用户名: 密码: 验证码:
三峡库区消落带汞的形态转化与释放特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞及其化合物(特别是烷基汞)具有很强的生物毒性、较快的生物富集放大速率和较长的脑器官生物半衰期。自上世纪50年代以来,环境汞污染问题一直受到人们的广泛关注。而去年召开的第10次“汞作为全球污染物(Mercury As a Global Pollutant)”的国际会议议题(2011年7月,加拿大哈利法克斯)以及自2010年开始的全球汞控制公约政府间多轮谈判表明,作为“全球性污染物”的汞及其产生的环境问题,仍是目前乃至今后较长一段时间内人类必须面对的热点问题。
     水库是一个典型的“汞敏感生态系统”,水库环境汞环境化学行为的研究至关重要。三峡水库属特大型年调节水库,按照三峡水库“蓄清拍浊”的调度方式,水库正常蓄水位为175m,防洪限制水位为145m。这种水库调度方式使得水库周边形成垂直高度为30m、面积约350km2的水库消落带。一方面,由于是库区径流的汇集地带,消落带自然也成为环境汞的汇集区(汞汇)。另一方面,它所汇集的汞等污染物最终又会影响到水体质量(汞源)。同时,周期性的水位变化使得消落带将长期处于干湿交替的变换过程,消落带沉积物和上覆水体的性质将会发生一系列变化,如pH、Eh、电导率、微生物、有机质等,沉积物和水体环境的变化对汞的迁移转化以及水生生物的富集将有很大影响。
     目前,对三峡库区汞问题的研究还仅限于对水体汞含量、鱼汞分布、淹没土壤汞含量的调查,而对消落带沉积物中汞的赋存形态转化规律与机制、界面释放特征及其生态效应等方面的研究还相当缺乏。基于此,本文采用野外现场调查采样分析与室内模拟实验研究相结合的方法,对三峡库区消落带沉积物汞在沉积物-大气界面、水体-大气界面、土壤(沉积物)水界面的释放特征,及沉积物中汞赋存形态、转化规律与机制进行了系统研究。
     结果表明,在水位涨落的不同时期,库区消落带土壤(沉积物)-大气界面汞交换通量也是不同的。11月份土壤(沉积物)-大气界面汞交换通量最高,为28.17±36.17ng/m2h。1月份库区消落带土壤(沉积物)-大气界面汞交换通量最低,为-6.80±12.35ng/m2h,总体表现为沉降。总体来看,三峡库区消落带土壤(沉积物)-大气界面汞的交换通量高于国内外森林土壤和背景土壤汞的交换通量,但低于国内外对湿地沉积物、冲积平原土壤及农田土壤的释汞通量。三峡库区消落带土壤(沉积物)-大气界面汞的交换通量具有一定的日变化特征,晴天白天从早晨开始士壤(沉积物)-大气界面汞的交换通量逐渐增加,到正午左右达到峰值,之后交换通量逐渐减小。夜间土壤(沉积物)-大气界面汞交换通量的变化较为平稳,大部分数值在0ng/m2h附近波动。而阴天库区消落带土壤(沉积物)-大气界面汞交换通量变化的趋势不明显。暖季白天土壤(沉积物)-大气界面汞交换通量都以释放(正值)为主,冷季白天则以沉降(负值)为主。夜间,除11月份表现为释放外,其余三个采样时段夜间土壤(沉积物)-大气汞交换总体上均表现为沉降。光照强度是影响白天土壤(沉积物)-大气界面汞交换的最主要因素,随着光照强度的增强,土壤(沉积物)释汞通量呈线性(11月)、对数(1月)或乘幂(5月、7月)形式增加。温度也是影响库区消落带土壤(沉积物)-大气界面汞交换的重要因素,土壤(沉积物)温度和气温都与土壤(沉积物)-大气界面汞释放通量呈指数关系。大气汞浓度是影响消落带夜间土壤(沉积物)-大气界面汞交换的最主要因素。根据实测数据得到了基于诸影响因素的库区消落带土壤(沉积物)-大气汞交换通量的逐步回归方程,并据此估算了三峡库区消落带土壤(沉积物)-大气界面平均汞交换通量为12.77ng/m2h,库区消落带沉积物向大气释汞量为19.53kg/a。
     库区消落带水位涨落的不同时期,水体-大气界面汞交换通量也是不同的。7月份水体-大气界面汞交换通量最高,为24.47±36.32ng/m2h,是其他采样时段水体-大气界面汞交换通量的约4-6倍。11月份库区消落带水体-大气界面汞交换通量最低,为3.83+18.66ng/m2h,最大沉降值(负值)还是出现在冷季的1月份。总体来看,三峡库区消落带水体-大气界面汞的释放通量与国内外学者对海洋、河口水域、水库、湖泊水体的释汞通量相近,但低于国外对大型湿地水体释汞通量的监测结果。三峡库区消落带水体-大气界面汞交换通量的具有一定的日变化特征,从早晨开始水体-大气界面汞的交换通量逐渐增加,到正午左右达到峰值,之后交换通量逐渐减小。夜间水体-大气界面汞交换通量的变化较为平稳,大部分数值在Ong/m2h附近波动。无论是暖季还是冷季,白天水体-大气界面汞交换通量都以释放(正值)为主。夜间,冷季库区消落带水体-大气界面汞交换通量以沉降(负值)为主,暖季界面汞的释放和沉降达到平衡。光照强度是影响白天水体-大气界面汞交换的最主要因素,随着光照强度的增强,水体释汞通量呈对数(11月、1月、5月)或乘幂(7月)形式增加。温度也是影响库区消落带水体-大气界面汞交换的重要因素,水温和气温都与水体-大气界面汞释放通量呈指数关系。大气汞浓度是影响消落带夜间水体-大气界面汞交换的最主要因素。根据实测数据得到了基于诸影响因素的库区消落带水体-大气汞交换通量的逐步回归方程,并据此估算了三峡库区消落带水体/大气平均汞交换通量为14.45ng/m2h,库区消落带水域向大气释汞量为22.21kg/a。
     库区消落带沉积物总汞(THg)含量略高于河流沉积物汞的背景值,但比其他被汞污染的沉积物低很多,三峡库区消落带汞的污染程度较轻。7月份和9月份采集的库区消落带沉积物甲基汞(MeHg)的含量分别为0.128±0.028ng/g和0.031±0.027ng/g。7月份MeHg:THg的值为0.296±0.154%,9月份MeHg:THg的值为0.069±0.081%,两者相差近3倍。不同类型沉积物MeHg:THg的值也存在差异,总体表现为淹水沉积物>半淹水沉积物>落干沉积物。但总体来讲,三峡库区消落带沉积物中汞甲基化的速率和程度还处于较低的水平。7月份库区消落带沉积物中汞的赋存形态依次为强络合态(46.99%)、硫化物结合态(36.28%)、有机及其他络合态(9.57%)、水溶态(4.49%)、胃酸溶态(2.67%)。强络合态是7月份库区消落带沉积物中汞主要的赋存形态,即7月份库区消落带沉积物中汞主要是与铁锰氧化物、无定形有机硫化物等的络合物,以及元素汞和结合于矿物质晶格结构中的汞。9月份库区消落带沉积物中汞的赋存形态依次为硫化物结合态(46.47%)、强络合态(34.73%)、有机及其他络合态(14.18%)、胃酸溶态(2.40%)、水溶态(2.21%)。硫化物结合态是9月份库区消落带沉积物中汞主要的赋存形态,即9月份库区消落带沉积物中汞主要是与硫化物结合态的汞。伴随着淹水沉积物的出露,由于无机汞在相态分布中的溢出效应,强络合态的所占的比例逐渐下降,水溶态和胃酸溶态所占的比例逐渐升高。沉积物落干过程中,经历波浪和坡面径流对库岸沉积物的冲刷,导致弱结合态汞的流失,而强结合态汞如硫化物结合态的汞的比例的增加。室内模拟实验的结果也证实了沉积物在出露过程中,确实存在无机汞相态分布的“溢出效应”。即伴随着沉积物含水量的下降,强络合态的所占的比例逐渐下降,水溶态和胃酸溶态所占的比例逐渐升高。淹水沉积物中汞的迁移性要高于落干沉积物,沉积物出露过程中汞的迁移性增加,落干沉积物淹水后汞的迁移性也会增加。
     淹水期间浅水沉积物(处理A)中甲基汞占总汞的比例为0.41+0.29%,深水沉积物(处理B)中甲基汞占总汞的比例为0.74±0.52%,两处理沉积物甲基汞占总汞的比例之间存在显著性差异(p=0.009),也就是说深水沉积物比浅水沉积物具有更高的甲基汞产率。处理A与处理B上覆水体中活性汞、溶解态汞、甲基汞含量之间没有显著性差异,沉积物孔隙水中活性汞、溶解态汞、甲基汞含量之间也没有显著性差异。但上覆水和沉积物孔隙水活性汞、溶解态汞、甲基汞含量存在显著的差异,也就是说活性汞,溶解态汞,甲基汞在沉积物孔隙水与上覆水之间存在浓度梯度,沉积物孔隙水中活性汞,溶解态汞,甲基汞有向上覆水中迁移扩散的趋势。不同淹水时间两处理沉积物孔隙水中活性汞的扩散通量分别为12.79±5.06ng/m2d(处理A)和13.24+3.68ng/m2d(处理B);溶解态汞的扩散通量分别为154.65±47.12ng/m2d(处理A)和160.23±56.19ng/m2d(处理B)。甲基汞的扩散通量分别为7.61±3.39ng/m2d(处理A)和7.79±4.56ng/m2d(处理B)。各处理之间沉积物/水界面间活性汞,溶解态汞,甲基汞扩散通量没有显著性差异。库区消落带孔隙水中的活性汞对上覆水体活性汞含量的贡献率为0.002-0.011%,孔隙水中的溶解态汞对上覆水体溶解态汞含量的贡献率为0.002-0.017%,孔隙水中的甲基汞对上覆水体甲基汞含量的贡献率为0.015-0.143%。
Mercury and its compounds (especially alkyl mercury) have very strong biological toxicity. And the rate of biological enrichment and amplification were higher than other heavy metals. Meanwhile, their biological half-lifes in brain organ were also much longer. The problem caused by mercury pollution has been aroused public concern. The successful holding of10th International Conference on Mercury as a Global Pollutant (ICMGP) in Halifax, Nova Scotia, Canada in July24-29,2011. And the Intergovernmental Negotiation Committee (INC) organized by UNEP Ad Hoc Open Ended Working Group on Mercury has also been held three times since2010. All of these events do suggest that the focus of international research on mercury have been rise gradually in recent years.
     The ecosystem of reservoir was very sensitive to mercury. It is an indisputable fact that the mercury concentration in fish will higher than other water body after the reservoirs were built. It has already become one of hot topics of mercury research. The largest reservoir in china, the famous Three Gorges Reservoir, is located at the middle reach of the Yangtze River. The water level of the Three Gorges Reservoir fluctuates from145m in summer (May-September) to175m in winter (October-April), and the water-level-fluctuation zone (WLFZ) with area of350km2were formed. On the one hand, WLFZ is an effective sink for mercury due to its integration and accumulation of mercury from both the terrestrial and aquatic environments (the surface water of adjacent river). And mercury from industrial activities and domestic consumption in the uplands may be accumulated in the WLFZ by flooding. On the other hand, the higher Hg concentration in sediment will also influence the quality of overlying water.
