用户名: 密码: 验证码:
DBDCT初步毒代动力学、神经毒性作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:二-(4-氯苯甲酰异羟肟酸)二正丁基合锡(DBDCT)是一种典型的R2SnL2型有机锡类化合物,大量资料表明,此类有机锡化合物可致中枢神经系统损伤,但具体机制不明,有待进一步研究。本实验第一部分拟建立生物样品中锡含量的检测方法,确定DBDCT毒代动力学参数,确定大鼠暴露于毒剂量DBDCT的组织分布,并证明DBDCT可以透过血脑屏障,从而对神经系统产生影响;第二部分及第三部分拟通过动物在体实验和神经细胞体外培养两条途径研究DBDCT引起神经毒性的作用,并对可能机制进行初步探讨。
     方法:(1)建立原子荧光光谱法(AFS)检测血浆及组织匀浆中锡含量的方法,并采用AFS测定大鼠单次毒剂量(15mg/kg)静脉注射DBDCT后的毒代动力学参数及组织分布,初步判断DBDCT是否可以通过血脑屏障产生神经系统影响;(2)采用紫外分光光度法测定大鼠多次静脉注射DBDCT后的血清及脑组织生化指标;(3)观察大鼠多次静脉注射DBDCT前后体重的变化,并用HE染色检测主要组织脏器的病理学改变,确定主要毒性靶器官和毒性产生的可能原因;(4)通过TUNEL和Westernblot技术,研究大鼠多次静脉注射DBDCT后脑组织凋亡及凋亡相关蛋白的表达情况,初步明确DBDCT产生神经毒性的机制;(5)以PC12细胞为体外神经毒性研究对象,采用MTT法测定染毒后细胞的增殖抑制率,通过光镜、荧光染色和电镜等方法观察细胞核形态的变化,以PI/AnnexinV-FITC双染检测细胞染毒后的凋亡率,DNALadder方法检测细胞染毒后凋亡的特异性条带,用RT-PCR法检测凋亡相关基因的表达情况,从而证实DBDCT通过诱导细胞凋亡产生神经毒性;(6)采用紫外分光光度法测定PC12细胞染毒前后caspase-3和caspase-9活性的变化;以流式细胞术测定线粒体跨膜电位(ΔΨm)及活性氧(ROS)的变化,通过Westernblot分析Bax、Bcl-2、Cyt-c、caspase-3、caspase-9、p-JNK及p-p38等蛋白表达,进一步确证DBDCT通过多个信号转导通路诱导凋亡,产生神经毒性。
     结果:(1)建立了定量准确,精密度高,操作方便的检测血浆及组织匀浆中锡含量的AFS;测定了大鼠单次毒剂量静脉注射DBDCT后毒代动力学参数:分布半衰期t1/2α为49.977min、消除半衰期t1/2β为1.260min、表观分布容积Vc为8.201(μg/mL)/(mg/kg)、曲线下面积AUC为56.073(mg/kg)min、清除率Cl为0.297μg/mL/min/(mg/kg);大鼠单次毒剂量静脉注射后DBDCT可迅速分布到各组织,但锡浓度维持时间较短,肾上腺中锡浓度最高,其余组织中锡浓度相似,脑组织中能检测到少量锡元素,注射后两小时内维持0.10μg/g以上水平;(2)大鼠多次静脉注射DBDCT后,血清中AST、ALT、ALP、GGT、STB、BUN及CRE均显著升高(p<0.01),脑组织中SOD及GSH-Px显著降低(p<0.01),而MDA显著增高(p<0.01);(3)大鼠多次静脉注射DBDCT后,前三周体重虽有增加,但增长缓慢,最后一周称重时体重不增反降,HE染色后光学显微镜下观察发现,染毒组动物肝脏均被膜增厚,部分出现肝细胞嗜酸性变,核固缩等病理改变,部分脑组织也出现神经细胞结节状增生及皮质部分神经细胞变性等病理改变;(4)大鼠多次静脉注射DBDCT后对脑组织进行TUNEL染色,光学显微镜下可见染毒组大鼠大脑皮质中的细胞核大量呈现圆形和不规则形,棕染且着色深,凋亡指数AI极显著增高,从8.26±1.25%增加到30.3±1.94%(p<0.01),Westernblot实验结果显示染毒组蛋白Bax表达增加,蛋白Bcl-2的表达显著减少,Bax/Bcl-2比值从0.767上升至2.842,且蛋白caspase-3及caspase-9均出现显著地剪切条带;(5)MTT法测定DBDCT暴露24h后PC12细胞IC50值为4.110μmol/L,通过光镜、荧光染色和电镜观察到DBDCT染毒后PC12细胞呈现凋亡细胞所特有的形态学特征,PI/AnnexinV-FITC双染显示随DBDCT染毒剂量的增大和暴露时间的延长,PC12细胞的凋亡率显著增加(p<0.05),琼脂糖凝胶电泳中可见凋亡特征性改变的DNA梯形带,RT-PCR实验可见凋亡相关基因caspase-3、caspase-8、caspase-9、NF-κB、Fas、Fas-L及Cty-c的表达均发生显著变化(p<0.05,p<0.01);(6)PC12细胞暴露于不同染毒剂量DBDCT不同时间后,caspase-3和caspase-9的活性显著增加(p<0.05,p<0.01),随着DBDCT染毒剂量的增加和暴露时间的延长,△Ψm显著下降,ROS的生成明显增多,蛋白Bcl-2的表达下凋,蛋白Bax表达上调,线粒体内蛋白Cyt-c含量显著下降,胞质中蛋白Cyt-c含量明显增加,蛋白caspase-3及caspase-9均出现越来越显著地剪切条带,p-JNK和p-p38的表达逐渐增加,且均有明显量效和时效关系(p<0.01)。
     结论:(1)AFS适用于测定血液及组织样品中锡的含量,大鼠单次静脉注射DBDCT后血中锡浓度随时间变化符合二室模型,分布迅速,锡浓度维持时间较短,在主要组织器官中不易蓄积,DBDCT可以透过血脑屏障,因此可能对神经系统产生影响;(2)DBDCT影响大鼠体重增长和一般生长发育,改变大鼠血清中多种生化指标,表现出显著地肝脏及肾脏毒性;(3)DBDCT降低大鼠脑组织中抗氧化系统的活性,增强脑组织脂质过氧化反应,一定程度上通过诱导细胞凋亡对大鼠脑组织神经系统造成损害;(4)DBDCT能够诱导体外培养的PC12细胞株发生凋亡,作用机制可能是氧化应激及DNA损伤;Bcl-2家族、线粒体凋亡途径及MAPK信号转导通路均参与到DBDCT诱导的PC12细胞凋亡中,揭示DBDCT通过多途径诱导神经细胞凋亡从而产生神经毒性。
Objective:DBDCT is a typical R2SnL2type organotin compound synthesized by our group. The central nervous system is the major toxic target organ of the organotin compounds, but the exact mechanism of their neurotoxicity still remains unclear. In the first part of this experiment, the detection method of tin in biological samples was established, the toxicokinetic parameters and the tissue distribution of DBDCT in a toxic dose were determined. And it was confirmed that DBDCT could penetrate through the blood-brain barrier and influence the central nerve system.The neurological effects in rats in vivo and the possible mechanisms of neurotoxicity of DBDCT in vitro were studied in the second and the third part of the experiment.
     Methods:(1) The atomic fluorescence spectrometry (AFS) assay was established to detect the concentration of tin in plasma or in tissue homogenates in rats. And the toxicokinetic parameters and tissue distributions of tin after single intravenous15mg/kg DBDCT in rats were detected using the AFS assay. These detections were used to preliminarily judge the possibility of DBDCT penetrating through the blood-brain barrier and influencing the central nerve system.(2) A series of biochemical indicators in serum and in brain tissues in rats after repeatedly intravenous injection of DBDCT were determined by UV spectrophotometric assay.(3) The changes of the rats' body weights were observed during the exposure period of DBDCT, and the HE staining was used to observe the pathological changes in main organs after repeatedly intravenous injection of DBDCT. These detections were used to determine the main toxic target organ and possible causes of toxicity after exposure to DBDCT in vivo.(4) The apoptosis indexes (AI) and the expressions of apoptosis-related proteins in rats' brains were detected after repeatedly intravenous injection of DBDCT using TUNEL and Western blot techniques, which were expected to explain the possible neurotoxic mechanism after exposure to DBDCT in vivo.(5) The PC12cell line was selected to study the neurotoxicity of DBDCT in vitro. Growth inhibitions of the PC12cells were analyzed by MTT method. Hoechst33258 and AO/EB staining, light and electron microscope were used to examine the nuclear changes after exposure to DBDCT. The apoptosis ratios were determined by PI/Annexin V-FITC double staining, and the specific DNA ladder-shaped strips were studied by agarose gel electrophoresis. The expression changes of apoptosis-related genes such as caspase-3, caspase-8, caspase-9, NF-κB, Fas, Fas-L and Cty-c were detected by RT-PCR. All the detection methods were used to confirm that the cytotoxicity and neurotoxicity exposure to DBDCT were caused by inducing apoptosis.(6) The changes of enzymatic activities of caspase-3and caspase-9in PC12cells before and after exposure to DBDCT were evaluated using UV spectrophotometric method. The changes of mitochondria transmembrane potential variance (ΔΨm) and reactive oxygen species (ROS) were measured using flow cytometry. Meanwhile, the protein expressions of Bax, Bcl-2, Cyt-c, caspase-3, caspase-9, p-JNK and p-p38were analyzed by western blot method to further confirm that the neuronal apoptosis induced by DBDCT was resulted through multiple signal transduction pathways.
