用户名: 密码: 验证码:
海杂波混沌分形特性分析、建模及小目标检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海杂波(海表面回波),即来自雷达发射脉冲照射局部海面的后向散射回波。为了深入揭示海杂波的内在物理特性和规律,在实测IPIX雷达海杂波数据基础上对海杂波进行混沌分形特性分析、建模,同时为了解决传统舰载和岸基雷达难以检测出海杂波背景下小目标的现状,在本文研究出的海杂波的内在物理特性和统计规律基础上对海杂波背景下小目标进行检测。论文主要研究工作如下:
     1.在实测海杂波数据基础上,运用关联维、Lyapunov指数、Kolmogorov熵三个指标判断出海杂波的时间序列的混沌特性。针对海杂波的电磁散射是一种时空现象,提出研究海杂波的时空混沌特性更能揭示海杂波的本质,基于实测数据对海杂波的时空混沌进行定性分析,运用关联长度和借助耦合映像格子(CML, Coupled Map Lattice)模型计算最大Lyapunov指数判断出海杂波具有时空混沌特性。
     2.对海杂波分形特性进行较深入地研究。基于小波分析对海杂波的Hurst指数进行了计算,得出距离单元含有小目标和只含有海杂波的Hurst指数具有明差异的结论。考虑到海杂波的多奇异性和非线性非平稳的特点,提出基于小波模极大值(WTMM, Wavelet Transform Modulus Maxima)和多分形消趋势波动分析(MFDFA, Multifractal Detrended Fluctuation Analysis)两种方法对海杂波进行多重分形特性进行分析,分别计算了多重分形指标:尺度指数τ(q),广义Hurst指数h(q),奇异谱f(α)三个指标,得出单一距离单元的海杂波时间序列具有多重分形特性。为了进一步分析一组数据多个距离单元的海杂波分形特性,提出一种时间-距离单元-幅度图法对其进行分析,得出一组数据的多个距离单元的海杂波数据也具有分形特性,尤其是数据中含有小目标更佳表现多重分形特性,这进一步说明海杂波和小目标的分形特性不同。
     3.针对海杂波是一种时空现象和海杂波非线性非平稳的特点,提出一种基于最小二乘支持向量机-耦合映像格子(LSSVM-CML, Least Squares Support Vector Machines-Coupled Map Lattice)的海杂波时空预测方法,实验表明该方法的预测效果优于基于加权一阶局域法、归一化RBF神经网络、Volterra预测器、LSSVM算法的海杂波时间序列非线性预测效果。
     4.为了解决传统雷达恒虚警率(CFAR, Constant False Alarm Rate)方法不能有效地检测出海杂波背景下小目标的现状,在海杂波的时空混沌特性、多重分形特性、时频分析和统计规律基础上提出4种新的小目标检测方法:LSSVM-CML方法、广义分形维偏差法、时间-Doppler法、局部幅值统计法,实验结果表明这4种方法是有效的,可在对小目标及海洋环境没有先验知识条件下较准确地检测出小目标。
     5.针对实测数据存在的雷达测量噪声和来自于粗糙海面的动态噪声,这些噪声会影响海杂波内在特性分析,因此论文采用均值、中值、小波阂值法、经验模式分解(EMD, Empirical Mode Decomposition)算法分别对海杂波信号进行去噪,重点研究了基于小波阈值法和EMD算法的海杂波信号进行去噪。实验结果表明db2小波双曲线阈值函数HeurSure阈值模式和EMD算法去噪效果较好,由于EMD算法去噪是全数据驱动的,因此去噪效果最优。
"Sea clutter", refers to radar backscatter from local sea surface. In order to disclosure the intrinsic physical characteristics and laws of sea clutter, chaotic and fractal analysis and modeling is performed based on the real-life IPIX sea clutter datasets. Meanwhile, aiming at the present issue that small target detection within sea clutter is very difficult for traditional and coast-sited radar, investigation of small target detection is achieved based on the chaotic and fractal characteristics and laws of sea clutter obtained from this dissertation. This thesis concentrates on as follows:
     1. Based on the real sea clutter data, the sea clutter is regarded as chaotic by calculating Correlation dimension, Lyapunov exponent and Kolmogorov entropy. Considering radar electromagnetic wave scattering from a rough sea surface is basically a spatiotemporal phenomenon, this dissertation presents that the study of spatiotemporal chaos (STC) can further disclosure the true nature of sea clutter, STC qualitative, analysis is achieved by real sea clutter data, STC quantitative analysis is achieved by calculating Correlation length and the largest Lyapunov exponent via Coupled Map Lattice (CML) model.