     Periodic fluctuation of reservoir water caused the sediment could face a prolonged period of dry and wet alternate. And there will be a series of physical, chemical, mechanical changes (such as pH, Eh, electrical conductivity, microorganisms, organic matter etc.) in sediment and overlying water. There is, however, something that eventually will have a much bigger impact on Release, Movement and Transformation of Mercury in Water-Level-Fluctuating Zone of Three Gorges Reservoir Area, China.
     Up to now, the research about mercury problem in WLFZ of Three Gorges Reservoir Area were just confined to Hg concentrations in water, the distribution of Hg in fish body and investigate the Hg concentrations in flooding soil. However, the speciation of mercury and its transformation in sediment in WLFZ, the characteristic of release from interface and its ecological effects were very insufficient. It's exactly because of this, our research were carried out based on field investigation, field sampling, and laboratory experiments. In this thesis, the author attempts to make a systematic analysis of mercury exchange fluxes on water/air, sediment/air and sediment/water interface in WLFZ. And the speciation of mercury and its transformation in sediment in WLFZ were also included.
     The result showed that the mercury exchange fluxes on soil (sediment)/air surface were difference with water level fluctuated in different sampling periods. The highest value of mercury exchange fluxes on soil (sediment)/air surface was28.17±36.17ng/m2h (emission, November), and the minimum value of mercury exchange fluxes on sediment/air surface was-6.80±12.35ng/m2h (deposition, January). In general, the mercury exchange fluxes on soil (sediment)/air surface in WLFZ were higher than emission from forest soil and background soil at home and abroad, and lower than emission from sediment in wetland, soil in floodplain and soil in agriculture field. There were trend of diurnal variation characteristics of mercury exchange on soil (sediment)/air surface in WLFZ in sunny day. At the daytime, a sharp increase in flux starting in the morning and peak emission at midday, then decreased gradually with sunlight decreased. At the nighttime, mercury exchange fluxes on soil (sediment)/air surface in WLFZ have been stabilized and its value remained at0ng/m h fluctuation. There were non-significant trend of diurnal variation characteristics of mercury exchange on soil (sediment)/air surface in WLFZ in cloudy day. Mercury exchange fluxes on soil (sediment)/air surface in WLFZ were dominated by emission at daytime in warm season. On the contrary, mercury exchange fluxes on soil (sediment)/air surface in WLFZ were dominated by deposition at daytime in cold season. Except November, mercury exchange fluxes on soil (sediment)/air surface in WLFZ were dominated by deposition at nighttime.
     Solar radiation was the most important factor which influenced the mercury exchange fluxes on soil (sediment)/air surface in WLFZ at daytime. The regression analysis reveals that mercury emission from soil (sediment)/air surface increased line (November), logarithmic (January) and power (May and July) with raised solar radiation. Temperature was also important factor which influenced the mercury exchange fluxes on soil (sediment)/air surface in WLFZ. The regression analysis reveals that mercury emission from soil (sediment)/air surface increased exponentially with raised air and soil (sediment) temperature. Hg concentration in the air was the most important factor which influenced the mercury exchange fluxes on soil (sediment)/air surface in WLFZ at nighttime. Based on the measured data, we obtain regression equations. And we calculated the mean value of mercury exchange flux from soil (sediment)/air surface was12.77ng/m2h and annual Hg emission from soil (sediment) in WLFZ to the air to be19.53kg.
     The mercury exchange fluxes on water/air surface were difference with water level fluctuated in different sampling periods. The highest value of mercury exchange fluxes on water/air surface was4.47±36.32ng/m2h (July, four times as great as other sampling periods), and the minimum value of mercury exchange fluxes on sediment/air surface was3.83±18.66ng/m2h (November). The biggest deposition was occurred in January. In general, the mercury exchange fluxes on water/air surface in WLFZ were similar to that of from ocean, estuary, reservoir and lake and lower than emission from large wetland systems at home and abroad. There were trend of diurnal variation characteristics of mercury exchange on water/air surface in WLFZ. At the daytime, a sharp increase in flux starting in the morning and peak emission at midday, then decreased gradually with sunlight decreased. At the nighttime, mercury exchange fluxes on water/air surface in WLFZ have been stabilized and its value remained at0ng/m2h fluctuation. Mercury exchange fluxes on water/air surface in WLFZ were dominated by emission at daytime in warm season and cold season. On the contrary, mercury exchange fluxes on water/air surface in WLFZ were dominated by deposition at daytime in cold season.
     Solar radiation was the most important factor which influenced the mercury exchange fluxes on water/air surface in WLFZ at daytime. The regression analysis reveals that mercury emission from water/air surface increased logarithmic (November, January and May) and power (July) with raised solar radiation. Temperature was also important factor which influenced the mercury exchange fluxes on water/air surface in WLFZ. The regression analysis reveals that mercury emission from water/air surface increased exponentially with raised air and water temperature. Hg concentration in the air was the most important factor which influenced the mercury exchange fluxes on water/air surface in WLFZ at nighttime. Based on the measured data, we obtain regression equations. And we calculated the mean value of mercury exchange flux from water/air surface was14.45ng/m2h and annual Hg emission from sediment in WLFZ to the air to be22.21kg.
     The concentrations of total mercury (THg) in sediment in WLFZ were higher than the background value of sediment under the rivers and lower than that of sediment in other Hg polluted area. The concentrations of methyl mercury (MMHg) in sediment of WLFZ in July and September were0.128±0.028ng/g and0.031±0.027ng/g, respectively. MeHg:THg ratio in sediment of WLFZ in July and September were0.296±0.154%and0.069±0.081%, respectively. MeHg:THg ratio were difference with different type of sediment. And the results indicate that flooding sediment was bigger than semi-flooding sediment, and the value of drying sediment is least. In general, lower methylation potential was found in sediment of WLFZ.
     The Hg contents in each fraction of sediments in July were different, Hg-e (46.99%) ranked first, followed by Hg-s (36.28%), Hg-o (9.57%), Hg-w (4.49%) and Hg-h (2.67%) in that order. In other words, Hg was mainly bound up with Fe and Mn oxides and amorphous organ-sulfur in July. The Hg contents in each fraction of sediments in September were also different, Hg-s (46.47%) ranked first, followed by Hg-e (34.73%), Hg-o (14.18%), Hg-h (2.40%) and Hg-w (2.21%) in that order. In other words, HgS was the main fraction of sediments in September.
     With the flooding sediment exposed to the air, percentages of Hg in Hg-e of sediments were decreased and that of Hg-w and Hg-h were increased. It's called"spillover effects". With the waves and slope runoff bathed the drying sediment, Hg-s was preserved and Hg-w and Hg-h were taken away by erosion, causing HgS was becoming the main fraction of sediments. The existence of "spillover effects"was proved by the results of simulation testing in lab. The results of simulation testing in lab showed that with the water content in sediment decreased, percentages of Hg in Hg-e of sediments were decreased and that of Hg-w and Hg-h were increased. The mobility and bioavailability of Hg in flooding sediments were higher than that of in drying sediment. The process of flooding sediment exposed to the air, the mobility and bioavailability of Hg will increased. Meanwhile, when drying sediments were flooded, the mobility and bioavailability of Hg will also increase.
     In the flooding period, MeHg:THg ratio in sediment of Treatment A (shallow sediment) and Treatment B (deepwater sediment) were0.41±0.29%%and0.74±0.52%, respectively. There existed statistically significant difference between the two methods with independent sample T test. In other words, shallow reservoir sediment has higher methylation potential than that of deepwater reservoir sediment. There existed no statistically significant difference among reactive mercury, dissolved mercury and methyl-mercury in overlying water with paired sample T test. There also existed no statistically significant difference among reactive mercury, dissolved mercury and methyl-mercury in pore water with paired sample T test. However, there existed statistically significant difference between overlying water and pore water for reactive mercury, dissolved mercury and methyl-mercury with paired sample T test.In other words, there existed gradients at the interfaces between overlying water and pore water for reactive mercury, dissolved mercury and methyl-mercury.
     The diffusion flux of reactive mercury for Treatment A and Treatment B were12.79±5.06ng/m2d and13.24±3.68ng/m2d in different experimental flooding duration, respectively. The diffusion flux of dissolved mercury for Treatment A and Treatment B were154.65±47.12ng/m2d and160.23±56.19ng/m2d in different experimental flooding duration, respectively. The diffusion flux of methyl-mercury for Treatment A and Treatment B were7.61±3.39ng/m2d and7.79±4.56ng/m2d in different experimental flooding duration, respectively. There existed no statistically significant difference between Treatment A and Treatment B for the diffusion flux of reactive mercury, dissolved mercury and methyl-mercury with paired sample T test.
     The contribution rate of reactive mercury in pore water to that of in overlying water was0.002-0.011%. The contribution rate of dissolved mercury in pore water to that of in overlying water was0.002-0.017%. And the contribution rate of methyl-mercury in pore water to that of in overlying water was0.015-0.143%.
引文
1. Abernathy A. R., Cumbie P.M. Mercury accumulation by largemouth bass (Micropterus salmoides) in recently impounded reservoirs [J]. Envi-ronm Cont Tox,1977,17:595-602.
    2. Abi-Ghanem C., Bermond A. Fractionation studies of mercury in soils and sediments:A review of the chemical reagents used for mercury extraction [J]. Anal Chim Acta,2009,631:1-12.
    3. Agata K., Jacek N. The role of speciation in analytical chemistry. TrAC Trends in Analytical Chemistry,2000,19(2-3):69-79.
    4. Alberts J.J., Sindler J.E., Miller R.W., Nutter D.E. Elemental mercury evolution mediated by humic acid. Science.1974,184:895-897.
    5. Allard B., Arsenie I. Abiotic reduction of mercury by humic substances in aquatic systems-an important process for the mercury cycle. Water Air Soil Pollut.1991,56:457-464.
    6. Amyot M., Lean D., Poissant L., Doyon M. R. Distribution and transformation of elemental mercury in the St. Lawrence River and Lake Ontario. Can. J. Fish. Aquat. Sci.2000, 57(S1):155-163.
    7. Amyot M., Mierle G., Lean D., McQueen D. Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes [J].Geochim. Cosmochim. Acta,1997, 61:975-987.
    8. Amyot M., Mierle G., Lean D., McQueen D. Sunlight-induced formation of dissolved gaseous mercury in lake waters [J].Environ. Sci. Techno1.,1994,28:2366-2371.
    9. Amyot M., Gill G.A., Morel F.M. Production and loss of dissolved gaseous mercury in coastal seawater [J]. Environmental Science and Technology,1997,31:3606-3611.
    10. Anderson M. R., Scruton D. A., Williams U. P., et al.1995, Mercury in fish in the small wood reservoir, Labrador, twenty one years after impoundment[J]. Water, Air and Soil Pollut,80: 927-931.
    11. Andersson M. E., Gardfeldt K., Wangberg I., Sprovieri F., Pirrone N., Lindqvist O..Seasonal and daily variation of mercury evasion at coastal and off shore sites from the Mediterranean Sea[J].Marine Chemistry,2007,104(3-4):214-226
    12. Andersson M. E., Sommar J., Gardfeldt K., Jutterstrom S. Air-sea exchange of volatile mercury in the North Atlantic Ocean[J].Marine Chemistry.2011,125:1-7
    13. Anthony C. Methyl mercury contamination and emission to the atmosphere from soil amended with municipal sewage sludge [J].J Envlron Qual.1997,26:1650-1654
    14. Arfi R., Guiral D., Bouvy M. Wind-induced resuspension in a shallow tropical lagoon [J]. Estuar. Coast. Shelf Sci.,1993,36 (6):587-604
    15. Bahlmann E., Ebinghaus R., Ruch W. The effect of soil moisture on the emission of mercury from soils. In:Seventh International Conference on Mercury as a Global Pollutant, June 27 -July 2,2004,Ljubljana, Slovenia, RMZ-M&G51:791-794.