     Results:(1) An AFS assay was established which was proved to be accurate quantitative, high precision, operated easily to detect the concentration of tin in plasma or in tissue homogenates in rats. After single intravenous injection of toxic dose to rats, the toxicokinetic parameters of DBDCT were showed below, the distribution half life t1/2α and the elimination half life t1/2β were49.977min and1.260min separately, the apparent volume of distribution Vc was8.201(μg/mL)/(mg/kg), the area under the curve was56.073(mg/kg)min, and the clearance rate Cl was0.297μg/mL/min/(mg/kg). After single intravenous injection of toxic dose to rats, DBDCT could be distributed quickly. The concentration of tin in adrenal gland was the highest, and the concentrations of tin in the rest tissues were similar. The tin concentrations in rats'brain were determined not less than0.10μg/g within the first two hours after intravenous injection.(2) The levels of AST, ALT, ALP, GGT, STB, BUN and CRE in serum after repeatedly intravenous injection of DBDCT were all elevated extremely obviously (p<0.01). The activities of SOD and GSH-Px in brain homogenate were increased, on the other hand, the MDA levels were decreased notably (p<0.01).(3) Although the body weights increased in the first three weeks, they dropped at the last week after repeatedly intravenous injection of DBDCT. After HE staining, the thickened liver capsules, eosinophilic change and karyopyknosis of liver cells were observed in liver, nodular hyperplasia of nerve cells and cell degenerations in cerebral cortex were also observed in brain.(4) After repeatedly intravenous injection of DBDCT, the nucleus of the neurons in the cerebral cortex appeared irregular shaped and were stained brown by TUNEL staining. The apoptosis index (AI) was significantly increased from8.26±1.25%to30.3±1.94%(p<0.01). After western blot assay, the protein expression of Bax increased, on the contrary, the protein expression of Bcl-2decreased, the ratio of Bax/Bcl-2increased from0.767to2.842. The cleaved caspase-3and cleaved caspase-9were detected.(5) The IC50of DBDCT in24h was4.110μmol/L. The classic nuclear morphology characteristics were observed in PC12cells exposed with DBDCT using fluorescent staining, light and electron microscope. The apoptosis rates determined by PI/Annexin V-FITC double staining method in PC12cells exposed with DBDCT for different period of time showed significant statistics difference (p<0.05) compared with the control group. In the agarose gel electrophoresis, DNA ladder-shaped strips were also clearly observed. The results of RT-PCR indicated that the mRNA expresses of apoptosis-related genes such as caspase-3, caspase-8, caspase-9, NF-κB, Fas, Fas-L and Cty-c in the PC12cells exposed with DBDCT were obviously changed (p<0.05, p<0.01) compared with the normal PC12cells.(6) The enzymatic activities of caspase-3and caspase-9of PC12cells exposed with different concentrations of DBDCT for different period of time increased significantly (p<0.05,P<0.01). The ΔΨm strikingly decreased which was detected by JC-1, and the generation of ROS increased exposed with different concentrations of DBDCT for different period of time. The results of western blot analysis showed the down-regulation of bcl-2and the up-regulation of Bax. The expression of Cyt-c decreased in mitochondria and elevated in the cytosol. The cleaved caspase-3and cleaved caspase-9were detected. The expressions of p-JNK and p-p38also increased. All the changes of protein expressions were dose-and time-dependent (p<0.05).
     Conclusions:(1) The AFS applied to the determination of the tin concentrations in the blood and tissue samples. The concentration changes of tin in blood over time met the two-compartment model. DBDCT distributed rapidly, but was not easy to accumulate in the major tissues and organs. It could penetrate through the blood-brain barrier, which indicates it may have neurotoxic effect.(2) DBDCT affected the increase of the body weights and the general growth and development of rats. The changes of a series of biochemical indicators in blood and in brain tissues in rats revealed that DBDCT had significant liver toxicity and kidney toxicity.(3) DBDCT reduced the activity of the antioxidant system and enhanced the lipid peroxidation in the brain tissue of rats, and to some extent, caused damage in central nerve system by inducing neuron apoptosis in vivo.(4) DBDCT was able to induce apoptosis in the PC12cells cultured in vitro, the mechanism of which might be oxidative stress and DNA damage. The Bcl-2family, mitochondrial apoptosis pathway and MAPK signal transduction pathway were all involved in the apoptosis in the PC12cells induced by DBDCT, which revealed that DBDCT could cause neurotoxicity by inducing apoptosis in neuron on multi-pathways.
引文
[1]Kannan K, Tanabe S, Tatsukawa R. Occurrence of butyltin residues in certain foodstuffs. Bull Environ Contam Toxico,1995,55:510-516
    [2]J B Nielsen, J Strand. Butyltin compounds in human liver. Environmental Research Section A,2002,88:129-133
    [3]E Tessier, D Amouroux, OFX Donard. Volatile organ otin compounds (butylmethyltin) in three European estuaries (Gironde, Rhine, Scheldt). Biogeochemistry,2002,59:161-181
    [4]Sarah Maillefer, Corinne R. Lehr, William R. Cullen. The analysis of volatile trace compounds in landfill gases, compost heaps and forest air. Applied Organometallic Chemistry,2003,17(3):154-160
    [5]Abdel-Dah Sadiki, David T. Williams. A study on organotin levels in Canadian drinking water distributed through PVC pipesa. Chemosphere,1999,38(7):1541-1548
    [6]S Takahashi, H Mukai, S Tanabe, K Sakayama, T Miyazaki, H Masuno. Butyltin residues in livers of humans and wild terrestrial mammals and in plastic products. Environmental Pollution,1999,106(2):213-218
    [7]江桂斌.国内外有机锡污染研究现状.卫生研究,2001,30(1):1-3
    [8]John D. Robertson, Sten Orrenius. Role of mitochondria in toxic cell death. Toxicology,2002,(181-182):491-496
    [9]Scott M. Jenkins, Kimberly Ehmanb, Stanley Barone Jr. Strcture-activity comparison of organotin species:dibutyltin is a developmental neurotoxicant in vitro and in vivo. Developmental Brain Research.2004,151:1-12
    [10]William R.Mundy, Theresa M. Freudenrich. Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water:Involvement of MAP kinases. NeuroToxicology.2006,27:71-81
    [11]Philbert M.A., M.L.Billingsley, K.R.Reuhi. Mechanisms of injury in the central nervous system. Toxicol pathol,2000,28(1):43-53
    [12]Snoeij N.J., A.H.Penninks, W.Seinen. Biological activity of organotin compounds-an overview. Environ Res,1987,44(2):335-353
    [13]Riley A.L., R.J.Dacanay, J.P.Mastro Paolo. The effeets of trimethyltin chloride on the acquisition of long delay conditioned taste aversion learning in the rat. Neurotoxicology,1984,5(2):291-295
    [14]A. W. Brown, W. N. Aldridge, B. W. Street, R. D. Verschoyle. The behavioral and neuropathologic sequelae of intoxication by trimethyltin compounds in the rat. Am J pathol,1979,97(1):59-82
    [15]Katharina Kriiger, Victoria Diepgrond, Maria Ahnefeld, Christina Wackerbeck, Michael Madeja, Norbert Binding, Ulrich Musshoff. Blockade of glutamatergic and GABAergic receptor channels by trimethyltin chloride. Br J pharmacol,2005,144(2):283-292
    [16]Moser VC. Rat strain-and gender-related differences in neurobehavioral screening:acute trimethyltin neurotoxicity. J Toxicol Environ Health,1996,47(6):567-586
    [17]Zhenghong Zuo, Jiali Cai, Xinli Wang, Bowen Li, Chonggang Wang, Yixin Chen. Acute administration of tributyltin and trimethyltin modulate glutarnate and N-methyl-D-aspartate receotor signaling pathway in Sebastiscus marmoratus. Aquat Toxicol,2009,92(1):44-49
    [18]Jiliang Zhang, Zhenghong Zuo, Rong Chen, Yixin Chen, Chonggang Wang. Tributyltin exposure causes brain damage in Sebastiscus martnoratus. Chemosphere,2008,73(3):337-343