     2. Fractal characteristic of sea clutter is deeply investigated. Wavelet analysis is applied to calculate Hurst exponents of sea clutter, it is found that the Hurst exponent of the range bin hosting a small target is different from hosting only sea clutter. Considering dense singularities and nonlinearity and nonstationary of sea clutter, Wavelet Transform Modulus Maxima (WTMM) and Multifractal Detrended Fluctuation Analysis (MFDFA) are derived for multifractal analysis of sea clutter, scale exponent r(q), generalized Hurst exponent h(q), singularity spectrum f(a) are calculated, the results indicate that sea clutter time series of a certain range bin is multifractal. For further study of the fractality of a sea clutter dataset with many range bins, a new method of Time-Range bin-Amplitude Plot (TRAP) is presented, experiment results imply that a sea clutter dataset with several range bins has fractality characteristic, especially when the dataset contain a small target, it performs multifractal characteristic, which further implies that sea clutter and small target has different fractality.
     3. As to sea clutter is a spatiotemporal phenomenon and nonlinear and nonstationary, a new algorithm of Least Squares Support Vector Machines-Coupled Map Lattice (LSSVM-CML) is presented for spatiotemporal prediction of sea clutter. Experiments results indicate that the prediction precision of LSSVM-CML algorithm is superior to Weighted One-order Local-region algorithm, Normalized RBF Neural Network, Volterra Predictor, LSSVM algorithm for prediction of sea clutter time series.
     4. In order to solve the problem that the traditional radar Constant False Alarm Rate (CFAR) method can not detect small target in sea clutter, based on the STC characteristic, Multifractal characteristic, time-frequency analysis, statistical regularities obtained in this dissertation, four new methods including LSSVM-CML algorithm, Generalized Fractal Dimension Difference (GFDD) algorithm, Time-Doppler analysis (TDA) and Local Amplitude Statistics (LAS) method are derived for small target detection within sea clutter. Experiments results indicate that these methods are valid, the small target can be detected precisely with no prior knowledge of the small target and ocean environment conditions.
     5. Since the real-life sea clutter data contains radar measurement noise and dynamic noise from rough surface which may influence the analysis of the intrinsic characteristics of sea clutter, so Averaging, Median, Wavelet and Empirical Mode Decomposition (EMD) algorithm are used for denoising. Wavelet thresholding method and EMD algorithm for denoising is the major investigation in this dissertation. Experiments indicates that db2 wavelet with Hyperbolic Thresholding function and HeurSure threshold and EMD algorithm for denoising of sea clutter are excellent, since EMD-based signal denoising is full data driven, so EMD algorithm denoising is optimist a little better than Wavelet thresholding denoising method.