    16. Bash J.O., Miller D.R. A note on elevated total gaseous mercury concentrations downwind from an agriculture field during tilling [J]. The science of Total Environment.2007,388:379-388
    17. Bash J.O., Miller D.R., et al. Northeast United States and Southeast Canada natural mercury emissions estimated with a surface emission model [J]. Atmospheric Environment,2004,38: 5683-5692.
    18. Benoit J. M., Shull D.H., Harvey R. M., Beal S. A. Effect of Bioirrigation on Sediment-Water Exchange of Methylmercury in Boston Harbor, Massachusetts. Environ. Sci. Technol.,2009,43 (10):3669-3674
    19. Benoit J.M., Gilmour C.C., Mason R.P. The influence of sulfide on solid phase mercury bioavailability for methylation by pure culturesof Desulfobulbus propionicus (1pr3). Environment Science Technology.2001,35(1):127-132.
    20. Billon G., Ouddane B., Laureyns J., Boughriet A. Chemistry of metal sulfides in anoxic sediments. Phys Chem 2001,3:3586-3592.
    21. Bjornberg K. A., Vahter M., Grawe K. P., et al. Methyl mercury exposure in Swedish women with high fish consumption[J]. Science of the Total Environment,2005,341(1-3):45-52.
    22. Blanchard P., Froude F. A., Martin J. B., et al. Four years of continuous total gaseous mercury (TGM) measurements at sites in Ontario, Canada [J]. Atmospheric Environment,2002,36: 3735-3743.
    23. Bloom N S, Preus E, Katon J, Hiltner M. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils [J]. Anal Chim Acta 2003,479:233-248
    24. Bloom N.S. Speciation and cycling of mercury in Lavaca Bay, Texas, sediments [J]. Environment Science Technology.1999,33(1):7-13.
    25. Boszke L., Kowalskil A., Gosinska G., Szarek R., Siepak J. Environmental.actors Affecting Speciation of Mercury in the Bottom Sediments; an Overview[J]. Polish Journal of Environmental Studies.2003,12(1):5-13
    26. Brassard P., Kramer J.R., Collins P.V. Dissolved metal concentrations and suspended sediment in Hamilton Harbour [J]. J. Great Lakes Res.,1997,23 (1):86-96
    27. Bryan G.W., Langston W.J. Bioavailability, accumulation and effects of heavy metals with special ewference to Untted Kingdom estuaries:a review [J]. Environmental pollution.1992, 76(2):89-131.
    28. Caetano M., Madureira M.J., Vale C. Metal remobilisation during resuspension of anoxic contaminated sediment:short-term laboratory study [J].Water Air Soil Poll.2002,143:23-40.
    29. Cai Y., Jaffe'R., Jones R. Ethylmercury in the soils and sediments of the Florida Everglades [J]. Environ Sci Technol.,1997,31:302-305.
    30. Calmano W., Hong J., Forstner U. Binding and mobilisation of heavy metals in contaminated sediments affected by pH and redox potential[J]. Water Science Technology.1993,28:223-235.
    31. Canavan C. M., Caldwell C. A., Bloom N. S. Discharge of methylmercury enriched hypolimnetic water from a stratified reservoir [J]. Sci Tot Environ,2000,260:159-170.
    32. Carpi A., Lindberg S. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge [J]. Environ Sci Technol,1997,31,2085-2091.
    33. Carpi A., Lindberg S. Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge [J]. Environmental Science and Technology,1997,31: 2085-2091.
    34. Carpi A., Lindberg S.E., Application of a TeflonTM dynamic flux chamber for quantifying soil mercury flux:tests and results over background soil [J]. Atmospheric Environment,1998, 32:873-882.
    35. Castelle S., Schafer J., Blanc G., et al.50-year record and solid state speciation of mercury in natural and contaminated reservoir sediment [J]. Applied Geochemistry,2007,22:1359-1370.
    36. Castelle S., Schafer J., Blanc G, Dabrin A., Lanceleur L., Masson M.. Gaseous mercury at the air-water interface of a highly turbid estuary (GirondeEstuary, France) [J].Marine Chemistry.2009,117(1-4):42-51.
    37. Charlatchka R., Cambier P. Influence of reducing conditions on solubility of trace metals in contaminated soils [J]. Water Air Soil Poll 2000,118:143-167.
    38. Choe K.Y., Gill G. A., Lehman R. D., Han S., Heim W. A., Coale K. H. Sediment-Water Exchange of Total Mercury and Monomethyl Mercury in the San Francisco Bay-Delta [J]. Limnology and Oceanography.2004,49,5,1512-1527
    39. Choi H.D., Holsen T. M. Gaseous mercury fluxes from the forest floor of the Adirondacks [J]. Environmental Pollution,2009,157,2,592-600
    40. Ci Z. J., Zhang X. S., Wang Z. W., Niu Z. C., Diao X. Y., Wang S. W. Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea [J]. Atmos. Chem. Phys, Discuss.,2011,11, 1511-1542.
    41. Cobos D.R., Baker J.M., Nater E.A. Conditional sampling for measuring mercury vapor fluxes[J]. Atmos Environ.2002,36:4309-4321
    42. Cohen M., Artz R., Draxler R., et al. Modeling the atmospheric transport and deposition of mercury to the Great Lakes [J]. Environmental Research,2004,95(3):247-265.
    43. Conaway C. H., Squire S., Mason R. P., et al. Mercury speciation in the San Francisco bay estuary [J]. Mar Chem,2003,80:199-225
    44. Coolbaugh M. F., Gustin M. S., Rytuba J. J., et al. emissions of mercury to the atmosphere from natural sources in Nevada and California [J]. Environmental Geology,2002,42:338-349
    45. Cossa D., Gobeil C. Mercury speciation in the lower St Lawrence estuary [J]. Can J Fish Aquat Sci,2000,57 (S1):138-147-
    46. Costa M., Liss P. Photoreduction and evolution of mercury from seawater [J]. The Science of the Total Environment,2000,261:125-135
    47. Costa M, Liss P. Photoreduction of mercury in seawater and its possible implication for Hg air-sea fluxes [J]. Marine Chemistry,1999,68:87-95
    48. Covelli S., Faganeli J., Horvat M., Brambati A. Porewater distribution and benthic flux measurements of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea) [J]. Estuar. Coast. Shelf Sci.,1999,48,415-428
    49. Covellia S., Faganelib J., Vittorc C. D., Predonzanid S., Acquavitad A., Horvate M. Benthic fluxes of mercury species in a lagoon environment (Grado Lagoon, Northern Adriatic Sea, Italy) [J]. Applied Geochemistry,2008,23(3):529-546
    50. Cox J. A., Carnahan J., Dinuzio J., et al. Source of mercury in fish in new impoundments [J]. Environm Cont Tox,1979,23:779-783.
    51. Davis J. A., Kent D. B. Surface complexation modeling in aqueous geochemistry [J]. Review Mineral 1990,23:177-260.
    52. DeLaune R. D., Jugsujinda A., Devai I., Patrick W. H.Relationship of Sediment Redox Conditions to Methyl Mercury in Surface Sediment of Louisiana Lakes[J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering.2004,39(8):1925-1933
    53. Delongchamp T. M., Ridal J. J., David R. S., Poissant L., Blais J. M. Mercury transport between sediments and the overlying water of the St. Lawrence River area of concern near Cornwall, Ontario [J]. Environmental Pollution.2010,158:1487-1493
    54. Desauziers V., Castre N., LE Cloirec P. Sorption of methylmercury by clays and mineral oxides[J]. Environment Technology.1997,18,1009-1018
    55. Driscoll CT, Yan C, Schofield CL, et al. T he mercury cycle and fish in the Adirondack lakes[J]. Environ Sci Technol.1994,28:136-143
    56. Driscoll N.J.,Evans R.D. Analysis of methyl mercury binding to freshwater humic acids by gel permeation chromatography/hydride generation ICP-MS[J]. Environment Science Technology. 2000,34:4039-4043.
    57. Du Laing G., De Meyer B., Meers E., Lesage E., Van de Moortel A., Tack F.M.G., Verloo M.G. Metal accumulation in inter-tidal marshes:role of sulphide precipitation[J]. Wetlands 2008, 28:735-746.
    58. Du Laing G., Vanthuyne D. R. J., Vandecasteele B., Tack F. M. G, Verloo M. G. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil [J]. Environment Pollution,2007,147:615-625.
    59. Du Laing G., Rinklebe J., Vandecasteele B., Meers E., Tack F.M.G. Trace metal behaviour in estuarine and riverine floodplain soils and sediments:A review [J]. Science of the Total Environment,2009(407):3972-3985.
    60. Eggleton J., Thomas K.V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events [J]. Environment International,2004, 30:973-980.
    61. Engle M. A., Gustin M. S., Zhang H. Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA[J]. Atmospheric Environment,2001,35: 3987-3997.
    62. Engle M. A., Gustin M. S. Scaling of atmospheric mercury emissions from three naturally enriched areas:Flowery Peak, Nevada; Peavine Peak, Nevada; and Long Valley Caldera, California [J]. The Science of the Total Environment,2002,290:91-104
    63. Engle M. A., Tate M. T., Krabbenhoft D. P., et al. Characterization and cycling of atmospheric mercury along the central US Gulf Coast[J]. Applied Geochemistry,2008,23:419-437.
    64. Engle M.A., Gustin M.S., Lindberg S.E.. The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates [J]. Atmospheric Environment,2005,39:7506-7517.
    65. Engle, M.A., Gustin, M.S. Estimating mercury emissions from geothermal systems and volcanoes to the conterminous US Abstract vol. In:8th Internatational Conference Mercury as a Global Pollutant; Madison, WI, USA.2006.
    66. Engle, M.A., Gustin, M.S., Goff, F., et al.. Atmospheric mercury emissions from substrates and fumaroles associated with three hydrothermal systems in the western United States [J]. J. Geophys. Res.2006,111, D17304.
    67. Engle, M.A., Gustin, M.S., Lindberg, S.E., et al.. The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates [J]. Atmos. Environ.,2005,39:7506-7517.
    68. Engle M. A., Gustin M. S., Johnson D.W., et al. Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire [J]. Sci. Total Environ.2006, 367:222-233.
    69. Ericksen J.A., Gustin M.S., Xin M., et al. Air-soil exchange of mercury from background soils in the United States [J]. The science of Total Environment.2006,366:851-863.
    70. Fantozzia L., Ferraraa R., Frontinib F.P., Dinib F. Factors influencing the daily behaviour of dissolved gaseous mercury concentration in the Mediterranean Sea [J]. Marine Chemistry.2007,107(1):4-12
    71. Fearnside P.M. Environmental impacts of Brazil's Tucurui Dam:Unlearned lessons for hydroelectric development in Amazonia [J].Environ Manag.2001,27:377-396.