    [19]Makoto Ema, Katsuhiro F.. Developmental of dibutyltin dichloride in cynomolgus monkeys. Reproductive Toxicology.2006,9,1-8
    [20]王佩丽,陈卫杰,任引津.急性三烷基锡中毒的研究进展.劳动医学,2000,17(1):38-39
    [21]R. Besser, G. Kramer, R. Thumler, J. Bohl, L. Gutmann, H. C. Hopf. Acute trimethyltin limbic-cerebellar syndrome. Neurology,1987,37(6):945-950
    [22]Eyer C.L., C. Rio, J.R. Smith. Trimethyltin reduces ATP levels and MTT reduction in the LRM55rat astroeytoma cell line. In Vitr Mol Toxicol,2000,13(4):263-268
    [23]Aschner M., M.Garmon, H.K.Kimelberg. Interactions of trimethyltin (TMT) with rat primary astroeyte cultures:altered uptake and efflux of rubidium, L-glutamate and D-aspartate. Brain Res,1992,582(2):181-185
    [24]Dawson R., Jr. T.A.Patterson, B.EPPler. Endogenous exeitatory amino acid release from brain slices and astroeyte cultures evoked by trimethyltin and other neurotoxic agents. Neuroehem Res,1995,20(7):847-858
    [25]C.A Kassed, T.L Butler, M.T Navidomskis, M.N Gordon, D Morgan, K.R Pennypacker. Mice expressing human mutant presenilin-1exhibit decreased activation of NF-kappaB p50in hippocampal neurons after injury.Brain Res Mol BrainRes,2003,110(1):152-157
    [26]Yusuke Nakatsu, Yaichiro Kotake, Kazuya Komasaka, Hiroko Hakozaki, Ryota Taguchi, Toshiaki Kume, Akinori Akaike, Shigeru Ohta. Glutamate excitotoxicity is involved in cell death caused by tributyltin in cultured rat cortical neurons. Toxicol Sci,2006,89(1):235-242
    [27]Konno N., Masashi T., Ken N., Yang Liu. Effeet of tributyltin on the N-methyl-D-aspartate (NMDA) receptors in the mouse brain. Arch Toxicol,2001.75(9):549-554
    [28]Collin E. Davidson, Brian E. Reese, Melvin L. Billingsley, Jong K. Yun. Stannin, a protein that localizes to the mitochondria and sensitizes NIH-3T3cells to trimethyltin and dimethyltin toxicity. Mol Pharmacol,2004,66(4):855-863
    [29]Poh Loh Kok, Hong Huang Shan, De Silva Ranil, H. Tan, Benny K.; Zhun Zhu, Yi. Oxidative stress:apoptosis in neuronal injury. Curr Alzheimer Res,2006,3(4):327-337
    [30]Yunlan L., Jinjie L., Qingshan L. Mechanisms by Which the Antitumor Compound Di-n-Butyl-Di-(4-Chlorobenzohydroxamato)Tin(Ⅳ) Induces Apoptosis and the Mitochondrial-Mediated Signaling Pathway in Human Cancer SGC-7901Cells. Mol. Carcinogen,2010,49:566-581
    [31]Li Tang, Yun-lan Li, Rui Ge, Qing-shan Li. Oxidative stress in di-n-butyl-di-(4-chlorobenzohydroxamato)tin (Ⅳ)-induced hepatotoxicity determined by proteomic profiles. Toxicology Letters,2012,213:167-173
    [32]袁守军.当前新药毒代动力学(TK)的研究概况与不足.毒理学杂志,2007, 21(4):297-298
    [33]中华人民共和国国家职业卫生标准GBZ2-2002.工作场所有害因素职业接触限值。
    [34]周群芳,江桂斌.气相色谱法在有机锡化合物形态分离与定中的应用.分析科学学报,2002,18(3):240-246
    [35]赵孔祥,赵云峰,付武胜,吴永宁.气相色谱-脉冲火焰光度法测定水产品中有机锡的研究.中国食品卫生杂志,2008,20(2):130-135
    [36]NIEA T504.30B毒性化学物质有机锡类化合物于纺织品之检测方法-气相层析法(GC/PFPD或GC/FPD).[S]
    [37]W.M.R. Dirkx, R. Lobnski, F.C. Adams. Speciation analysis of organotin by GC-AAS and GC-AES after extraction and derivatization. Techniques and Instrumentation in Analytical Chemistry.1995,17:357-409.
    [38]徐福正,江桂斌,韩恒斌.气相色谱与原子吸收联用及其在有机锡化合物形态分析中的应用.分析化学,1995,11:1308-1312
    [39]黄国兰,孙红文,戴树桂.巯基棉预富集、气相色谱-原子吸收联用技术测定水样中丁基锡化合物.中国环境科学,1997,17(3):283-286
    [40]C. Carlier-Pinasseau, G. Lespes, M. Astruc. Determination of butyl-and phenyltin compounds in sediments by GC-FPD after NaBEt4ethylation. Talanta,1997,44(7):1163-1171
    [41]李艳明,胡勇杰,刘金华,郭玉良,王桂琴.气相色谱质谱法测定纺织助剂中的有机锡.色谱,2011,29(4):353-357
    [42]李英,李彬,刘丽,张琛,吴景武,刘志红,李心恬.气相色谱-质谱法同时测定聚氯乙烯塑料制品中的10种有机锡化合物.色谱,2009,27(1):69-73
    [43]付善良,张莹,肖家勇,李拥军,丁利,颜鸿飞.在线凝胶渗透色谱-气相色谱-质谱法测定茶叶中多种有机锡化合物残留.分析测试技术与仪器,2010,16(4):262-264
    [44]徐琴,牛增元,叶曦雯,孙银峰,汤志旭.液相色谱-质谱法对电子电气产品塑料部件中有机锡的测定.分析测试学报,2009,28(11):1270-1274
    [45]X Wang, H Jin, L Ding, H Zhang, H Zhang, C Qu. A Yu. Organotin speciation in textile and plastics by microwave-assisted extraction HPLC-ESI-MS. Talanta,2008,75(2):556-563
    [46]O Saida, A Furesi, M P Usai. Analytical methods HPLC-ICP-MS for organotin quantification in coastal sediment of Sardinia. Toxicology Letter,2011,205(supp):134-135
    [47]Z Yu, J Sun, M Jing, X Cao, F Lee, X Wang. Determination of total tin and organotin compounds in shellfish by ICP-MS. Food Chemistry,2010,119(1):364-367
    [48]荆淼,于振花,王小如,黎先春,陈登云.高效液相色谱-电感耦合等离子体质谱技术测定海水中锡化学形态.分析化学,2008,8(2):235-237
    [49]GBZ/T160.22-2004.工作场所空气中锡及其化合物的测定方法[S].
    [50]牛晓梅.工作场所空气中锡L-半胱氨酸-原子荧光测定法.职业与健康,2011,27(7):773-774
    [51]丛梅梅,边疆,张丽薇,郭淑英.HG-AFS同时测定供水材料浸泡液中痕量锡和锑.中国卫生检验杂志,2009,19(7):1500-1501
    [52]朱力,刘裕婷.氢化物-原子荧光光谱法连续测定饮料中的砷、锡、锑.环境与职业医学,2009,26(5):519-521
    [53]张钦龙,高舸.氢化物发生原子荧光光谱法测定工作场所空气中锡.中国测试,2009,35(1):122-124
    [54]Igarashi T, Sekido T. Case studies for statistical analysis of toxicokinetic data. Regul Toxicol Pharmacol,1996,23(3):193-208.
    [55]Van Bree J. Application of sparse sampling approaches in rodent toxicokinetics: prospective view. Drug Inf J,1994,28:263-279
    [56]王庆利.新药非临床研究与评价中应关注的问题.中国新药杂志,2012,21(6):592-595
    [57]李云兰.二-4-氯苯甲酰异羟肟酸-二正丁基合锡(DBDCT)的药代动力学和抗癌作用机制研究:[博士学位论文].山西:山西医科大学,2008
    [58]Sjoberg P. Toxicokinetics in preclinical safety assessment-views from the Swedish medical products agency. Drug Inf J,1994,28:151-157
    [59]M. J. Saary, R. A. House. Preventable exposure to trimethyl tin chloride:a case report. Occup Med(Lond),2002,52(4):227-230
    [60]Izabela Figiel, Anna Fiedorowicz. Trimethyltin-Evoked Neuronal Apoptosis and Glia Response in Mixed Cultures of Rat Hippocampal Dentate Gyrus:A New Model for the Study of the Cell Type-Specific Influence of Neurotoxins. Neurotoxicology,2002,23(1):77-86
    [61]刘慧刚,许立红.三丁基锡毒性作用生物标记研究进展.中华预防医学杂志,2005,39(4):288-289
    [62]Hesham S. elsabbagh, Said.Z. moussa, Osama S. el-tawil. Neurotoxicologic sequelae of tributyltin intoxication in rats. Phamacol Res,2002,45(3):201-206
    [63]吕华东,林麒.有机锡污染及其毒性作用研究现状.海峡预防医学杂志,2007,13(3):27-29
    [64]J.G. Vos, A.De Klerk, E.I. Krajnc, H.Van Loveren, J. Rozing. Immunotoxicity of Bis(tri-n-butyltin)oxide in the rat:Effects on thymus-dependent immunity and on nonspecific resistance following long-term exposure in young versus aged rats. Toxicol Appl pharmacol,1990,105(1):144-155
    [65]H Tryphonas, G Cooke, D Caldwell, G Bondy, M Parenteau, S Hayward, O Pulido. Oral (gavage), in utero and post-natal exposure of Sprague-Dawley rats to low doses of tributyltin chloride:Part Ⅱ:effects on the immune system. Food Chem Toxicol,2004,42(2):221-235
    [66]Margaret M. Whalen, Bommanna G. Loganathan. Butyltin Exposure Causes a Rapid Decrease in Cyclic AMP Levels in Human Lymphocytes. Toxicol Appl Pharmac,2001,171(3):141-148
    [67]Italo Braga de Castro, Carlos Augusto Oliveira de Meirelles, Helena Matthews-Cascon, Cristina de Almeida Rocha-Barreira, Pablo Penchaszadeh, Gregorio Bigatti. Imposex in endemic volutid from Northeast Brazil (Mollusca: Gastropoda). Braz. arch. biol. Technol,2008,51(5):1065-1069
    [68]Toshihiro Horiguchi, Hiroaki Shiraishi, Makoto Shimizu, Masatoshi Morita. Effects of triphenyltin chloride and five other organotin compounds on the development of imposex in the rock shell, Thais clavigera. J Environ Monit,1999,1(3):233-238
    [69]I. M. Davies, A. Minchin, B. Bauer, M. J. H. Harding, D. E. Wells. QUASIMEME laboratory performance study of the biological effects of tributyltin (imposex and intersex) on two marine gastropod molluscs. J Environ Monit,1999,1(3):233-238
    [70]Jiliang Zhang, Zhenghong Zuo, Yixin Chen, Yang Zhao, Shuai Hu, Chonggang Wang. Effect of tributyltin on the development of ovary in female cuvier (Sebastiscus marmoratus). Aquat Toxicol,2007,83(3):174-179
    [71]M.M. Santos, J. Micael, A.P. Carvalho, R. Morabito, P. Booy, P. Massanisso, M. Lamoree, M.A. Reis-Henriques. Estrogens counteract the masculinizing effect of tributyltin in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol,2006,142(1-2):151-155.
