Lambert T N, Chavez C A, Hernandez-Sanchez B, et al. Synthesis and characterization of titania-graphene nanocomposites [J]. J Phys Chem C,2009,113(46):19812-19823.
    [198]Li N, Liu G, Zhen C, et al. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly [J]. Adv Funct Mater,2011,21(9):1717-1722.
    [199]Wang D H, Choi D W, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion [J]. ACS Nano,2009,3(4):907-914.
    [200]Park Y, Kang S H, Choi W. Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion [J]. Phys Chem Chem Phys,2011,13:9425-9431.
    [201]Zhu C Z, Guo S J, Wang P, et al. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets [J]. Chem Commun,2010,46:7148-7150.
    [202]Chen J S, Wang Z Y, Dong X C, et al. Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities [J]. Nanoscale,2011,3:2158-2161.
    [203]Ding S J, Chen J S, Luan D Y, et al. Graphene-supported anatase TiO2 nanosheets for fast lithium storage [J]. Chem Commun,2011,47:5780-5782.
    [204]Zhang H, Lv X J, Li Y M, et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano,2010,4(1):380-386.
    [205]Wang P, ZhaY M, Wang D J, et al. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties [J]. Nanoscale, 2011,3:1640-1645.
    [206]Shen J F, Yan B, Shi M, et al. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets [J]. J Mater Chem,2011,21:3415-3412.
    [207]Akhavan O, Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation [J]. J Phys Chem C,2009, 113:20214-20220.
    [208]Ng N H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting [J]. J Phys Chem Lett, 2010,1:2607-2612.
    [209]Jia L, Wang D H, Huang Y X, et al. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation [J]. J Phys Chem C,2011,115:11466-11473.
    [210]Zhang X Y, Sun Y J, Cui X L, et al. Influences of reduced graphene oxide on the photoelectrochemical properties of TiO2/reduced graphene oxide nanocomposites [J]. Int J Hydrogen Energy,2011, DOI:10.1016/j.ijhydene.2011.04.053.
    [211]Zhang X Y, Li H P, Cui X L, et al. Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting [J]. J Mater Chem,2010,20:2801-2806.
    [212]Fan W Q, Lai Q H, Zhang Q H, et al. Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution [J]. J Phys Chem C,2011,115: 10694-10701.
    [213]Te-Fu Yeh, Jhih-Ming Syu, Ching Cheng, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Adv Funct Mater,2010,20:2255-2262.
    [214]Yu J G, Wang W G, Cheng B, et al. Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment [J]. J Phys Chem C,2009, 113(16):6743-6750.
    [215]Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania [J]. Adv Funct Mater,2007,17:1984-1990.
    [216]Cheng B, Le Y, Yu J G, et al. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires [J]. Hazard Mater,2010,177:971-977.
    [217]Yu J G, Xiang Q J, Ran J R, et al. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets [J]. Cryst Eng Comm,2010,12:872-879.
    [218]Yoo D H, Tran V C, Pham V H, et al. Enhanced photocatalytic activity of graphene oxide decorated on TiO2 films under UV and visible irradiation [J]. Curr Appl Phys,2011,11: 805-808.
    [219]Zhang Y H, Tang Z R, Fu X Z, et al. TiO2/graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2/graphene truly different from other TiO2/carbon composite materials [J]. ACS Nano,2010,4:7303-7314.
    [220]Liu J C, Bai H W, Wang Y J, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications [J]. Adv Funct Mater,2010,20:4175-4181.
    [221]Du J, Lai X Y, Yang N L, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films:Improved mass-transfer, reduced charge recombination and their enhanced photocatalytic activities [J]. ACS Nano,2011,5:590-596.
    [222]Chen C, Cai W M, Long M C, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction [J]. ACS Nano,2010,4:6425-6432.
    [223]Li B J, Cao H Q. ZnO@graphene composite with enhanced performance for the removal of dye from water [J]. J Mater Chem,2011,21:3346-3349.
    [224]Li N, Wang Z Y, Zhao K K, et al. Graphene-Pd composite as highly active catalyst for the suzuki-miyaura coupling reaction [J]. J Nanosci Nanotechnol,2010,10:6748-6751.
    [225]Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction [J]. J Am Chem Soc,2009,131(23):8262-8270.
    [226]Tang Z H, Shen S L, Zhuang J, et al. Noble metal-promoted three-dimensional macroassembly of single-layered graphene oxide [J]. Angew Chem Int Ed,2010,49: 4603-4607.
    [227]Liu G, Niu P, Yin L C, et al.-Sulfur crystals as a visible-light-active photocatalyst [J]. J Am Chem Soc,2012,134:9070-9073.
    [228]Ghows N, Entezari M H. Sno-synthesis of core-shell nanocrystal (CdS/TiO2) without surfactant [J]. Ultrasonics sonochemistry,2012,19:1070-1078.
    [229]Khnayzer R S, Thompson L B, Zamkov M. Photocatalytic hydrogen production at titania-supported Pt nanoclusters that are derived from surface-anchored molecular precursors [J]. J. Phys Chem C,2012,116:1429-1438.
    [230]Youngblood W J, Lee anna S H, Maeda K. Visible light water splitting using dye-sensitized oxide semiconductors [J]. Accounts of chemical research,2009,42(12):1966-197.