    72. Feng X., Yan H., Wang S., et al. Seasonal variation of gaseous mercury exchange rate between air and water surface over Baihua reservoir, Guizhou, China [J]. Atmospheric Environmetn, 2004,38:4721-4732
    73. Feng X.B., Wang S.F., Qiu G.L., et al. Total gaseous mercury exchange between water and air during cloudy weather conditions over Hongfeng Reservoir, Guizhou, China [J]. Journal of Geophysical Research,2008,113, D15309, doi:10.1029/2007JD009600.
    74. Feng, X. B.; Li, P.; Qiu, G. L.; Wang, S.; Li, G. H.; Shang, L. H.; Meng, B.; Jiang, H. M.; Bai, W. Y.; Li, Z. G.; Fu, X. W. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China [J]. Environ. Sci. Technol.2008,42 (1),326-332.
    75. Feng, X., Qui, G., Hou, Y., Tang, S.,2005. Total gaseous mercury emissions from soil in Guiyang, Guizhou, China[J]. J. Geophys. Res 110, D14306. doi:10.1029/2004JD0056.
    76. Ferrara R., Maserti B. E., Anderson M., et al. Atmospheric mercury concentrations and fluxes in the Almaden district (Spain) [J]. Atmospheric Environment,1998,32:3897-3904
    77. Ferrara R, Mazzolai B, Edner H, et al. Atmospheric mercury sources in the Mt. Amiata area, Italy [J]. The Science of the Total Environment,1998,213:13-23
    78. Ferrara R., Mazzolai B., Lanzillotta E., et al., Volcanoes emission sources of atmospheric mercury in the Mediterranean basin [J]. The Science of the Total Environment 2000, 259:115-121.
    79. Ferrara, R., B. E. Maserti, M. Andersson, et al.. Mercury degassing rate from mineralized areas in the Mediterranean Basin [J], Water Air Soil Pollut.1997,93:59-66.
    80. Fitzgerald, W. F., Mason, R. P., Vandal, G. M. Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions [J]. Water Air and Soil Pollution,1991, 56:745-767.
    81. Fitzgerald, W.F., Lamborg, C.H. Geochemistry of mercury in the environment. In:Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. Elsevier, Amsterdam,2005. 107-148.
    82. Frear D.E.H., Dills D.E. Mechanism of the insecticidal action of mercury and mercury salts [J]. J Econ Entomol 1967,60,970-974.
    83. Friedli, H.R., Radke, L.R., Lu, J.Y. Mercury in smoke from biomass fires [J]. Geophys. Res. Lett.2001,28:3223-3226.
    84. Fu X.W., Feng X.B, Wan, Q., Meng B., Yan H.Y., Guo Y.N. Probing Hg evasion from surface waters of two Chinese hyper/meso-eutrophic reservoirs [J]. Science of The Total Environment,2010,408(23):5887-5896
    85. Fujii. Mercury distribution in lithosphere and atmosphere [M]. Kodansha Scientific,1976
    86. Fujiki M., Tajima S. The Pollution of Minamata Bay by Mercury. Water Science & Technology,1992,25(11):133-140
    87. Gabriel M. C., Williamson D. G, Zhang H., et al.. Diurnal and seasonal trends in total gaseous mercury flux from there urban ground surfaces [J]. Atmosphere Environment,2006, 40:4269-4284
    88. Gagnon C., Pelletier E.,Mucci A.. Diagenetic behavior of methy mercury in organic-rich coastal sediments [J]. Limnol Oceanogr.1996,41:428.
    89. Galloway, M.E., Branfireun, B.A. Mercury dynamics of a temperate forest wetland [J]. The Science of the Total Environment.2004.325:239-254.
    90. Gambrellr P. Trace and toxic metals in wetlands:a review [J]. Journal of Environmental Quality, 1994,23(5):883-891.
    91. Gardfeldt K., Feng X., Sommar J., et al. Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions [J]. Atmospheric Environment,2001,35: 3027-3038
    92. Gbor, P. K., Wen, D., Meng, F., Yang, F., Zhang, B., Sloan, J. J. Improved model for mercury emission, transport and deposition [J]. Atmos. Environ.2006,40(5),973-983.
    93. Gill G. A., Bloom N.S., Cappellino S., Driscoll C.T., Dobbs C., McShea L., Mason R., Rudd J.W.M. Sediment-water fluxes of mercury in Lavaca Bay, Texas [J]. Environ. Sci. Technol., 1999,33:663-669
    94. Gillis A., Miller D. R. Some local environmental effects on mercury emission and absorption at a soil surface [J]. The science of Total Environment,2000,260:191-200.
    95. Gillis A., Miller D. R. Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber [J]. The Science of the Total Environment,2000, 260:181-189
    96. Gilmour C. C., Henry E. A., Mitchell R. Sulfate stimulation of mercury methylation in freshwater sediments [J]. Environ. Sci. Technol.,1992,26 (11),2281-2287
    97. Gobas F.A.P.C., Maclean L.G. Sediment-water distribution of organic contaminants in aquatic ecosystems:the role of organic carbon mineralization [J]. Environ Sci Technol.2003,37:735-741
    98. Gray J. E., Hines M. E. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA [J]. Chemical Geology,2009, 258:157-167.
    99. Grigal D.F., Inputs and outputs of mercury from terrestrial watersheds:a review [J]. Environ. Rev.2002,10:1-39.
    100. Grigal D.F., Kolka R.K., Fleck J.A., et al. Mercury budget of an upland-peatland watershed [J]. Biogeochemistry,2000,50:95-109.
    101. Guimaraes J.R.D., Meilim M., Maln O., Brito E.M.D. Hg methylation in sediments and floating meadows of tropical lake in the pantanal floodplain,Brazil [J]. Science of the Total Environment, 1998,213:165-175.
    102. Gustin M. S., Biester H., Kim C. S. Investigation of the light-enhanced emission of mercury from naturally enriched substrates [J]. Atmospheric Environment,2002,36:3241-3254
    103. Gustin M. S., Coolbaugh M., Engle M., et al. Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains [J]. Environmental Geology,2003,43: 339-351
    104. Gustin M. S., Lindberg S. E., Marsik F., et al. Nevada STORMS project:Measurement of mercury emissions from naturally enriched surfaces [J]. Geophys. Res.,1999,104: 21831-21844
    105. Gustin M. S., Rasmussen P., Edwards G, et al. Application of a laboratory gas exchange chamber for assessment of in situ mercury emissions [J]. Geophys. Res.,1999,104: 21873-21879
    106. Gustin M. S., Stamenkovic J. Effect of watering and soil moisture on mercury emission from soils [J]. Biogeochemistry,2005,76:215-232
    107. Gustin M. S., Taylor G. E., Leonard T. L., et al. Atmospheric Mercury Concentrations Associated with Geologically and Anthropogenically Enriched Sites in Central Western Nevada [J]. Environ. Sci. Technol,1996,30:2572-2579
    108. Gustin M. S. Are mercury emissions from geologic sources significant? A status report [J]. The Science of the Total Environment,2003,304:153-167
    109. Gustin M. S., Ericksen J.A., Schorran D.E., et al. Application of controlled mesocosms for understanding mercury air-soil-plant exchange [J]. Environ. Sci. Technol.,2004,38: 6044-6050.
    110. Gustin M.S., Engle, M., Ericksen, J., et al.. Mercury exchange between the atmosphere and low mercury containing substrates [J]. Appl. Geochem.,2006,21:1913-1923.
    111. Gustin M.S., Lindberg, S.E. Terrestrial mercury fluxes:is the net exchange up, down, or neither? In:Pirrone, N., Mahaffey, K.R. (Eds.), Dynamics of Mercury Pollution on Regional and Global Scales:Atmospheric Processes and Human Exposures Around the World. Springer, New York, 2005..241-259.
    112. Gustin M.S., Lindberg, S.E., Austin, K., et al. Assessing the contribution of natural sources to regional atmospheric mercury budgets [J]. Sci. Total Environ.,2000,259:61-71.
    113. Gustin M.S., Lindberg, S.E., Weisberg, P.J.An update on the natural sources and sinks of atmospheric mercury [J]. Applied Geochemistry,2008,23:482-493
    114. Gustin M.S., Stamenkovic, J. Mercury emissions from soils:effect of watering and soil water content [J]. Biogeochemistry,2005,76:215-232.
    115. Gustin, M.S., Taylor Jr., G.E., Maxey, R. A. Effect of temperature, wind velocity and concentration on the flux of elemental mercury from mill tailings to the atmosphere [J]. J. Geophys. Res.,1997,102:3891-3898.
    116. Hall B D, Rosenberg D M, Wiens A P. Methylmercury in aquatic insects from an experimental reservoir [J]. Can J Fish Aquat Sci,1998,55:2036-2047.
    117. Hall B. The gas phase oxidation of elemental mercury by ozone [J]. Water, Air and Soil Pollution,1995,80:301-315.
    118. Hammerschmidt C. R., Fitzgerald W.F. Bioaccumulation and Trophic Transfer of Methylmercury in Long Island Sound [J]. Archives of Environmental Contamination and Toxicology,2006a,51(3):416-424.
    119. Hammerschmidt C. R., Fitzgerald W.F. Methylmercury in Freshwater Fish Linked to Atmospheric Mercury Deposition [J]. Environ. Sci. Technol.,2006b,40 (24):7764-7770
    120. Hammerschmidt C.R., Fitzgerald W. F. Sediment-water exchange of methylmercury determined from shipboard benthic flux chambers [J]. Marine Chemistry.2008,109(1-2):86-97
    121.Hartman, J. S., Weisberg, P. J.,Pillai, R., Ericksen, J. A., Kuiken, T., Lindberg, S. E., Zhang, H.,Rytuba, J. J., Gustin, M. S. Application of a Rule-Based Model to Estimate Mercury Exchange for Three Background Biomes in the Continental United States [J]. Environment. Science. Technology.2009,43(13),4989-4994.
    122. He T. R., Feng X. B., Guo Y. N., et al. The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir:A case study from Hongfeng Reservoir, Guizhou, China [J]. Environmental Pollution.2008,154:56-67.
    123. Heyes A., Moore T.R., Rudd J. W.M., et al. Methylmercury in pristine and impounded boreal peatlands, experimental lakes area, Qntario [J]. Can J Fish Aquat Sci,2000,57(11):2212-2222.
    124. Heyes A., Moore T.R., Rudd J.W.M. Mercury and methylmercury in decomposing vegetation of a pristine and impounded wetland [J].J Environ Qual,1998,27:591-599-
    125. Heyes A., Miller C., Mason R.P. Mercury and methylmercury in Hudson River Sediment: impact of resuspension on portioning and methylation. Mar. Chem.,2004,90:75-89
    126. Hintelman H., Welbourn P. M., Evans R.D. Measurement of complexation of methyl mercury compounds by freshwater humic substances using equilibrium dialysis [J]. Environment Science Technology.1997,31:489.
    127. Hintelmann H., Wilken R.D. Levels of total mercury and methylmercury compounds in sediments of the polluted Elbe River:influence of seasonally and spatially varying environmental factors [J]. Science of The Total Environment,1995,166,(1-3):1-10
    128. Holmes J., Lean D. Factors that influence methylmercury flux rates from wetland sediments [J]. Science of The Total Environment.2006,368(1):306-319
    129. Horvat M., Nolde N.,Fajon V.Jereb V., Logar M., Lojen S., Jacimovic R., Falnoga, I., Qu, L. Y., Faganeli, J., Drobne D. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China [J]. Sci. Total Environ.2003,304 (13):231-256.