引文
[1]Conte E, Maio A D. Mitigation techniques for non-gaussian sea clutter. IEEE Journal of Oceanic Engineering,2004,29(2):284-302P
    [2]Guedes S C, Cherneva Z, Antao E M. Steepness and asymmetry of the largest waves in stormy sea states. Ocean Engineering,2004,31: 1147-1167P
    [3]Haykin S, Bakker R, Currie B W. Uncovering nonlinear dynamics-the case study of sea clutter. Proceedings of the IEEE,2002,90(5):860-881P
    [4]Oliver P J, Sattinger D H. Solution in physics, mathematics, and nonlinear optics. New York:Springer-Verlag,1990,20-27P
    [5]Lorenz E N. Determininistic non-periodic flow. Journal of Atmospheric Science,1963,20:130-141P
    [6]Mandelbrot B B. The fractal geometry of nature. San Francisco, CA: Freeman,1982:1-22P
    [7]. Leung H, Haykin S. Is there a radar clutter attractor. Apply Physics Letters, 1990,6(5):593-595P
    [8]He Nan, Haykin S. Chaotic modeling of sea clutter. Electronic Letters,1992, 28(22):2076-2077P
    [9]Haykin S, Xiaobo Li. Detection of signals in chaos. Proceedings of the IEEE,1995,83(1):95-122P
    [10]Palmer A J, Kropfli R A, Signatures of deterministic chaos in radar sea clutter and ocean surface winds. Chaos,1995,5(3):613-616P
    [11]Haykin S, Puthusserypady S. Chaotic dynamic of sea clutter. Chaos,1997, 7(4):777-802P
    [12]Haykin S, Puthusserypady S. Chaotic dynamic of sea clutter. IEEE Radar conference,1997:75-79P
    [13]Unsworth C P, Cowper M R, McLaughlin S, et al. Re-examining the nature of radar sea clutter. IEE Proceediings, Radar Sonar and Navigation,2002, 149(3):105-114P
    [14]McDonald M, Damini A. Limitations of nonlinear chaotic dynamics in predicting sea clutter returns. IEE Proceediings, Radar Sonar and Navigation,2004,151(2):105-113P
    [15]Gao J B, Hwang S K, Kang C Z, et al. Can Sea Clutter and Indoor Radio Propagation be Modeled as Strange Attractors? The 7th Experimental Chaos Conference:AIP Conference Proceedings,2003,676:154-161P
    [16]Gao J B, Yao K. Multifractal features of sea clutter. IEEE radar conference, 2002,500-505P
    [17]Nan Xie, Leung H, Hing C, A multiple-model prediction approach for sea clutter modeling. IEEE Transactions on Geoscience and Remote Sensing Letters,2003,41(6):1491-1502P
    [18]Weinberg G V, Alexopoulos A. Examples of a Class of Chaotic Radar Signals. Defence Science and Technology Organisation, Edinburgh, South Australia, Australia,2005,1-22P
    [19]Min Han, Jianhui Xi, Shiguo Xu, et al. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Transactions on Signal Processing,2004,52(12):3409-3416P
    [20]Gao J B, Hu J, Tung W W, et al. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Physical Review E,2006,74(6): 066204-1-9P
    [21]董华春,宗成阁,权太范.高频雷达海洋回波信号的混沌特性研究.电子学报,2000,28(3):25-28页
    [22]董华春,刘梅,权太范.高频雷达海杂波混沌特性的实验研究.高技术通讯.2000,3:41-44页
    [23]姜斌,王宏强,付耀文等.基于LS_SVM的海杂波混沌预测.自然科学进展,2007,17(3):425-420页
    [24]姜斌,王宏强,黎相等.S波段雷达实测海杂波混沌分形特性分析.电子与信息学报,2007,8(4):1809-1812页
    [25]孙博玲.分形维数及其测量方法.东北林业大学学报,2004,32(3): 116-119页
    [26]Lo T, Leung H, Litva J, et al. Fractal characterisation of sea-scattered signals and detection of sea-surface targets. IEE Proceedings-F,1993. 140(4):243-249P
    [27]Ji Chen, Lo T K Y, Leung H. The use of fractals for modeling EM waves scattering from rough sea surface. IEEE Transactions on Geoscience and Remote Sensing Letters,1996,34(4):966-972P
    [28]Martorella, M, Berizzi F, Mese E D. On the fractal dimension of sea surface backscattered signal at low grazing angle IEEE Transaction on Antennas and Propagation,2004,52(5):1193-1204P