    [72]Chonggang Wang, Yang Zhao, Ronghui Zheng, Xin Ding, Wei Wei, Zhenghong Zuo, Yixin Chen. Effects of tributyltin, benzo[a]pyrene, and their mixture on antioxidant defense systems in Sebastiscus marmoratus. Bull Environ Contam Toxicol,2005,75(6):1214-1219
    [73]Yohei Shimasaki, Takeshi Kitano, Yuji Oshima Suguru Inoue, Nobuyoshi Imada, Tsuneo Honjo. Tributyltin causes masculinization in fish. Environ Toxicol Chem,2003,22(1):141-144
    [74]Brian G. McAllister, David E. Kime. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat Toxicol,2003,65(3):309-316
    [75]Zhaobin Zhang, Jianying Hu, Huajun Zhen, Xiaoqin Wu, Chong Huang. Reproductive Inhibition and Transgenerational Toxicity of Triphenyltin on Medaka (Oryzias latipes) at Environmentally Relevant Levels. Environmental Seience and Technology,2008,42(21):8133-8139
    [76]梁淑轩,孙汉文.有机锡的环境污染及监测方法研究进展.环境与健康杂志,2004,21(6):425-427
    [77]栗学军,朱健.二月桂酸二丁基锡对大鼠肝脏毒性作用.中国公共卫生,2006,22(4):451-452.
    [78]朱舜.急性有机锡中毒58例.中国劳动卫生职业病杂志,2006,24(10):623-624
    [79]唐小江,黄建勋.三甲基氯化锡引发低血钾症动物模型的研究.中国职业医学,2001,28(1):6-8
    [80]王春华,梁友信.二月桂酸二丁基锡对职业接触工人健康的影响.蚌埠医学院学报,1997,22(2):118-119
    [81]Hara K, Yoshizuka M, Fujimoto S. Toxic effects of bis (tributyltin) oxide on the synthesis and secretion of zymogen granules in the rat exocrine pancreas. Arch Histol Cytol,1994,57(3):201-212
    [82]Kawahara T, Cader S, Douglas D, Nourbakhsh M, Pu C, Kneteman M, Lewis J, Churchill T, Yagita H, Kneteman N. Mammalian Target of Rapamycin Inhibitor and Anti-Death Receptor Agonistic Antibody:a Novel Combination Therapy for the Treatment of Hepatocellular Carcinoma:1935. Transplantation,2012,94:635
    [83]Nayak Sunil, Baghel R.P.S, Nayak Anju. Effect of heat treated rock phosphate without and with Phytase instead of Dicalcium Phosphate on serum enzyme activity and mineral concentration in starter chicks. Journal of Animal Research,2012,2(1):61-66
    [84]K.Zahra, M.A. Malik, M.S. Mughal, M. Arshad, M. I. Sohail. Hepatoprotective role of extracts of momordica charantial in acetaminophen-induced toxicity in rabbits. The Journal of Animal&Plant Sciences,2012,22(2):273-277
    [85]郭宏,周晓燕,王雪,翟木绪.高尿酸血症对非酒精性脂肪肝肝损害程度的影响.中华临床医师杂志,2012,6(11):2974-2977
    [86]Yi Shao, Zhi-Jie Shen, Yi-Yong Zhu, Xiao-Wen Sun, Jun Lu, Shu-Jie Xia. Fluid-electrolyte and renal pelvic pressure changes during ureteroscopic lithotripsy. Minimally Invasive Therapy&Allied Technologies,2012,21(4):302-306
    [87]Ling Ye, Ken-Tye Yong, Liwei Liu, Indrajit Roy, Rui Hu, Jing Zhu, Hongxing Cai, Wing-Cheung Law, Jianwei Liu, Kai Wang, Jing Liu, Yaqian Liu, Yazhuo Hu, Xihe Zhang, Mark T. Swihart, Paras N. Prasad. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nature Nanotechnology,2012,7:453-458
    [88]Ru-Ping Leea, Chung-Jen Leeb, Yi-Maun Subeq, Tai-Chu Peng, Fwu-Lin Yang, Bang-Gee Hsu. Erythropoietin ameliorates severe hemorrhagic shock-induced serum proinflammatory cytokines and biochemical changes in spontaneously hypertensive rats. Tzu Chi Medical Journal,2012,24(2):46-50
    [89]Zeng M, Li Y, Jiang Y, Lu G, Huang X, Guan K. Local and systemic oxidative stress status in chronic obstructive pulmonary disease patients. Can Respir J.2013,20(1):35-41.
    [90]Guilin Cheng, Wei Guo, Lu Han, Erlei Chen, Lingfang Kong, Lili Wang, Wenchao Ai, Naining Song, Haishan Li, Huiming Chen. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721cells via oxidative stress and the activation of MAPK signaling pathways. Toxicology in Vitro,2013,27(3):1082-1088
    [91]Qiu J, Li W, Feng S, Wang M, He Z. Transplantation of bone marrow-derived endothelial progenitor cells attenuates cerebral ischemia and reperfusion injury by inhibiting neuronal apoptosis, oxidative stress and nuclear factor-κB expression. International Journal of Molecular Medicine,2013,31(1):91-98
    [92]Agrawal Anant MS, Godar Dianne E. Simultaneous Detection and Semiquantification of DNA Damage in Normal and Apoptotic Cells: Triple-Immunofluorescent Labeling Using DAPI, Antibodies, and TUNEL. Applied Immunohistochemistry&Molecular Morphology,2012,20(4):402-409
    [93]Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. Methods Mol Biol,2013,927:121-136
    [94]D.A. Paduch, A. Bolyakov, J. Kiper, J. Bazarnik. Men older than34have increased risk of sperm chromatin damage in ejaculated sperm as measured using tunel assay. Fertility and Sterility,2012,98(3Suppl):S242
    [95]D. Paduch, A. Bolyakov, J. Kiper, J. Bazarnik, A. Mehta, M. Goldstein. Rejection treshholds and seasonal variability of epifluorescent sperm tunel assay. Fertility and Sterility,2012,98(3Suppl):S249
    [96]J. F. R. Kerr, A. H. Wyllie, A. R. Currie. Apoptosis:A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics. Br J Cancer,1972,26(4):239-257
    [97]John F. R. Kerr, Clay M. Winterford, Brian V. Harmon. Apoptosis. Its significance in cancer and cancer therapy. Cancer,1994,73(8):2013-2026
    [98]R. V. Rao, H. M. Ellerby, D. E. Bredesen. Coupling endoplasmic reticulum stress to the cell death program. Cell Death and Differentiation,2004,11:372-380
    [99]D. Sanges, V Marigo. Cross-talk between two apoptotic pathways activated by endoplasmic reticulum stress:differential contribution of caspase-12and AIF. Apoptosis,2006,11:1629-1641
    [100]Satomi Mizuhashi, Yuji Ikegaya, Norio Matsuki. Cytotoxicity of tributyltin in rat hippocampal slice cultures. Neuroscience Research,2000,38(1):35-42
    [101]Satomi Mizuhashi, Yuji Ikegaya, Nobuyoshi Nishiyama, Norio Matsuki. Cortical Astrocytes Exposed to Tributyltin Undergo Morphological Changes In Vitro. The Japanese Journal of Pharmacology,2000,84(3):339-346
    [102]Lucio G, Costa. Inhibition of y-[3H]aminobutyric acid uptake by organotin compounds in vitro. Toxicology and Applied Pharmacology,1985,79(3):471-479
    [103]Ryoji Kurita, Katsuyoshi Hayash, Keiichi Torimitsu, Osamu NIWA. Continuous Measurement of Glutamate and Hydrogen Peroxide Using a Microfabricated Biosensor for Studying the Neurotoxicity of Tributyltin. Analytical sciences,2003,19(12):1581-1585
    [104]Makoto Ema, Takafumi Itami, Hironoshin Kawasaki. Behavioral effects of acute exposure to tributyltin chloride in rats. Neurotoxicology and Teratology,1991,13(5):489-493
    [105]Makoto Ema, Takafumi Itami, Hironoshin Kawasaki. Changes of Spontaneous Motor Activity of Rats After Acute Exposure to Tributyltin Chloride. Drug and Chemical Toxicology,1991,14(1-2):161-171
    [106]Anna Teiling Gardlund, Trevor Archer, Kiki Danielsson, Helena Lindstrom, Johan Luthman. Effects of prenatal exposure to tributyltin and trihexyltin on behaviour in rats. Neurotoxicology and Teratology,1991,13(1):99-105
    [107]T. J. Shafer, W. D. Atchison. Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells:a model for neurotoxicological studies. Neurotoxicology,1991,12(3):473-492
    [108]JoAnne McLaurin, Rivka Golomb, Anna Jurewicz, Jack P. Ante, Paul E. Fraser. Inositol Stereoisomers Stabilize an Oligomeric Aggregate of Alzheimer Amyloid β Peptide and Inhibit Aβ-induced Toxicity. J Biol Chem,2000,275(24):18495-18502
    [109]司徒镇强,吴军正.细胞培养[M].西安,世界图书出版公司,2003:134-144
    [110]房德芳,王明艳.MTT法及AO/EB荧光染色法分析斑蝥酸钠对HepG2的生长抑制的研究.辽宁中医药大学学报,2010,12(2):41-42
    [111]曹越.细胞凋亡的形态学和生物化学特征与基因调控.青海医学院学报,2003,24(1):44-46
    [112]路艳艳,杨锦蓉,王菁.AO/EB染色法及流式细胞术检测DMF诱导人肝细胞凋亡.浙江预防医学,2007,19(6):11-14
    [113]Kun-zhong ZHANG, Jian-hua XU, Xiu-wang HUANG, Li-xian WU, Yu SU, Yuan-zhong CHEN. Curcumin synergistically augments bcr/abl phosphorothioate antisense oligonucleotides to inhibit growth of chronic myelogenous leukemia cells. Acta Pharmacol Sin,2007,28(1):105-110.