    130. Hoyer M. E., Keeler G. J. Atmospheric sources, transport, and deposition of mercury in Michigan:Two years of event precipitation [J]. Water, Air and Soil Pollution,1995,80: 199-208.
    131.Hylander L. D., Grohn J., Tropp M., et al. Fish mercury increase in Lago Manso, a new hydroelectric reservoir in tropical Brazil [J]. Journal of Environmental Management.2006, 81:155-166.
    132. Ikingura J. R., Akagi H. Total mercury and methylmercury levels in fish from hydroelectric reservoirs in Tanzania [J]. Sci Tot Environ,2003,304:355-368.
    133. Jackson T. A.The mercury problem in recently formed reservoirs of northernManitoba (Canada): effects of impoundment and other factors on the production of methylmercury by microorganisms in sediments [J].Can J Fish Aquat Sci,1988,45:97-121.
    134. Jiang G.B., Shi J.B., Feng X.B. Mereury Pollution in China [J]. Environ. Sci. Technol., 2006,40:3672-3678
    135. Jiang Hongmei, Feng Xinbin, Dai Qianjing. Damming Effect on the Distribution of Mercury in Wujiang River [J]. Chinese Journal of Geochemistry,2005,24(2):179-183.
    136. Jockson T A. The problem in recently formed reservoirs of northern Manitoba (Canada):effects of impoundment and other factors on theproduction of methylmercury by microorganisms in sediments [J]. Can. J. Fish, Aquat, Sci.,1988,45:97-121.
    137. Johansson K., Boyle R.W. Geochemistry of mercury and origins of natural contamination of the environment [J]. Canadian Min Metal Bull January,1972,32-39.
    138. Johnson D.W., Benesch J.A., Gustin M.S., et al. Experimental evidence against diffusion control of Hg evasion from soils [J]. The Science of the Total Environment,2003,304:175-184.
    139. Johnson T A, Bodaly R A, Mathias J A. Predicting fish mercury levels from physical characteristics of boreal reservoirs [J]. Can J Fish Aquat Sci,1991,48:1468-1475.
    140. Kainz M., Lucotte M. Mercury Concentrations in Lake Sediments-Revisiting the Predictive Power of Catchment Morphometry and Organic Matter Composition [J]. Water, Air,& Soil Pollution,2006,170(1-4):173-189
    141. Kashem M. A., Singh B. R. Metal availability in contaminated soils:Ⅰ. Effects of flooding and organic matter changes in Eh, pH and solubility of Cd, Ni and Zn [J]. Nutrition Cycle Agroecosys 2001,61:247-255.
    142. Keeler G, Glinsorn G., Pirrone N. Particulate mercury in the atmosphere:Its significance, transport, transformations and sources [J]. Water, Air and Soil Pollution,1995,80(1-4): 159-168.
    143. Kelly C. A, Rudd J. W.M., Bodaly R. A.,et al. Increases in fluxes of greenhouse gases and methylmercury following flooding of an experimental reservoir [J].Environ Sci Technol,1997, 31:1334-1344.
    144. Kemp R. J. Measurement of gaseous mercury emissions from natural sources. A thesis presented to the faculty of graduate studies of the University of Guelph,2001.
    145. Kim K. H., Kim M. Y., Kim J., et al. The concentrations and fluxes of total gaseous mercury in a western coastal area of Korea during late March 2001 [J]. Atmospheric Environment,2002,36: 3413-3427.
    146. Kim K. H., Lindberg S. E., Meyers T. P. Micrometeorological measurements of mercury vapor fluxes over background forest soils in eastern Tennessee [J]. Atmospheric Environment,1995, 29(2):267-282.
    147. Kim.K H., Lindberg S. E. Design and initial tests of a dynamic enclosure chamber for measurements of vapor phase mercury fluxes over soils [J]. Water, Air and Soil Pollution,1995, 80:1059-1068.
    148. Kim K.H., Lindberg S.E., Hanson P.J., Meyers T.P. Micrometeorological measurements of mercury fluxes over background forest soils in eastern Tennessee [J]. Atmospheric Environment, 1995,29:267-282.
    149. Kim K.H., Hansom P.J., Barnett M.O., Lindberg S.E. Biogeo-chemistry of mercury in the air-soil-plant system. In Sigel A, Sigel H, eds. Metal Ions in Biological Systems. New York, Basel, Hong Kong:Marcel Dekker, Inc.1997.
    150. King J.K., Kostka J. E., Fisher M.E., Saunders F.M. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments.Appl.Environ.Microbiol.2000, 66:2430.
    151. Krabbenhoft D. P., Gilmour C. C., Benoit J. M., Babiarz C. L., Andren A. W., Hurley J. P. Methyl mercury dynamics in littoral sediments of a temperate seepage lake. Canadian Journal of Fisheries and Aquatic Sciences,1998,55(4):835-844
    152. Krabbenhoft D.P., Hurley J.P., Olson M.L., Cleckner L. B. Dial variability of mercury phase and species distribution in the Florida Everglades. Biogeochemistry,1998,40:311-325.
    153. Krabbenhoft, D.P., Branfireun, B.A., Heyes, A. Biogeochemical cycles affecting the speciation, fate and transport of mercury in the environment. In:Parsons, M.B., Percival, J.B. (Eds.), Mercury:Sources, Measurements, Cycles, and Effects, vol.34. Mineralogical Association of Canada Short Course Series,2005,139-151.
    154. Kuiken T., Gustin M., Zhang H., Lindberg S., et al. Mercury emission from terrestrial background surfaces of the eastern USA:Ⅰ. air/surface exchange of mercury within a southeastern deciduous forest of Tennessee over one year [J]. Applied Geochemistry,2008a, 23:345-355
    155. Kuiken T., Gustin M., Zhang H., Lindberg S., et al.. Mercury emission from terrestrial background surfaces of the eastern USA:Ⅱ. Air/surface exchange of mercury within two types of forests from South Carolina to New England. Applied Geochemistry,2008b,23:356-368
    156. Lamborg D. H., Fitzgerald W. F., O'Donell J., et al. A non-steady state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients [J]. Geochim. Cosmochim. Acta,2002,66:1105-1118
    157. Landa E.R. The retention of mercury vapor by soils [J]. Geochem Cosmochim Acta.1978,42: 1407-1411.
    158. Lanzillotta E., Ceccarini C., Ferrara R. Photo-induced formation of dissolved gaseous mercury in coastal and offshore seawater of the Mediterranean basin [J]. Sci. Total Environ., 2002,300:179-187
    159. Lanzillotta E., Ferrara R. Daily trend of dissolved gaseous mercury concentration in coastal seawater of the Mediterranean basin [J]. Chemistry,2001,45,935-940
    160. Lee S. Z. Predicting soil-water partition coefficients for Hg(II)from soil properities[J]. Water Sci. Technol.2001,43:187.
    161. Lee, X., G. Benoit, and X. Z. Hu Total gaseous mercury concentration and flux over a coastal saltmarsh vegetation i n Connecticut, USA [J]. Atmosphere. Environment,2000,34, 4205-4213.
    162. Lin C J., Gustin M. S., Singhasuk P., Eckley C., Miller M. Environ. Empirical Models for Estimating Mercury Flux from Soils [J]. Sci. Technol.,2010,44 (22):8522-8528
    163. Lindberg S. E., Kim K. H., Meryers T. P., et al. Micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor:test over contaminated soils [J]. Environ. Sci. Technol.,1995,29:126-135
    164. Lindberg S. E., Stratton W. J. Atmospheric mercury speciation:concentrations and behavior of reactive gaseous mercury in ambient air [J]. Environmental Science and Technology,1998,32: 49-57.
    165. Lindberg S. E., Zhang H., Vette A. F., et al. Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 2:effect of flushing flow rate and verification of a two-resistance exchange interface simulation model [J]. Atmospheric Environment,2002,36: 847-859
    166. Lindberg S.E., Hanson P.J., Meyers T.P., et al. Air/surface exchange of mercury vapor over forests-A need for a reassessment of continental biogenic emissions [J]. Atmospheric Environment.1998,32:895-908.
    167. Lindberg S.E., Zhang H., Gustin M.S., et al.. Increases in mercury emissions from desert soils in response to rainfall and irrigation [J]. J. Geophy. Res.,1999,104:21873-21878.
    168. Lindberg, S. E., T. P. Meyers. Development of an automated micrometeorological method for measuring emission of mercury vapor from wetland vegetation [J], Wetlands Ecol. Manage., 2001,9:333-347.
    169. Lindberg, S.E., Jackson, D.R., Huckabee, J.W., et al. Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine [J]. J. Environ. Qual.,1979, 8:572-578.
    170. Lindberg S.E., Stratton, W.J. Atmospheric mercury speciation:concentrations and behavior of reactive gaseous mercury in ambient air [J]. Environ. Sci. Technol.,1998,32:49-57.
    171. Lindberg S.E. Forests and the global biogeochemical cycle of mercury.In Regional and Global Mercury Cycles:Sources, Fluxes and Mass Balances, ed. W. Baeyens. R. Ebinghaus, and O.Vasiliev,1996,359-380. Kluwer. Dordrecht, Netherlands.
    172. Lindberg S.E., Turner R. R., Meyers T. P., et al. Atmospheric concentrations and deposition of Hg to a deciduous forest at Walker Branch Watershed, Tennessee, USA [J]. Water, Air and Soil Pollution.1991,56:577-594
    173. Lindberg S.E., Zhang H. ir/water exchange of mercury in the Everglades II:measurring and modeling evasion of mercury from surface waters in the Everglades Nutrient removal project [J]. The science of Total environment,2000,259:135-143
    174. Lindqvist O., Johansson K., Bringmark L., et al. Mercury in the Swedish Environment:Recent Research on Causes, Consequence and Corrective Methods [J].Water, Air and Soil Pollution, 1991,55(1-2):23-32.
    175. Lindqvist O., et al,1991, Mercury in the Swedish environment. Water, Air, and Soil Pollution, 55:1-261.
    176. Lindqvist O., Jernelov A., Johansson K., Rohde H. Mercury in the Swedish Environment. Global and Local Sources. National Swedish Environmental Protection Board.1984.
    177. Liss. P.S. Slater. P. G. Flux of gases across the air-sea interface [J].Nature.1974,247:181-184.
    178.Lovley D R, Phillips E J P. Manganese inhibition of microbial iron reduction in anaerobic sediments [J]. Journal of Geomicrobiology,1988,6:145-155.
    179. Lu X. Q., Jaffe R. Interaction between Hg(II) and natural dissolved organic matter:a fluorescence spectroscopy based study [J]. Water Res.2001,35:1793..
    180. Lyman S.N., Gustin M.S., Prestbo E.M., et al. Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods [J]. Environ. Sci. Technol.,2007,41: 1970-1976.
    181. Lynam M., Keeler G. Source-receptor relationships for atmospheric mercury in urban Detroit, Michigan [J]. Atmospheric Environment,2006,40:3144-3155.
    182. Mailman M., Stepnuk L., Cicek N., et al. Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes:A review [J]. Science of the Total Environment,2006, 368:224-235.
    183. Mansfeldt T. Redox potential of bulk soil and soil solution concentration of nitrate, manganese, iron, and sulfate in two Gleysols [J]. J Plant Nutr Soil Sc.2004,167:7-16
    184. Marks R., Beldowska M. Air-sea exchange of mercury vapour over the Gulf of Gdansk and southern Baltic Sea [J]. Journal of Marine Systems,2001,27:315-324
    185. Martin M.H. Bio-inorganic chemistry of toxicity. In Seiler G, Sigel H, eds. Handbook of Toxicity of Inorganic Compounds. New York:Marcel Dekke Inc.,1988,9-25.