    [231]Gilje S, Han S, Wang MS, et al. A chemical route to graphene for device applications [J]. Nano Lett,2007,7(11):3394-3398.
    [232]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature,2006,442(10):282-286.
    [233]Dreyer D R, Park S, Bielewski CW, et al. The chemistry of graphene oxide [J]. Chem Soc Rev 2010,39(1):228-240.
    [234]Xu Y X, Zhao L, Bai H, et al. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium (Ⅱ) ions [J]. J Am Chem Soc,2009,131(37):13490-13497.
    [235]He H, Riedl T, Lerf A, et al. Solid-state NMR studies of the structure of graphite oxide [J]. J Phys Chem,1996,100(51):19954-19958.
    [236]Zhang J L, Yang H J, Shen G X, et al. Reduction of graphene oxide via Lascorbic acid [J]. Chem Commun,2010,46(7):1112-1114.
    [237]Zhang W F, He Y L, Zhang M S, et al. Raman scattering study on anatase TiO2 nanocrystals [J]. J Phys D Appl Phys.2000,33(8):912-916.
    [238]孙明,于占江,张亚婷,等.P25光催化剂可见光催化的改性研究[J].应用化工,2008,37(5):472-474.
    [239]Yao Y, Li G H, Ciston S N, et al. Photoreactive TiO2/carbon nanotube composites:synthesis and reactivity [J]. Environ Sci Technol,2008,42(13):4952-4957.
    [240]Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbon-nanotube-TiO2 composites [J]. Adv Mater,2009,21(21):2233-2239.
    [241]Zhao Y X, Qiu X F, Burda C. The effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles [J]. Chem Mater,2008,20:2629-2636.
    [242]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible linght [J]. Chem Lett,2003,32:364-365.
    [243]Varley J B, Janotti A, Van de W C G. Mechanism of visible-light photocatalysis in nitrogen-doped TiO2 [J]. Adv Mater,2011,23:2343-2347.
    [244]Zaleska A. Doped-TiO2:a review [J]. Recent Patents on Engineering 2008,2:157-164.
    [245]Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics [J]. J Phys Chem B 2004,108:19912-19916.
    [246]Khalid N R, Ahmed E, Hong Z L, et al. Nitrogen doped TiO2 nanoparticles decorated on graphene sheets for photecatalysis application [J]. Current Applid Physics,2012,12: 1485-1492.
    [247]Shang X P, Zhang M, Wang X B, et al. Sulphur, nitrogen-doped TiO2/graphene oxide composites as high performance photocatalyst [J]. Journal of experimental nanoscience, 2012,1-13.
    [248]Sathish M, Viswanathan B, Viswanath R P, et al. Synthesis, characterization, electronic structure and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst [J]. Chem Mater, 2005,17:6349-6353.
    [249]Morales T S, Pastrana M, Figueiredo J L, et al. Design of graphene-based TiO2 photocatalysts-a review [J]. Environ Sci Pollut Res,2012,19:3676-3687.
    [250]Peng F, Cai L F, Yu H, et al. The solvothermal preparation method of a nitrogen-doped titanium dioxide [J]. ZL 200610122601.5.2007,03,28
    [251]Malard M L, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene [J]. Physics,2009,473:51-87.
    [252]Tang H X, Ehlert G J, Lin Y R, et al. Highly efficient synthesis of graphene nanocomposites [J]. Nano Lett.2012,12 (1):84-90.
    [253]Chen L C, Ho Y C, Guo W S, et al. Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes [J]. Electrochimi Acta, 2009,54 (15):3884-3891.
    [254]Spadavecchia F, Cappellettia G, Ardizzone S, et al. Solar photoactivity of nano-N-TiO2 from tertiary amine:role of defects and paramagnetic species [J]. Applied Catalysis B Environmental,2010,96 (3-4):314-322.
    [255]Chen X B, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J]. J Phys Chem B,2004,108 (40):15446-15449.
    [256]Zhou X S, Peng F, Wang H J, et al. Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium mitride with H2O2 [J]. Mater Re Bull 2011,46:840-844.
    [257]Ceotto M, Presti L L, Cappelletti G, et al. About the nitrogen location in nanocrystalline N-doped TiO2:combined DFT and EXAFS approach [J]. Phys Chem C,2012,116: 1764-1771.
    [258]Xue Y Z, Wu B, Jiang L, et al. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition [J]. J Am Chem Soc,2012,134: 11060-11063.
    [259]Sun L, Wang L, Tian C G, et al. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage [J]. RSC Advances,2012,2:4498-4506.
    [260]Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano,2010,4(3):1321-1326.
    [261]Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for Lithium ion batteries [J]. ACS Nano 2011,5 (7):5463-5471.
    [262]Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets [J]. Nano Lett,2008,8:36-41.
    [263]Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications [J]. ACS Catal,2012,2:781-794.
    [264]Wang X, Zhi L J, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells [J]. Nano Lett,2008,8:323-327.
    [265]Lherbier A, Blase X, Niquet Y M, et al. Charge transport in chemically doped 2D graphene [J]. Phys Rev Lett,2008,101(3):036808.
    [266]Yu H T, Chen S, Fan X F, et al. A structured macroporous Silicon/graphene heterojunction for efficient photoconbersion [J]. Angew Chem Int Ed,2010,49:5106-5109.
    [267]Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon,2008,46: 1994-1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700