    [114]李国庆,王三英,雷小勇,张琍.MIF抑制剂HA对胃癌细胞株BGC-823增殖和凋亡的影响.南华大学学报·医学版,2009,37(1):32-35
    [115]王萍,宋世震.氯化锰致PC12细胞凋亡作用及其机制.中国工业医学杂志,2008,21(4):225-228
    [116]郭丽萍,王坚,蒋雨平,宗鸿亮,王秋雁,郭鹏,顾建新.胰岛素可抵抗MPP+诱导的PC12细胞的凋亡.中国临床神经科学,2004,12(2):143-146
    [117]赵吉清,林海,吴强,等.缺氧PC12细胞中JAK1/STAT1、STAT3介导的信号通路变化.第三军医大学学报,2009,31(5):391-393
    [118]Carsten Scaffidi, Simone Fulda, Anu Srinivasan, Claudia Friesen, Feng Li, Kevin J. Tomaselli, Klaus-Michael Debatin, Peter H. Krammer, Marcus E. Peter. Two CD95(APO-1/Fas) signaling pathways. The EMBO Journal,1998,17:1675-1687
    [119]Vermes Istvan, Haanen Clemens, Steffens-Nakken Helga, Reutelingsperger Chris. A novel assay for apoptosis:Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexine V. Journal of Immunological Methods,1995,184(1):39-51
    [120]Vijay R Baichwal, Patrick A Baeuerle.Apoptosis:Activate NF-κB or die? Curr Biol,1997,7(2):R94-R96
    [121]Frank Lezoualc'h, Yutaka Sagara, Florian Holsboer, Christian Behl. High Constitutive NF-κB Activity Mediates Resistance to Oxidative Stress in Neuronal Cells. J Neurosci,1998,18(9):3224-3232
    [122]康敏,钟德君,李鹏,李郁.Fas/FasL信号传导通路对NAFLD大鼠肝细胞凋亡的影响.重庆医学,2011,7:633-635
    [123]Haiyan Wang, Mingzhang Ao, Jiayi Wu, Longjiang Yu. TNFa and Fas/FasL pathways are involved in9-Methoxycamptothecin-induced apoptosis in cancer cells with oxidative stress and G2/M cell cycle arrest. Food and Chemical Toxicology,2013,55:396-410
    [124]Qing Li, Yiping Wang, Yi Wang, Qing Zhou, Ke Chen, Yuan Min Wang, Wei Wei, Yuan Wang. Distinct different sensitivity of Treg and Th17cells to Fas-mediated apoptosis signaling in patients with acute coronary syndrome. Int J Clin Exp Pathol.2013,6(2):297-307
    [125]Kazuomi Sato, Yuji Minai, Hiroyuki Watanabe. Effect of monochromatic visible light on intracellular superoxide anion production and mitochondrial membrane potential of B16F1and B16F10murine melanoma cells. Cell Biology International, online
    [126]N. Kim, M.O. Ripple, R. Springett. Measurement of the Mitochondrial Membrane Potential and pH Gradient from the Redox Poise of the Hemes of the bcl Complex. Biophysical Journal,2012,102(5):1194-1203
    [127]Linda L. Wu, Darryl L. Russell, Robert J. Norman, Rebecca L. Robker. Endoplasmic Reticulum (ER) Stress in Cumulus-Oocyte Complexes Impairs Pentraxin-3Secretion, Mitochondrial Membrane Potential (ΔΨm), and Embryo Development. Molecular Endocrinology,2012,26(4):562-573
    [128]Jun Ma, Lei Zhang, Shanshan Li, Shulin Liu, Cui Ma, Weiyang Li, J.R. Falck, Vijay L. Manthati, D. Sudarshan Reddy, Meetha Medhora, Elizabeth R. Jacobs, Daling Zhu.8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway. Experimental Cell Research,2010,316:2340-2353
    [129]Xiao-juan Zhu, Yan Shi, Jun Peng, Cheng-shan Guo, Ning-ning Shan, Ping Qin, Xue-bin Ji, Ming Hou. The effects of BAFF and BAFF-R-Fc fusion protein in immune thrombocytopenia. Blood,2009,114(26):5362-5367
    [130]Czarna M, Jarmuszkiewicz W. Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death. Postepy Biochem,2006,52(2):145-56
    [131]Rizwan S. Akhtar, Jayne M. Ness, Kevin A. Roth. Bcl-2family regulation of neuronal development and neurodegeneration. Biochimica et Biophysica Acta,2004,1644(2-3):189-203
    [132]Charles A. Harris, Eugene M. Johnson, Jr. BH3-only Bcl-2Family Members Are Coordinately Regulated by the JNK Pathway and Require Bax to Induce Apoptosis in Neurons. The Journal of Biological Chemistry,2001,(41):37754-37760
    [133]Reed JC. Bcl-2family proteins. Oncogene,1998,17(25):3225-3236
    [131]Gross A., McDonnell J.M., Korsmeyer S.J. Bcl-2family members and the mitochondria in apoptosis. Genes&Dev.,1999,13(15):1899-1911
    [135]Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science,1984,224(4656):1403-1406
    [136]Cleary ML, Smith SD, Sklar J. Cloning and structural analysis of cDNAs for bcl-2and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell,1986,47(1):19-28
    [137]David S. Goodsell. The Molecular Perspective:Bcl-2and Apoptosis. The Oncologist June,2002,7(3):259-260
    [138]Yang J., Liu X., Bhalla K, Caryn Naekyung Kim, Ana Maria Ibrado, Jiyang Cai, Tsung-I Peng, Dean P. Jones, Xiaodong Wang. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science,1997,275(5303):1129-1132
    [139]Hildeman D.A., Mitchell T., Aronow B., Sara Wojciechowski, John Kappler, Philippa Marrack. Control of Bcl-2expression by reactive oxygen species. PNAS,2003,100(25):15035-15040
    [140]Kim H.E., Yoon S.Y., Lee J.E., Won-Seok Choia, Byung K. Jinb, T.H. Ohc, George J. Markelonisc, Sang-Yearn Chuna, Young J. Oha. MPP(+) downregulates mitochondrially encoded gene transcripts and their activities in dopaminergic neuronal cells:protective role of Bcl-2. Biochemical and Biophysical Research Communications,2001,286(3):659-665
    [141]Howard S., Bottino C., Brooke S., Elise Cheng, Rona G. Giffard, Robert Sapolsky. Neuroprotective effects of bcl-2over expression in hippocampal cultures: interactions with pathways of oxidative damage. Journal of Neurochemistry,2002,83(4):914-923
    [142]Chen D.F., Schneider G.E., Martinou J.C., Susumu Tonegawa. Bcl-2promotes regeneration of severed axons in mammalian CNS. Nature,1997,385(6615):434-439
    [143]Bogdanov M.B., Ferrante R.J., Mueller G., Louis E. Ramosa, Jean-Claude Martinouc, M. Flint Beal. Oxidative stress is attenuated in mice overexpressing Bcl-2. Neurosci Lett,1999,262(1):33-36
    [144]Nutt L.K., Chandra J., Pataer A., Bingliang Fang, Jack A. Roth, Stephen G. Swisher, Roger G. O'Neil, David J. McConkey. Bax-mediated Ca2+Mobilization Promotes Cytochrome c Release during Apoptosis. The Journal of Biological Chemistry,2002,277(23):20301-20308
    [145]Putcha G.V., Deshmukh M., Johnson Jr E.M. BAX Translocation Is a Critical Event in Neuronal Apoptosis:Regulation by Neuroprotectants, BCL-2, and Caspases. The Journal of Neuroscience,1999,19(17):7476-7485
    [146]Finucane D.M., Bossy-Wetzel E., Waterhouse N.J., Thomas G. Cotter, Douglas R. Green. Bax-induced Caspase Activation and Apoptosis via Cytochrome c Release from Mitochondria Is Inhibitable by Bcl-xL. The Journal of Biological Chemistry,1999,274(4):2225-2233
    [147]Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in Xenopus egg extracts:inhibition by Bcl-2and requirement for an organelle fraction enriched in mitochondria. Cell,1994,79(2):353-364
    [148]X. D. Wang. The expanding role of mitochondria in apoptosis. Genes Dev.,2001,15:2922-2933
    [149]Vincent Cryns, Junying Yuan. Proteases to die for. Genes Dev.,1998,12(11):1551-1570