    186. Mason R. P., Lawson N. M., Sheu G-R. Mercury in the Atlantic Ocean:Factors controlling air-sea exchange of mercury and its distribution in the upper waters [J]. Deep Sea Res. II,2001, 48:2829-2853
    187. Mason R. P., Kima E-H, Cornwellb J., Heyesa D. An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment [J]. Marine Chemistry,2006,102(1-2):96-110
    188. Matilainen T., Verta M. mercury methylation and demethylation in aerobic surface waters [J]. Canada journal of fish Aquat. Sci.1995,52:1597.
    189. Meili M. Mercury in lakes and rivers. Metal Ions Biol. Syst.1997,34:21.
    190. Muresana B., Cossaa D., Jezequelb D. F. et al. The biogeochemistry of mercury at the sediment-water interface in the Thau lagoon.1. Partition and speciation.Estuarine, Coastal and Shelf Science.2007,72(3):472-484
    191. Nacht D. M., Gustin M. S. Mercury Emissions from Background and Altered Geologic Units Throughout Nevada. Water, Air,& Soil Pollution,2004,151(1-4):179-193
    192. Narita M., Huang C.C., Koizumi T., Yamagata T., Endo G. Identification and characterization of anaerobic mercury-resistant bacteria isolated from mercury-polluted sediment. Water Sci. Technol.2000,42:109-114.
    193.Neue H. U., Mamaril C. P. Zinc, sulphur and other micronutrients in wetland soils. Wetland soils:characterization, classification and utilization. Manila, Philippines:International Rice Research Institute; 1985.307-320.
    194. Newton D.W., Ellis R., Paulsen G.W. Effect of pH and complex formation of mercury(II) adsorption to bentonite [J]. J Environ Qua11976,5:251-254.
    195.Nriagu J.O. Mechanistic steps in the photoreduction of mercury in natural waters [J]. Sci. Total Environ.,1994,154,1-8
    196. O'Driscoll N. J., Beauchamp S., Siciliano S. D., Rencz A. N., Lean R. S.. Continuous Analysis of Dissolved Gaseous Mercury (DGM) and Mercury Flux in Two Freshwater Lakes in Kejimkujik Park, Nova Scotia:Evaluating Mercury Flux Models with Quantitative Data [J]. Environ. Sci. Technol.,2003,37 (10):2226-2235
    197. Paquette K.E., Helz G R. Inorganic speciation of mercury in sulfidic water-the importance of zero-valet sulfur [J].Environment Science Technology.1997,31,2148-2162.
    198. Pardue J. H., Patrick Jr W.H. Changes in metal speciation following alternation of sediment redox status. In:Allen H, editor. Metal-contaminated aquatic sediments [J]. Ann Arbor, MI: Science Publishers; 1995,169-185.
    199. Paterson M. J., Rudd J. W. M., St Louis V. Increases in total and methylmercury in zooplankton following flooding of a peatland reservoir [J]. Environ Sci Technol,1998,32:3868-3874.
    200. Pirrone N., Keeler G. L., Nriagu J. O. Regional differences in Worldwide Emissions of Mercury to the Atmosphere [J]. Atmospheric Environment,1996,30(17):2981-2987.
    201. Point D., Davis W. C., et al. Simultaneous determination of inorganic mercury, methylmercury, and total mercury concentrations in cryogenic fresh-frozen and freeze-dried biological reference materials [J]. Analytical and Bioanalytical Chemistry,2007,389(3):787-798
    202. Poissant L., Casimir A. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites. Atmos Environ,1998,32:883-893.
    203. Poissant L., Hoenninger G. Atmospheric mercury & ozone depletion events observed at the Hudson Bay in Northern Quebec along to BrO(DOAS) measurements[J]. Materials and Geoenvironment,2004,51(3):1722-1725.
    204. Poissant L., Casimir A., Water-Air and soil-air exchange rate of total gaseous mercury measured at background sites [J]. Atmospheric Environment,1998,32:883-893.
    205. Pyle, D.M., Mather, T.A. The importance of volcanic emissions for the global atmospheric mercury cycle [J]. Atmos. Environ.2003,37:5115-5124.
    206. Quemerais B., Cossa D., Rondeau B.,Pham T.T., Fortin B. Mercury distribution in relation to iron and manganese in the waters of St.Lawrence river. Science of the Total Environment,1998, 213:193.
    207. Ramlal P.S., Kelly C.A., Rudd J.W.M., Furutani A. Sites of methyl mercury production in remote Canadian shield lakes [J]. Canadian Journal of Fisheries and Aquatic Sciences,1993,50, 5,972-979.
    208. Regnell O., Hammar T., Helgee A., Troedsson B. Effect of anoxia and sulfide on concentrations of total and methyl mercury in sediment and water in two Hg-polluted lakes [J]. Canada journal of fish Aquat.Science.2001,.58,506
    209. Richard A., Wildman Jr., Nathan W. C., et al. Effect of changes in water level on sediment pore water redox geochemistry at a reservoir shoreline [J]. Applied Geochemistry.2010, 25:1902-1911.
    210. Rickard D., Morse J.W. Acid volatile sulphide (AVS) [J]. Mar. Chem.,2005,97:141-197.
    211. Rinklebe J., During A., Overesch M., et al. Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas [J]. Environmental Pollution 2010,158(1): 308-318.
    212. Rogers R. D. Volatility of Hg from soils amended with various Hg compounds [J]. Soil Sci Soc Am J.1979,43:289-291.
    213. Rolfhus K.R., Fitzgerald W.F. The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT-NY [J]. Geochim. Cosmochim. Acta,2001,65 (3),407-418
    214. Rudd J.W.M. Sources of methyl mercury to freshwater ecosystems:a review [J]. Water, Air & soilpollution.1995,80,697-713.
    215. Salomons W., de Rooij N. M., Kerdijk H., Bril J. Sediments as a source for contaminants? [J]. Hydrobiologia.1987,149:13-30.
    216. Sando S.K., Krabbenhoft D.P., Johnson K.M., Lundgren R.F., Emerson D.G. Mercury and methylmercury in water and bottom sediments of wetlands at Lostwood National Wildlife Refuge, North Dakota,2003-2004. US Geological Survey Scientific Investigations Report. 2007,2007-5219,66
    217. Sanford L.P., Panageotou W., Halka J.P. Tidal resuspension of sediments in Northern Chesapeake Bay.Mar. Geol,1991,97 (1-2):87-103
    218. Schafer J., Castelle S., Blanc G., Dabrin A., Masson M., Lanceleur L., Bossy C. Mercury methylation in the sediments of a macrotidal estuary (Gironde Estuary, south-west France) [J]. Estuarine, Coastal and Shelf Science,2010,90(2):80-92
    219. Schliiter K., Review:evaporation of mercury from soils. An integration and synthesis of current knowledge [J]. Environ. Geol.,2000,39:249-271.
    220. Schmiede, K. European lake shores in danger concepts for a sustainable development [J]. Limnologica,2004,34:3-14.
    221. Schoellhamer D.H. Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary [J]. Estuar. Coast. Shelf Sci.,1996,43 (5):533-548
    222. Scholtz M.T., VanHeyst B.J., Schroeder W.H., Modeling of mercury emissions from background soils [J]. The Science of the Total Environment,2003,304:185-207.
    223. Schroeder W. H., Munthe J. Atmospheric mercury-an overview [J]. Atmospheric Environment, 1998,32:809-822.
    224. Schroeder W. H., Munthe J., Lindqvist O. Cycling of mercury between water, air and soil compartments of the environment [J]. Water,Air Soil Pollution,1989,48:33-347
    225. Schroeder W. H., Yarwood G., Niki H,. Atmospheric mercury measurement at rural site in southern Ontario. Water, Air and Soil Pollution,1991,56:231-234.
    226. Schroeder W. H., Yarwood G., Niki H. Transformation processes involving mercury species in the atmosphere-results from a literature survey [J]. Water, Air and Soil Pollution,1991,56: 653-666.
    227. Schroeder, W.H., Anlauf, K.G., Barrie, L.A., et al. Arctic springtime depletion of mercury [J]. Nature,1998,394:331-332.
    228. Schroeder, W.H., Beauchamp, S., Edwards, G., et al.. Gaseous mercury emissions from natural sources in Canadian landscapes [J]. J. Geophys. Res.,2005,110:D18302. doi:10.1029/2004 JD00569.
    229. Schuster E.1991. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-a review of the literature. Water Air Soil Pollut56,667-680.
    230. SCOPE CHINA汞工作组1996, SCOPE CHINA汞污染专题学术讨论会《纪要》,环境化学,15(1):90-91.
    231. Seehan K. D., Fernandez I. J., Kahl J. S., et al. Litterfall mercury in two forested watersheds at Acadia National Park, Maine,USA [J]. Water, Air and Soil Pollution,2006,170:249-265.
    232. Shi J. B., Liang L.N., Jiang G. B., et al. The speciation and bioavailability of mercury in sediments of Haihe Rive [J]. China Environmental International,2005,31:357-365
    233. Simpson S. L., Apte S. C., Batley G. E. Effect of short-term re-suspension events on trace metal speciation in polluted anoxic sediment [J].Environ Sci Technol 1998,32:620-625.
    234. Simpson S. L., Rosner J., Ellis J. Competitive displacement reactions of cadmium, copper, and zinc added to polluted, sulfidic estuarine sediment [J]. Environment Toxicology Chemistry.2000, 19:1992-1999.
    235. Singh S. P., Tack F. M., Verloo M. G. Heavy metal fractionation and extractability in dredged sediment derived surface soils [J]. Water Air Soil Poll 1998,102:313-328.
    236. Slemr F., Schuster G., Seiler W. Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean [J]. Nature,1992,355:434-437
    237. Slowey A. J., Rytuba J. J., Brown G. E. Speciation of Mercury and Mode of Transport from Placer Gold Mine Tailings [J]. Environ. Sci. Technol.,2005,39 (6):1547-1554
    238. Smith F. A., Sharma R. P., Lynn R. I., et al. Mercury and selected pesticide levels in fish and wildlife of Utah:I Levels of mercury, DDT, DDE, Dieldrin and PCB in fish [J]. Environ Toxicol Chem,1974,12:218-223.
    239. Smith L.M., Reinfelder J.R. Mercury volatilization from salt marsh sediments [J]. Journal of Geophysical Research,2009,114, G00C09, doi:10.1029/2009JG000979
    240. Song X.X., VanHeyst B. Volatilization of mercury from soils in response to simulated precipitation [J].Atmospheric Environment,2005,39:7494-7505
    241. Southworth G. R., Lindberg S. E., Zhang H., Anscombe F. R. Fugitive mercury emissions from a chlor-alkali factory:sources and fluxes to the atmosphere [J]. Atmos Environ.2004, 38,:597-611.
    242. St Louis V. L., Rudd J. W. M., Kelly C. A., et al. The rise and fall of mercury methylation in an experimental reservoir [J]. Environ Sci Technol,2004,38:1348-1358.
    243. St Louis V.L., Rudd J.W.M., Kelly C.A., et al. Importance of wetlands as sources of methylmercury boreal forest ecosystem [J]. Can J Fish Aqua Sci,1994,51:1065-1076
    244. Stamenkovic, J.; Gustin, M. S.; Arnone, J. A.; Johnson, D. W.; Larsen, J. D.; Verburg, P. S. J. Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms[J]. Science of the Total Environment,2008,406 (1-2),227-238.
    245. Stein E.D., Cohen Y., Winer A.M. Environmental distribution and transformation of mercury compounds [J].Critical Review in Environment Science Technology.1996,26:1.
    246. Sun S., Wang D., He M., Zhang C. Monitoring of atmospheric heavy metal deposition in Chongqing, China-based on moss bag technique [J]. Environ Monit Assess,2009,148:1-9
    247. Tan, H., He, J.L., Liang, L., et al. Atmospheric mercury deposition in Guizhou, China [J]. The Science of the Total Environment,2000,259:223-230.
    248. Tremblay A., Cloutier L., Lucotte M. Total mercury and methylmercury fluxes via emerging insects in recently flooded hydroelectric reservoirs and a natural lake [J].Sci Tot Environ,1998, 219:209-221.
    249. Turekian, K., Wedepohl, K.. Distribution of the elements in some major units of the earth's crust [J]. Bull. Geol. Soc. Am.,1961,72:175-192.
    250. Ullrich S.M., Tanton T.W., Abdrashitowa S. A. Mercury in the aquatic environment:a review of factors affecting methylation [J]. Critical Review in Environment Science Technology. 2001,31:2441,
    251. UNEP.2004. UNEP 2003 Annual Report. http://www.unep.org/annualreport/2003/
    252. UNEP.2006. UNEP 2005 Annual Report. http://www.unep.org/annualreport/2005/
    253. van den Berg G. A., Loch J. P. G, Winkels H. J. Effect of fluctuating hydrological conditions on the mobility of heavy metals in soils of a freshwater estuary in the Netherlands [J]. Water Air Soil Poll.1998,102:377-388.
    254. van den Berg G. A., Loch J. P. G. Decalcification of soils subject to periodic waterlogging [J]. Eur J Soil Sci 2000,51:27-33.
    255. Van Duong H., Han S. Benthic transfer and speciation of mercury in wetland sediments downstream from a sewage outfall [J]. Ecological Engineering,2011,37,6,989-993
    256. Vandecasteele B., Du Laing G, Quataert P., Tack F.M.G. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments [J]. Sci Total Environ 2005,341:251-263.
    257. Vandecasteele B., Quataert P., Tack F. M. G. Uptake of Cd, Zn and Mn by willow increases during terrestrialisation of initially ponded polluted sediments [J]. Sci Total Environ 2007, 380:133-143.
    258. Varekamp J.C., Buchholtz ten Brink M. R., Mecray E. L., et al. Mercury in Long Island Sound sediments [J]. J Coast Res,2000,16:613-626
    259. Varekamp J.C., Buseck P.R.The speciation of mercury in hydrothermal systems, with applications to ore deposition [J]. Geochim. Cosmochim. Acta,1984,48:177-185
    260. Verdon R., Brouard D., Demers C, et al. Mercury evolution 1978-1988 in fishes of the La Grande Hydroeletric Complex, Quebec Canada [J].Water Air Soil Pollut,1991,56:405-417.
    261.Verta M., Rekolainen S., Kinnunen K.Causes of increased fishmercury levels in Finnish reservoirs[M]. Publications of Water Research Institute, National Board of Waters Finland, 1986.
    262. Wallschlager D., Desai M.V.M., Spengler M., Wilken R. D. Mercury speciation in floodplain soils and sediments along a contaminated river transect [J]. J Environ Qual 1998,27: 1034-1044.
    263. Wallschlager D., Turner R. R., London J., Ebinghaus R., Kock H. H., Sommar J., Xiao Z. Factors affecting the measurement of mercury emissions from soils with flux chambers. J Geophys Res,1999,104:21859-21871.
    264. Wallschlager D., Desai M.V.M., Wilken R.D. The role humic substances in the aqueous mobilization of mercury from contaminated floodplain soils. Water, Air & soilpollution.90.507,1996
    265. Wang D., He L., Shi X., et al. Release flux of mercury from different environmental surfaces in Chongqing, China [J]. Chemosphere,2006,64:1845-1854.
    266. Wang D., Shi X., Wei S. Accumulation and transformation of atmospheric mercury in soil. The Science of the Total Environment,2003,304:209-214.
    267. Wang S., Feng X., Qiu G., et al.. Characteristics of mercury exchange flux between soil and air in the heavily air-polluted area, eastern Guizhou, China [J]. Atmos. Environ.,2007, 41:5584-5594.
    268. Wang, S., Feng, X., Qiu, G., et al.. Mercury emission to the atmosphere from Lanmuchang Hg-Tl mining area, Southwestern Guizhou, China [J]. Atmos. Environ.,2005,39:7459-7473.
    269. Wangberg I., Edner H., Ferrara R., et al. Atmospheric mercury near a chlor-alkali plant in Sweden [J]. The Science of the Total Environment,2003,304:29-41.
    270. Wangberg I., Munthe J., Pirrone N., et al. Atmospheric mercury distribution in Northern Europe and in the Mediterranean region [J]. Atmospheric Environment,2001,35:3019-3025.
    271. Warnken K.W., Gill G.A., Griffin L.A., Santschi P.H. Sediment-water exchange of Mn, Fe, Ni, and Zn in Galveston Bay, Texas. Mar. Chem.,2001,73,215-231
    272. Watras C.J., Concentration of mercury species relationship to other site-apecific factors in the surface waters of northern Wisconsin lakes. Limn. Ocean.1995,40:556.
    273. Wedepohl K. The composition of continental crust [J]. Geochim. Cosmochim. Acta, 1995,59:1217-1232.
    274. Wilson S. J., Steenhuisen F., Pacyna J. M., et al. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories [J]. Atmospheric Environment,2006, 40:4621-4632.
    275. Wilson S.A., Weber J.H. An EPR study of the reduction of vanadium (V) and vanadium (IV) by fluvic acid. Chem Geol 1979,26:345-354
    276. Wong C. W., Duzgoren-Aydin N. S., Aydin A., et al. Sources and trends of environmental mercury emissions in Asia[J]. Science of the Total Environment,2006,368:649-662.
    277. Xiao Z., Munthe J., Schroeder W. H., et al. Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden [J]. Tellus,1991,43 B:267-279
    278. Xin M., Gustin M S, Gaseous elemental mercury exchange with low mercury containing soils: Investigation of controlling factors [J]. Applied Geochemistry.2007,22:1451-1466
    279. Xu X., Yang X., Miller D. R., et al. Formulation of bi-directional atmosphere-surface exchanges of elemental mercury [J].Atmospheric Environment,1999,33:4345-4355.
    280. Yamamoto M. Stimulation of elemental mercury oxidation in the presence of chloride ion in aquatic environments.Chemosphere,1996,32:1217.
    281. Yan H. Y., Feng X. B., Shang L. H., et al. The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir, Guizhou province, China. Science of the Total Environment,2008,407:497-506.
    282. Yao A., Qing C., Mu S., Reardon E.J., Effects of humus on the environmental activity of mineral-bound Hg:influence on Hg volatility [J]. Appl. Geochem.,2006,21:446-454.
    283. Zagury G.J., Neeulita C.M., Bastien C., Desehenes L. Mercury fraction,bioavailability,and ecotoxicity in highly contamination soils from chlor-alkal Plants [J].Environ.Toxicol.Chem, 2006,25:1138-1147
    284. Zehner R.E., Gustin M.S. Estimation of mercury vapor flux from natural substrate in Nevada Environ Sci Technol,2002,36:4039-4045
    285. Zhang H., Lindberg S. E., Barnett M. O., et al. Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 1:simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model [J]. Atmospheric Environment,2002,36: 835-846
    286. Zhang H, Lindberg S E. Sunlight and iron (Ⅲ)-induced photochemical production of dissolved gaseous mercury in fresh water [J]. Environ. Sci. Technol.,2001,35:928-935
    287. Zhang H., Dill C. Apparent rates of production and loss of dissolved gaseous mercury (DGM) in a southern reservoir lake (Tennessee, USA). Science of The Total Environment,2008,392(2-3):233-241
    288. Zhang H., Lindberg S. E., Processes influencing the emission of mercury from soils:a conceptual model [J] Geophy.Res.,1999,104:21889-21896
    289. Zhang H., Lindberg S.E., Marsik F.J., et al. Mercury air/surface exchange kinetics of background soils for the Tahquamenon river watershed in the Michigan upper Peninsula [J]. Water, Air Soil Pollution.2001,126:151-169
    290. Zhong H., Wang W. X. Inorganic Hg binding with different sulfur species in anoxic sediments and their gut juice extractions [J]. Environ Toxicol Chem,2009,28:1851-1857
    291. Zhong H., Wang W. X. Metal-solid interactions controlling the bioavailability ofmercury from sediments to the clams and sipunculans [J]. Environ Sci Technol.2006,40:3794-3799
    292. Zhong H., Wang W. X. Sediment-bound inorganic Hg extraction mechanisms in the gut fluids of marine deposit feeders [J]. Environ Sci Technol,2006,40:6181-6186
    293. Zhong H., WangW. X. Influences of sediment composition on mercury partitioning, speciation and bioavailability in sediments [J]. Environ Pollut,2008,151:222-230
    294. Zhu Jinshan, Dingyong Wang, Liu Xiao, Yutong Zhang. Mercury fluxes from air/surface interfaces in paddy field and dry land [J]. Applied Geochemistry,2011,26:249-255
    295.白薇扬,阿哈水库中不同形态汞迁移转化规律的初步探讨[D].中国科学院研究生院(地球化学研究所)硕士论文,贵阳,2006.
    296.蔡金傍,李文奇,刘娜,等.洋河水库底泥污染特性研究.农业环境科学学报,2007,26(3):886-893
    297.蔡文洁,江研因.甲基汞暴露与人体健康的影响.上海环境科学,2008,27(3):129-134
    298.操佩娟.水-旱轮作条件下紫色土汞的释放特征[D].西南农业大学硕士学位论文,重庆:西南农业大学,2006.
    299.陈宏.三峡库区消落带土壤汞库及其风险评价[D].西南大学博士学位论文,2009
    300.陈振楼,普勇,黄荣贵,等.阿哈湖沉积物-水界面Fe,Mn的季节性释放特征[J].科学通报,1996,41(7),629-632.
    301.程瑞梅,王晓荣,肖文发,等.三峡库区消落带水淹初期土壤物理性质及金属含量初探.2009,23(5):156-161.
    302.戴国华,刘新会.影响沉积物-水界面持久性有机污染物迁移行为的因素研究[J].环境化学.2011,(1):224-230.
    303.戴树桂.环境化学[M].北京:高等教育出版社,2004.
    304.方凤满,王起超.大气-水-土壤界面汞交换研究方法现状与展望[J].农业环境保护2002,21(4):381-383
    305.方凤满,王起超.土壤汞污染研究进展[J].土壤与环境,2000,9(4):326-329
    306.冯新斌,Jonas S, Katarina G,等.夏季自然水体与大气界面间气态总汞的交换通量[J].中国科学D,2002,32(7):609-615
    307.冯新斌.汞的环境地球化学研究进展.地质地球化学,1997, (4):104-108.