    [150]Hongjun Dua, Xufang Sun, Monica Guma, Jing Luo, Hong Ouyang, Xiaohui Zhang, Jing Zeng, John Quach, Duy H. Nguyen, Peter X. Shaw, Michael Karin, Kang Zhang. JNK inhibition reduces apoptosis and neovascularization in a murine model of age-related macular degeneration. PNAS,2013,110(6):2377-2382
    [151]Bokyung Sung, Sahdeo Prasad, Jayaraj Ravindran, Vivek R. Yadav, Bharat B. Aggarwal. Capsazepine, a TRPV1antagonist, sensitizes colorectal cancer cells to apoptosis by TRAIL through ROS-JNK-CHOP-mediated upregulation of death receptors. Free Radical Biology and Medicine,2012,53(10):1977-1987
    [152]Giulia Benedetti, Lisa Fredriksson, Bram Herpers, John Meerman, Bob van de Water, Marjo de Graauw. TNF-α-mediated NF-κB survival signaling impairment by cisplatin enhances JNK activation allowing synergistic apoptosis of renal proximal tubular cells. Biochemical Pharmacology,2013,85(2):274-286
    [153]Karin J. Jensen, Farshid S. Garmaroudi, Jingchun Zhang, Jun Lin, Seti Boroomand, Mary Zhang, Zongshu Luo, Decheng Yang, Honglin Luo, Bruce M. McManus, Kevin A. Janes. An ERK-p38Subnetwork Coordinates Host Cell Apoptosis and Necrosis during Coxsackievirus B3Infection. Cell host and microbe,2013,13(1):67-76
    [154]Y Liu, J Ge, Q Li, L Gu, X Guo, ZG Ma, YP Zhu. Anisomycin Induces Apoptosis of Glucocorticoid Resistant Acute Lymphoblastic Leukemia CEM-C1Cells via Activation of Mitogen-Activated Protein Kinases p38and JNK. Neoplasma,2013,60(1):101-110
    [155]Bangmin Liu, Zhe Jian, Qiang Li, Kai Li, Zhiyong Wang, Ling Liu, Lingzhen Tang, Xiuli Yi, Hua Wang, Chunying Li, Tianwen Gao. Baicalein protects Human melanocytes from H2O2-induced apoptosis via inhibiting mitochondria-dependent caspase activation and the p38MAPK pathway. Free Radical Biology and Medicine,2012,53(2):183-193
    [1]商丹,张朝平.金属抗癌药物的研究现状.贵州大学学报(自然科学版),2005,22(1):69-74.
    [2]Galanski Markus, Jakupec Michael A., Keppler Bernhard K. Update of the Preclinical Situation of Anticancer Platinum Complexes:Novel Design Strategies and Innovative Analytical Approaches. Current Medicinal Chemistry,2005,12(18):2075-2094(20).
    [3]Rosenberg B, Vancamp L, Krigas T. Platinum complexes [J]. Nature,1965,205,668-670.
    [4]刘伟平等.治疗癌症的铂族金属配合物[J].药学进展,2001,25(1):27-31.
    [5]Kouroussis C, Souglakos J, Kakolyris S, et al. Oxaliplatin in combination with infusional5-fluorouracil and leucovorinevery2weeks as first-line treatment in patients with advanced colorectal cancer:A Phase Ⅱ Study. Oncol,2001,61(1):36-41.
    [6]CarratoA, Gallego J, Diaz-Rubio E. Oxaliplatin:results in colorectal carcinoma. Crit Rev oncol Hemat,2002,44(1):29-44.
    [7]De VitaF, Orditura M, MatanoE, et al. A phasestudy of biweeklyoxaliplatin plus infusional5-fluorouracil and folinicacid(FOLFOX-4) as first-line treatment of advanced gastric cancer patients. Br J Cancer,2005,92(9):1644-1649.
    [8]Nardi M, Azzarello D, Maisano R, et al. FOLFOX-4regimen as first-line chemotherapy in elderly patients with advanced gastric cancer:a safety study. J Chemother,2007,19(1):85-89.
    [9]金懋林,陈强,程凤歧,等.奥沙利铂联合亚叶酸钙和5-氟尿嘧啶治疗晚期胃癌的研究.中华肿瘤杂志,2003,25(2):172-174.
    [10]Oh SY, Kwon HC, Seo BG, et al. A phase Ⅱ study of oxaliplatin with low dose leucovorin and bolus and continuous infusion5-fluorouracil (modified FOLFOX-4) as first line therapy for patients with advanced gastric cancer. Acta Oncol,2007,46(3):336-341.
    [11]Louvet C, AndreT, Tigaud JM, et al. Phase study of oxaliplatin, fluorouracil, and folinic acid in locally advanced or metastatic gastric cancer patients. J Clin Oncol,2002,20(23):4543-4548.
    [12]刘磊,李梅.晚期胃癌的化疗新进展.华西医学,2007,22(2):430-431.
    [13]杨朝旭,秦叔逵.奥沙利铂治疗原发性肝癌的临床研究进展.临床肿瘤学杂志,2010,15(9):845-855.
    [14]尹如铁,王丹青,谢聪,等.奥沙利铂在卵巢癌治疗中的研究进展.华西药学杂志,2009,24(4):433-436.
    [15]王新林,王湘辉.多西紫杉醇联合奥沙利铂治疗复发性卵巢癌.中国医药指南,2011,9(32):335-337.
    [16]邵棋,李苏宜.吉西他滨联合奥沙利铂方案的临床研究进展.肿瘤防治研究,2008,35(4):297.
    [17]柴晓华等.金属药物研究新进展.化学试剂,2008,30(2):99-104.
    [18]杨旭清,金祥林,宋勤华.超分子抗癌药物双环铂的结构研究.中国科学,2010,40(5):485-491.
    [19]Mingjin Xie, Weiping Liu, Liguang Lou, et al. Unusual Dimeric Chemical Structure for a Carboplatin Analogue as a Potential Anticancer Complex. Inorg. Chem.,2010,49(13):5792-5794.
    [20]Faivre S, Chan D, Salinas R, et al. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem Pharmacol,2003,66(2):225-237.
    [21]Zwelling LA, Anderson T, Kohn KW. DNA-protein and DNA interstrand cross-linking by cis-and trans-platinum (Ⅱ) diamminedichloride in L1210mouse leukemia cells and relation to cytotoxicity. Cancer Res,1979,39(2Pt1):365-369.
    [22]Woynarowski JM, Faivre S, Herzig MC, et al. Oxaliplatin-induced damage of cellular DNA. Mol Pharmacol,2000,58(5):920-927.
    [23]Todd RC, Lippard SJ. Inhibition of transcription by Platinum antitumor compounds. Metallomics,2009,1(4):280-291.
    [24]Tesniere A, Schlemmer F, Boige V, et al. Immunogenic death of colon Cancer cells treated with oxaliplatin. Oncogene,2010,29(4):482-491.
    [25]TafaniM, Cohn JA, Karpinich NO, et al. Regulation of intracellular pH mediates Bax activation in Hela cells treated with staurosporine or tumornecrosis factoralpha. J BiolChem,2002,277:49569-49576.
    [26]Park MS, De Leon MD, Devarajan P. Cisplatin induced apoptosis in LLC-PK1cells via activation of mitochondrial pathways. Am Soc Nephrol,2002,13:858-865.
    [27]周栋,孙伟.顺铂肾毒性发病机制及其防治的研究近况.中国中西医结合肾病杂志,2004,5(10):617-618.
    [28]Filipski K. K., Loos W. J., Verweij J., et al. Interaction of cisplatin with the human organic cation transporter2. Clin Cancer Res,2008,14(12):3875-3880.
    [29]Filipski K. K., Mathijssen R. H., Mikkelsen T. S., et al. Contribution of organic cation transporter2(OCT2) to cisplatin-induced nephrotosicity. Clin Pharmacol Ther,2009,86(4):396-402.
    [30]敖睿,刘浩,潘海霞.FOLFOX4方案对肿瘤患者外周神经传导速度的影响.实用医院临床杂志,2010,7(3):65-66.
    [31]Argyriou A A, Polychronopoulos P, Iconomou G, et al. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat Rev,2008, 34(4):368-377.
    [32]Kurniali P C, Luo L G, Weitberg A B. Role of calcium/magnesium infusion in oxaliplatin-based chemotherapy for colorectal cancer patients. Oncology,2010,24(3):289-292.
    [33]孙波,王叔世,成健.谷胱甘肽联合钙镁合剂预防澳沙利铂周围神经毒性临床观察.中国医学创新,2012,9(29):28-29.
    [34]金雪梅.铂类药物的毒性作用与预防措施.现代医药卫生,2010,26(21):3294-3295.
    [35]Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6or the reverse sequence in advanced colorectal cancer:a randomized GERCOR study. J Clin Oncol,2004,22(2):229-237.
    [36]Pieck AC, Drescher A, Wiesmann KG, et al. Oxaliplatin-DNA adduct formation in white blood cells of cancer patients. Br J Cancer,2008,98(12):1959-1965.
    [37]Zafar SY, Marcello JE, Wheeler JL, et al. Treatment-related toxicity and supportive care in metastatic colorectal cancer. J Support Oncol,2010,8(1):15-20.
    [38]苏忠兰,王宏伟,吴迪,等.α-生育酚对永生化人角质形成细胞内谷胱甘肽生成的影响及其机制研究.中国美容医学,2009,18(12):1769-1771.
    [39]Arnould S, Hennebelle I, Canal P, et al. Cellular determinants of oxaliplatin sensitivity in colon cancer cell lines. Eur J Cancer,2003,39(1):112-119.
    [40]Liu Z, Qiu M, Tang QL, et al. Establishment and biological characteristics of oxaliplatin-resistant human colon cancer cell lines. Chin J Cancer,2010,29(7):661-667.
    [41]Zhao Q, Zhang H, Li Y, et al. Anti-tumor effects of CIK combined with oxaliplatin in human oxaliplatin-resistant gastric Cancer cells in vivo and in vitro. J Exp Clin Cancer Res,2010,29(1):118-131.
    [41]C. Lowich, Liebigs Ann. Chem.1852(84):308.
    [42]E. Frankland, Liebigs Ann. Chem.1849(71):171.
    [43]E. Frankland, J. Chem. Soc.1850(2):267.
    [44]CroweA J, Smith P J, AtassiG, et al. Investigations into the antitumour activity of organotin compounds. I. Diorganotin dihalide and di-pseudohalide complexes. Chem Biol Interact,1980,32(1-2):171-178.
    [45]V.L.Narayanan, M.Nasr, K.D.Paull, NATO ASI Series, Series H:Cell Biology,1990,(37):201
    [46]V. L. Narayanan, Developments in Pharmacology.1983,(3):5
    [47]A. J. Crowe, P. J. Smith, G. Atassi, Inorg. Chim. Acta.1984(93):179
    [48]Crowe AJ, et al. Inorg Chim Acta,1984,93:179[49] I. Haiduc, C. Silvestru, Coord. Chem. Rev.1990(99):253
    [50]M. Gielen, M. Melotte, G. Atassi, R. Willem, Tetrahedron.1989(45):1219
    [51]M. Gielen, C. Vanbellinghen, J. Gelan, R. Willem, Bull. Soc. Chim. Belg.1988(97):873
    [52]M. Gielen, M. Acheddad, B. Mahieu, R. Willem, Main Group Met. Chem.1991(14):73
    [53]M. Gielen, A. El Khloufi, M. Biesemans, R. Willem, J. Meunier-Piret, Polyhedron.1992(11):1861
    [54]A. J. Crowe, Metal-based Antitumor Drugs.1989(1):103
    [55]M. Gielen, M. Acheddad, E. R. T. Tiekink, Main Group Met. Chem.1993(16):367
    [56]R. Barbieri, L. Pellerito, G. Ruisi, et al.Inorg. Chim. Acta.1982(66):L39
    [57]F.Huber, G. Roge, L.Carl, et al. J. Chem, Soc. Dalton. Trans. Inorg. Chem.(1972-1999)1985,523
    [58]J Wan, J. Huang, L. Huang, D. Shi, S. Hu.Inorg. Chim. Acta.1988(152):67
    [59]S. Hu, D. Shi, T. Huang, J. Wan, Z. Huang, J. Yang, C. Xu. Inorg. Chim. Acta.1990(173):3
    [60]M. Nath, S. Pokharia, X.Song, et al. Appl. Organomet. Chem.2003(17):305
    [61]Q. S. Li, P. Yang, Chinese J. Struct. Chem.1996(15):163
    [62]Q.S.Li, P.Yang, YN.Tian, et al. Synthesis and Reaction in Inorg. and Met.-Org.Chem.1996,26(4):561
    [63]Q.S.Li, P.Yang, E. B. Hua, C. R. Tian. J. Coord. Chem.1996(40):227
    [64]Q.S.Li, M.F.C. G.da Silva, J.H.Zhao, A.J.L.Pombeiro. J. Organomet. Chem. 2004(689):4584
    [65]A. J. L. Pombeiro, Q. S. Li, L. G. Han, M. F. C. G. da Silva, Port. Pat. Appl,2004,19
    [66]Q. S. Li, M. F. C. G. da Silva, A. J. L. Pombeiro, Chem.-A Eur. J.2004(10):1456
    [67]Sherman,S.E., Gibson,D.,Lippard.S.J.Science.1985(230):412
    [68]Ruisi G, Silvestri A, Barbieri R, et al. Inorg Biochem,1985,25,229
    [69]李青山,杨频,田燕妮,等.二正丁基锡(Ⅳ)-邻菲咯啉-单核普酸混配配合物的合成与表征.化学学报,1997,55:370-374
    [70]A.Gennari, R.Bleumink, B.Vivani, et al. Toxicol. Appl. Pharmacol,2000,(169):185
    [71]Von Ballmoos, Christoph, The ion channel of F-ATP synthase is the target of toxic organotin compounds. Proceedings of the National Academy of Sciences of the United States of America.2004,101(31):11239-11244
    [72]A.Yasuaki, Biomed. Res.Trace Elem,1993,(4):129
    [73]A.Gennari, R.Bleumink, B.Vivani, et al. Toxicol. Appl. Pharmacol,2002,(181):27
    [74]F.Barbien, M.Viale, F.Sparatore, et al. Anticancer Drugs,2002,(13):599
    [75]ATASSI G. Rev,Si,Ge,Sn,Pb Comp.,1985,8(23):219-227.
    [76]CONG Xue-qing,FANG Xiao-Niu,XIE Qing-Lan.厦门大学学报),1999,38-42.
    [77]SUN Li-juan, SONG Xue-Qing. Chemical Journal of Chinese Universities,2004,25:646-650.
    [78]吴文娟,方丹青,陈任宏等.抗肿瘤有机锡配合物的电子结构和构效关系研究.广东药学院学报,2006,22(3):233-238
    [79]Gielen M. Organotin compounds and their therapeutic potiential:a report from the Organometallic chemistry Department of the free university of Brussels. Appl. organometal. Chem.2002,16:481-496
    [80]Buck B, Mascioni A, Que L, Suguru Inoue, Nobuyoshi Imada, Tsuneo Honjo. Dealkylation of organotin compounds by biological dithiols:toward the chemistry of organotin toxicity. J.Am.Chem.Soe.,2003,125:13316-13317
    [81]Singh HL, Varshneys, Varshney AK. Organotin(IV) complexes of biologically active schiff bases derived from heterocyclic ketones and sulpha drugs. Appl. organometal. Chem.,1999,13(9):637-641
    [82]Philbert M.A., M.L.Billingsley, K.R.Reuhi. Mechanisms of injury in the central nervous system. Toxicol pathol,2000,28(1):43-53
    [83]Snoeij N.J., A.H.Penninks, W.Seinen. Biological activity of organotin compounds-an overview. Environ Res,1987,44(2):335-353
    [84]Riley A.L., R.J.Dacanay, J.P.Mastro Paolo. The effeets of trimethyltin chloride on the acquisition of long delay conditioned taste aversion learning in the rat. Neurotoxicology,1984,5(2):291-295
    [85]A. W. Brown, W. N. Aldridge, B. W. Street, et al. The behavioral and neuropathologic sequelae of intoxication by trimethyltin compounds in the rat. Am J pathol,1979,97(1):59-82
    [86]Katharina Kriiger, Victoria Diepgrond, Maria Ahnefeld, et al. Blockade of glutamatergic and GABAergic receptor channels by trimethyltin chloride. Br J pharmacol,2005,144(2):283-292
    [87]Moser VC. Rat strain-and gender-related differences in neurobehavioral screening:acute trimethyltin neurotoxicity. J Toxicol Environ Health,1996,47(6):567-586
    [88]Stanton M.E., K.F. Jensen, C.V. Piekens. Neonatal exposure to trimethyltin disrupts spatial delayed alternation learning in preweanling rats. Neurotoxicol Teratol,1991,13(5):525-530
    [89]Riley A.L., R.J.Dacanay, J.P.Mastro Paolo. The effeets of trimethyltin chloride on the acquisition of long delay conditioned taste aversion learning in the rat. Neurotoxicology,1984,5(2):291-295
    [90]M. J. Saary, R. A. House. Preventable exposure to trimethyl tin chloride:a case report. Occup Med(Lond),2002,52(4):227-230
    [91]R. Besser, G. Kramer, R. Thumler, et al. Acute trimethyltin limbic-cerebellar syndrome. Neurology,1987,37(6):945-950
    [92]Eyer C.L., C. Rio, J.R. Smith. Trimethyltin reduces ATP levels and MTT reduction in the LRM55rat astroeytoma cell line.In Vitr Mol Toxicol,2000,13(4):263-268
    [93]Aschner M., M.Garmon, H.K.Kimelberg. Interactions of trimethyltin (TMT) with rat primary astroeyte cultures:altered uptake and efflux of rubidium, L-glutamate and D-aspartate. Brain Res,1992,582(2):181-185
    [94]Dawson R., Jr. T.A.Patterson, B.EPPler. Endogenous exeitatory amino acid release from brain slices and astroeyte cultures evoked by trimethyltin and other neurotoxic agents. Neuroehem Res,1995,20(7):847-858
    [95]Izabela Figiel, Anna Fiedorowicz. Trimethyltin-Evoked Neuronal Apoptosis and Glia Response in Mixed Cultures of Rat Hippocampal Dentate Gyrus:A New Model for the Study of the Cell Type-Specific Influence of Neurotoxins. Neurotoxicology,2002,23(1):77-86
    [96]Barbara Viviani, Emanuela Corsini, Corrado L. Galli, Marina Marinovich. Glia Increase Degeneration of Hippocampal Neurons through Release of Tumor Necrosis Factor-a. Toxicology and Applied Pharmacology,1998,150(2):271-276
    [97]C.A Kassed, T.L Butler, M.T Navidomskis, et al. Mice expressing human mutant presenilin-1exhibit decreased activation of NF-κB p50in hippocampal neurons after injury. Mol Brain Res,2003,110(1):152-157
    [98]黄志芳,急性有机锡中毒性脑病临床分析.杭州医学高等专科学校学报,2003,24(1):23-24.