    308.傅杨武.三峡水库消带土壤-水体系统中重金属模拟研究[J].环境科学与技术,2007(10):14-16
    309.古小治,张雷,柏祥,等.湿地沉积物-水界面营养盐交换的定量估算[J].水科学进展,2011,22(1):75-83.
    310.郭晓立,刘晓端,潘小川,等.密云水库水体的地球化学特征[J].岩矿测试,2003,22(1):44-48.
    311.郭艳娜,冯新斌,闫海鱼,等.梯级水库修建对乌江甲基汞分布的影响[J].环境科学研究,2008,21(2):29-33.
    312.何峰.重庆市农田土壤-粮食作物重金属关联特征与污染评价[D].重庆:西南农业大学,2004.何天容,冯新斌,戴前进,仇广乐,商立海,蒋红梅,Liang lian萃取-乙基化结合GC-CVAFS法测定沉积物及土壤中的甲基汞[J].地球与环境.2004,2:83-86
    313.何天容,冯新斌,郭艳娜,等.红枫湖沉积物中汞的环境地球化学循环[J].环境科学,200829(7):1768-1774
    314.何天容,冯新斌.红枫湖出入库河流汞浓度分布特征及影响因素分析[J].环境科学与技术,2010,33(7):138-141
    315.侯亚敏,冯新斌,王少锋等.贵阳市及其郊区土壤/大气界面间汞交换通量的初步研究[J].土壤学报,2005,42(1):52-48
    316.胡声荣.川东丘陵区农业生态系统分析[J].西南农学院学报,1985,2:9-15
    317.黄真理.三峡水库水环境保护研究及其进展[J].四川大学学报(工程科学版).2006,38(5):7-15.
    318.吉芳英,王图锦,胡学斌,等.三峡库区消落区水体-沉积物重金属迁移转化特征[J].环境科学,2009,12:3481-3487
    319.蒋红梅,冯新斌.水库汞生物地球化学循环研究进展[J].水科学进展.2007,18(3):462-467.
    320.蒋靖坤,郝吉明,吴烨等.中国燃煤汞排放清单的初步建立[J].环境科学,2005.26(2):35-39.
    321.靳立军,徐小清.三峡库区地表水和鱼体中甲基汞含量分布特征[J].长江流域资源与环境,1997,6(4):324-328.
    322.靳立军,徐小清,刘健康.三峡库区燃煤、土壤和水库底泥中汞含量分布[J].重庆环境科学,1997,16(4):33-35.
    323.鞠喜林.晴空条件下光照度和辐射照度的关系[J].太阳能学报,1999,2:190-195.
    324.李朝华,苏庆平,侯彩红,等.水体沉积物中汞形态分析方法进展[J].理化检验-化学分册.2008,44,3,295-298
    325.李平,冯新斌,仇广乐.贵州省务川汞矿区汞污染的初步研究[J].环境化学,2008,27(1):96-99
    326.李清,何潇,谢世友.川东平行岭谷区自然景观垂直分异规律及综合分区-以重庆北碚区为例[J].资源开发与市场,2005,21(3):210-212
    327.林陶,张成,石孝均,等.不同类型紫色土土/气界面汞释放通量及其影响因素[J].环境科学学报,2008,28(10):1955-1960
    328.林陶,张金洋,石孝均,等.三峡水库消落区土壤汞吸附解吸动力学特征[J].环境化学,2007,26(3):302-306
    329.林于廉,龙腾锐,夏之宁,等.干湿交替模式下土壤中镉的释放特征[J].环境化学,2008,27(5):624-628
    330.刘德绍,青长乐,杨水平.近地面大气汞的垂直分布[J].西南农业大学学报,2001,23(1):39-41
    331.刘俊华,王文华,彭安.土壤中汞生物有效性的研究[J].农业环境保护,2000,19:216-220
    332.刘凯,杨芳,冯新斌,等.贵州省普定水库水体及沉积物孔隙水中汞的含量和形态分布初步研究[J].矿物岩石地球化学通报.2009,28(3):240-247.
    333.刘丽琼,魏世强,江韬.三峡库区消落带土壤重金属分布特征及潜在风险评价[J].中国环境科学.2011,31(7):1204-1211
    334.刘潇,张成,朱金山,等. 土壤湿度和浇水对紫色土土/气界面汞释放通量的影响[J].环境化学,2011,30(8):1509-1513
    335.娄彦景,赵魁义,胡金明.三江平原湿地典型植物群落物种多样性研究[J].生态学杂志,2006,25(4):364-368.
    336.牛志明,解明曙.三峡库区水库消落区水土资源开发利用的前期思考[J].科技导报,1998,4:61-62.
    337.潘鲁生,商立海,冯新斌,等.乌江流域东风水库水体中不同形态汞的时空分布特征[J].矿物岩石地球化学通报.2010,29(3):256-263.
    338.裴廷权,王里奥,包亮,等.三峡库区小江流域土壤重金属的分布特征与评价分析[J].土壤通报,2010,1:212-217.
    339.钱晓莉,冯新斌.贵州草海沉积物-水界面无机汞和甲基汞的扩散通量[J].西南大学学报(自然科学版),2011,33(3):104-108.
    340.冉祥滨,于志刚,陈洪,等.三峡水库蓄水至135m后坝前及香溪河水域溶解无机汞分布特征研究[J].环境科学,2008,29(7):1175-1178.
    341.任勇,钱骏,杨有仪,等.亭子口库区水质汞的污染特征及建库后水体中汞的预测[J].四川环境,1996,15(1):57-59.
    342.宋文,何天容,潘鲁生.贵州水城煤矸石风化土壤-农作物系统中汞分布规律研究[J].农业环境科学学报,2010,29(7):1326-1332
    343.孙向彤,何锦林,谭红.贵州红枫湖水面挥发性汞释放通量的测定[J].湖泊科学,2001,13(1):89-92
    344.王定勇,牟树森.酸沉降地区大气汞对土壤—植物系统汞富集影响的调查研究[J].生态学报,1999,19(1):140-144.
    345.王定勇,石孝洪,杨学春.大气汞在土壤中转化及其与土壤汞富集的相关性[J].重庆环境科学,1998,20:22-25
    346.王立刚,刘柏谦.2008,燃煤汞污染及其控制[M].冶金工业出版社.
    347.王明全,王金达,刘景双,等.吉林省西部生态支撑能力与社会经济发展的动态耦合[J].应用生态学报,2009,20(1):170-176
    348.王培基,辜永河,黎道洪.百花水库水体汞现状评价的探讨[J].贵州师范大学学报(自然科学版),1992,10(2):29-32.
    349.王起超,方凤满,李志博.长春市汞界面交换通量的研究[J].中国环境科学,2005,25(4):475-479
    350.王强,袁兴中,刘红,等.三峡水库156 m蓄水后消落带新生湿地植物群落[J].生态学杂志,2009,28(11):2183-2188.
    351.王少锋,冯新斌,仇广乐等.大气汞的自然来源研究进展[J].地球与环境,2006,34(2):1-11
    352.王少锋,冯新斌,仇广乐等.贵州红枫湖地区冷暖两季土壤/大气界面间汞交换通量的对比[J].环境科学,2004,25(1):123-127.
    353.王少锋,冯新斌,仇广乐等.夏季红枫湖地区农田土壤—大气界面汞交换通量的初步研究[J].矿物岩石地球化学通报,2004,23(1):19-23
    354.王少锋.汞矿化带土壤/大气界面汞交换通量研究[D],中国科学院研究生院博士学位论文,北京,2006
    355.王书肖,刘敏,蒋靖坤,等.中国非燃煤大气汞排放量的估算[J].环境科学,2006,27(12):2401-2406.
    356.王图锦.三峡库区消落带重金属迁移转化特征研究[D].重庆大学博士学位论文,重庆,2011.
    357.王晓阳,傅瓦利,张蕾等.三峡库区消落带土壤重金属Zn的形态分布特征及其影响因素[J].地球与环境,2011,39(1):85-90
    358.韦献革.哑铃湾网箱养殖海区底层环境污染特征和沉积物-水界面氮磷通量研究[D].中山大学博士学位论文,广州,2005.
    359.吴丰吕,万国江.泸沽湖沉积物—水界面扩散作用对上覆水体基本化学组成的影响[J].环境科学,1996,1:10-12.
    360.吴俊文,苏荣,李玉瑛,等.潮间带海洋沉积物大气痕量汞释放通量研究[J].2010,33(6E):68-72,187
    361.吴俊文,郑崇荣,董炜峰.潮间带海洋沉积物中痕量汞的释放过程及其影响因素研究[J].上海环境科学,2009:28(5):185-189,195
    362.夏增禄,穆从如,李森照等.我国若干土壤类型剖面中汞的自然含量及其分异的初步分析[J].科学通报,1984,10:619-622
    363.熊俊,袁喜,梅朋森,等.三峡库区消落带环境治理和生态恢复的研究现状与进展[J].三峡大学学报(自然科学版),2011,33(2):23-28
    364.徐阿生.三峡库区土地人口承载量及移民环境容量探究.人民长江,1995,26(5):47-51.
    365.徐小清,丘昌强,邓冠强,等.长江水系河流与水库中鲤鱼的元素含量特征[J].长江流域资源与环境,1998,7(3):267-273.
    366.徐小清,丘昌强,邓冠强,等.三峡库区汞污染的化学生态效应[J].水生生物学报,1999,23(3):197-203.
    367.闫海鱼,冯新斌.水/气界面间汞交换通量的研究进展[J].环境化学,2011,30(1):92-96
    368.喻菲,张成,张晟,等.三峡水库消落区土壤重金属含量及分布特征[J].西南农业大学学报,2006,28(1):165-168.
    369.袁浩,王雨春,顾尚义,等.黄河水系沉积物重金属赋存形态及污染特征[J].生态学杂志.2008,27(11):1966-1971
    370.袁辉,王里奥,黄川,等.三峡库区消落带保护利用模式及生态健康评价[J].中国软科学,2006,5:120-127
    371.张成,何磊,王定勇,等.重庆几种地表类型土/气界面汞交换通量[J].环境科学学报,2005,25(8):1085-1090
    372.张娇,张龙军.有机物在河口区迁移转化机理研究[J].中国海洋大学学报(自然科学版),2008,38(3):489-494
    373.张金洋.三峡水库消落区土壤汞释放特征研究[D].西南大学硕士学位论文.2005
    374.张学询,王连平,束胜焕.天津污灌区土壤、作物重金属污染状况的研究[J].中国环境科学,1988,8:20-26
    375.赵亚男,邓天龙,吴怡,等.沉积物样品中痕量元素汞的形态分析研究进展[J].广东微量元素科学.2009,16(2):1-7
    376.郑冬梅,王起超,孙丽娜,等.不同污染类型沉积物中汞的形态分布[J].环境科学与技术.2010,33(7):44-46,56
    377.中华人民共和国环境保护部.长江三峡工程生态与环境监测公报,2009.
    378.锺寰,王文雄.沉积物中汞的生物可利用性研究进展[J].环境化学,2011,30(1):165-178
    379.周谐,郑坚,张晟,等.三峡库区重庆段淹没区土壤重金属分布及评价[J].中国环境监测,2006,22(6):86-88.
    380.朱金山.川东丘陵区农田土/水-气界面汞交换特征[D].西南大学硕士学位论文,重庆:西南大学,2009
    381.庄敏,贾洪武,王文华,等.北京密云水库沉积物中汞的存在形式研究[J].环境保护科学,2005,31(131):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700