    [99]O'Bryan MK, Zini A, Cheng CY, Peter N Schlege. Human sperm endothelial nitric oxide synthase expression corelation with sperm motility. Fertil Steril,1998,70(6):1143-1147.
    [100]王永芳.有机锡化合物的污染及其毒性.中国食品卫生杂志,2003,15(3):244-247.
    [101]阿那尼,黄玉瑶.氯化二丁基锡对雌小鼠的生殖毒性.环境科学学报,2000,20(6):746-750.
    [102]Rice CD. Immunotoxicity in channel catfish, ictalurus punc-tatus, following acute exposure to tributyltin. Arah Environ Contam Toxicol,1995,25(4):464-470.
    [103]Whalen MM, Loganathan BG, Kannan K. Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro. Environ Res,1999,81(2):108-116.
    [104]Whalen MM, Loganathan GB. Butyltin exposure causes a rapid decrease in cyclic AMP levels in human lymphocytes. Toxicol Appl Pharmac,2001,171(3):141-148
    [105]De Santiage A, Aguilar Santelises M. Organotin compounds decrease in vitro survival, proliferation and differentiation of normal human Blymphocytes. Hum Exp Toxicol,1999,18(10):619-620
    [106]石孝洪,魏世强.有机锡化合物的环境化学行为及效应.重庆大学学报,2003,26(7):104-107
    [107]McAllister B.G, D.E. Kime. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat Toxicol,2003,65(3):309-316
    [108]朱舜.急性有机锡中毒58例.中国劳动卫生职业病杂志,2006,24(10):623-624
    [109]赖关朝.有机锡对甲状腺激素水平影响的初步探讨.中国职业医学,1999,26(6):27-28
    [110]梁淑轩,孙汉文.有机锡的环境污染及监测方法研究进展.环境与健康杂志,2004,21(6):425-427
    [111]孙淑云,李涛.二巯基辛基锡的毒性试验.卫生毒理学杂志,1997,11(3):203
    [112]郭新彪,大野泰雄.有机锡化合物对初培养肝细胞药物代谢酶活性的影响.卫生毒理学杂志,1996,10(3):173
    [113]Heidrich DD, Steckelbroedk S, Klingmuller D. Inhibition of human cytochrome P450aromatase activity by butyltins. Steroids,2001,66(10):763-769
    [114]王春华,梁友信.二月桂酸二丁基锡对职业接触工人健康的影响.蚌埠医学院学报,1997,22(2):118-119
    [115]唐小江,黄建勋.三甲基氯化锡引发低血钾症动物模型的研究.中国职业医学,2001,28(1):6-8
    [116]Kumano N. Antitumor effect of the organoganium compound Ge-132on the Lewis Lung Carcinoma(3LL)in C57BL/6mice. Tohoka J Exp Med,1985,13(6):97
    [117]Asai K, Okikawa H. Synthesis of the enantiomer of4-substituted ylactones with known absolute configuration. JP4627690,1971
    [118]王鲁,莫宁.有机锗药理毒理及应用研究进展.广西科学,1998,5(4):294-299
    [119]上海市微量元素学会.全国第一届着研讨会资料汇编.上海市营养学会,1990
    [120]全国锗研究联络组.全国第二届锗研讨会论文集.江苏扬州,1993
    [121]唐博恒,莫卓寿等.高锗酵母的研究.解放军预防医学杂志,1994,12(34):179-183
    [122]Meikle SR, Bailey D.L, et al. Simulteneous emission and transmission measurements for attenuation correction in whole-body. PET J Nucl Med,1995,36(9):1680-1688
    [123]程棕,何更生等.Ge-132对人乳癌细胞株BCaP-37的生物学作用.微量元素与健康研究,1996,31(1):3-5
    [124]杨康林等.有机锗化合物的合成及生物活性.广东微量元素科学,2000,7(5):7-13
    [125]陈兆和等.有机锗(Ge-132)研究概况.华南药讯,2000,30(2):45-53
    [126]唐任寰,胡少文.锗元素与抗肿瘤药物(I).微量元素与健康研究,1997,14(2):51-52
    [127]杨康林,李新生.几种新型锗修饰药物衍生物的合成及其抗癌活性.应用化学,2004,21(1):101-103.
    [128]上官国强,李雪,赵灿.有机锗葸醌酰胺和有机锗萘酚酯倍半氧化物的合成及对体外培养癌细胞的抑制作用.济宁医学院学报,2009,32(2):77-80.
    [129]王夔.生命科学中的微量元素.中国剂量出版社,1996:790-814
    [130]唐任寰,胡少文.锗元素与抗肿瘤药物(Ⅰ).微量元素与健康研究,1997,14(2):51-52
    [131]Puthraya KH, Srivastava TS, Amonkar AJ, et al. Some potential anticancer palladium (II) complexes of2,2'-bipyridine and amino acids. Inorg Biochem,1986,26:45-54.
    [132]Kuduk-Jaworska J, Puszko A, Kubiak M, et al. Synthesis, structural, physico-chemical and biological properties of new palladium (II) complexes whith2,6-dimethyl-4-nitropyridine. Inorg Biochem,2004,98:1447-1456.
    [133]高恩君,程卯生,王克华.钯(Ⅱ)配合物抗癌活性研究进展.中华医药杂志,2006,6(2):406-407.
    [134]柴晓华,王飞利,黄洁,等.金属药物研究新进展.化学试剂,2008,30(2):99-104.
    [135]刘杰,计亮年.金属钌配合物的抗肿瘤活性及其作用机理.化学进展,2004,16(6):969-973.
    [136]Keppler B K, Henn M, Juhl U M, et al. New ruthenium complexes for the treatment of cancer. Progress in Clinical Biochemistry and Medicine. Springer-Ver-lag Berlin Heidelberg,1989,10:41-69
    [137]Keppler B K, WEHE D, ENDRES H, et al. Synthesis, antitumor activity, and X-ray structure of bis(imidazolium)(imidazole)pentachlororuthenate(III),(ImH)2(RuImC15). Inorg Chem,1987,26:844-846.
    [138]Keppler B K, RUPP W, JUHL U M. Synthesis, molecular structure, and tumor-inhibiting properties of imidazolium trans-bis (imidazole) tetrachlororuthenate (III) and its methyl-substituted derivatives. Inorg Chem,1987,26:4366-4370
    [139]Keppler B K, LIPPONER K G, STENZEL B, et al. In Metal Complexes in Cancer Chemo therapy (ed. Keppler B K)[M]. Weinheim:V CH V erlagsgesellschaft,1993:187-220.
    [140]LIPPONER K G, VOGEL E, KEPPLER B K. Synthesis, characterization and solution chemistry of trans-indazoliumtet-rachlorobis (indazole) ruthenate (Ⅲ), a new anticancer ruthenium complex. IR, UV, NMR, HPLC investigations and antitumor activity. Crystal structures of trans-1-methyl-indazoliumtetrachl or obis-(1-methylindazole) ruthenate (Ⅲ) and its hydrolysis product trans-monoaquatrichlorobis-(1-methyl-indazole)-ruthenate(III). Metal-Based Drugs,1996,(3):243-260.
    [141]PETI W, PIEPER T, SOMMER M. Synthesis of tumor-inhibiting complex salts containing the anion trans-tetra-chlorobis(indazole) ruthenate(III) and crystal structure of the tetraphenylphosphonium salt. Eur J Inorg Chem,1999,1999:1551-1555.
    [142]PIPPER T, SOMMER M, GALANSKI M.[RuCl3ind3] and [RuCl2ind4]:Two new Ruthenium complexes derived from the Tumor-inhibiting RuIIIcompound HInd (OC-6-12)-[RuCl4ind2](ind=indazole). Inorg Allg Chem,2001,627:261-265.
    [143]GALEANO A, BERGER M R, KEPPLER B K. Antitumor activity of some ruthenium derivatives in human colon cancer cell lines in vitro. Arzneim-Forsch/Drug Res,1992,42(1):821-824.
    [144]VILAPLANA R, ROMERO M A, SALAS J M. Synthesis, structure and antitumour properties of a new1,2-propylenediaminetetraacetate-Ruthenium (Ⅲ). Compound Metal-Based Drugs,1995,(2):211-219.
    [145]尹富玲,申佳,邹佳嘉,等.2,2’-联吡啶和去甲基斑蝥酸根桥联双核铜(II)配合物的合成、结构表征及抗癌活性的研究.化学学报,2003,61(4):556-561.
    [146]徐刚,崔玉波,崔凯,等.非铂类金属抗肿瘤药物的研究进展.化学进展,2006,18(1):107-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700