    [29]Haykin S. The Dartmouth database of IPIX radar. (2001-06-08) http://soma. ece.mcmaster.ca/ipix/Dartmouth/datasets.html
    [30]Pawel O, Jaroslaw K W, StanislawD. Wavelet versus detrended fluctuation analysis of multi fractal structures. Physical Review E,2006,74(1): 016103-1-17P
    [31]石志广,周剑雄,赵宏等.海杂波的多重分形特性分析.数据采集与处理,2006,21(2):168-173页
    [32]熊刚,赵惠昌,张淑.引信海洋回波信号的分形特性研究.兵工学报,2005,26(1):15-19页
    [33]余薇,田建生.高频雷达中提取海洋回波信号的新方法.系统工程与电子技术,2006,28(8):1161-1163页
    [34]Hennessey G, Leung H, Membet, Drosopoulos A. Sea clutter modeling using a radial basis function neural network. IEEE Journal of Oceanic Engineering,2001,26(3):358-372P
    [35]Jing H, Wenwen T, Jianbo G. Detection of low observable targets within sea clutter by structure function based multifractal analysis. IEEE Transaction on Antennas and Propagation,2006,54(1):136-143P
    [36]Davidson G, Griffith H D. Wavelet detection scheme for small targets in sea clutter. Electronics Letters,2002,38(19):1127-1129P
    [37]Sira S P, Cochran D, Antonia P S. Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter. IEEE Journal of Selected Topics in Signal Processing,2007,1(1):56-66P
    [38]McDonald M, Lycett S. Fast versus slow scan radar operation for coherent small target detection in sea clutter. IEE Proceediings, Radar Sonar and Navigation,2005,152(6):429-435P
    [39]杜干,张守宏.基于分形维特征的舰船目标的检测.西安电子科技大学学报,1999,26(4):498-501页
    [40]杜干,张守宏.高阶分形特征在雷达信号检测中的应用.电子学报,2000,28(3):90-92页
    [41]文必洋,王颂.一种应用海杂波分数维检测海面目标的方法.华中科技大学学报(自然科学版),2006,34(1):68-70页
    [42]王永诚,吴小飞.海杂波的分数维测量在对海面目标探测中的应用研究.现代雷达,2000,22(10):28-31页
    [43]周静,田金文.基于海岸线背景的海面小目标检测方法.红外与激光工程,2005,34(4):486-489页
    [44]杨世海,罗鹏飞.海面小目标检测的AR双极点分析系统工程与电子技术,2006,28(7):956-960页
    [45]Nohara T J, Haykin S. AR-based growler detection in sea clutter. IEEE Transaction on Signal Processing,1993,41(3):1259-1271P
    [46]许小可,柳晓明,陈晓男.基于空间分形特征差异的目标检测.大连海事大学学报,2007,33(2):45-48页
    [47]姜斌,王宏强,付耀文等.海杂波背景下的目标检测新方法.物理学报,2006,55(8):3985-3990页
    [48]张延冬.海面电磁与光散射特性研究.西安电子科技大学博士论文,2004,40-46页
    [49]Nomiyama D H, Hirayama T. Evaluation of marine radar as an ocean-wave-filed detector through full numerical simulation. Journal of Marine Science and Technology,2003,8:88-98P
    [50]Farmer J D, Sidorowich J J. Predicting chaotic time series. Physical Review Letters,1987,59:845-848P
    [51]陈坚,韩伯堂.混沌时间序列分析中的相空间重构技术综述.计算机科学,2005,32(4):67-70页
    [52]Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a time series. Physical Review Letters.1980,45(9):712-716P
    [53]武薇,范影乐,庞全.基于广义维数距离的语音端点检测方法.电子与信息学报,2007,29(2):465-468页
    [54]Fraser A M, Swinney H Y. Independent coordinates for strange attractors from mutual information. Physical Review A.1986,33(2):1134-1140P
    [55]杨志安,王光瑞,陈式刚.用等间距分格子法计算互信息函数确定延迟时间.计算物理,1995,12(4):442-447页
    [56]Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D.1997,110(1-2):43-50P
    [57]Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D,1997,1983(1-2):189-208P
    [58]Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series. Physica D,1985,16(3):285-317P
    [59]Rosenstein M T. Collins J J, De L C. A practical method for calculating largest Lyapunov exponents from small datasets. Physica D 1993,65(1-2): 117-134P
    [60]Sato S, Sano M,Sawada Y, et al. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems. Progress of theoretical physics.1987,77(1): 1-5P
    [61]赵贵兵,石炎福,段文峰等.从混沌时间序列同时计算关联维和Kolmogorov熵.计算物理,1999,15(3):309-315页
    [62]Leung H. Chaotic prediction and modeling of sea clutter using neural networks. PhD Dissertation, McMaster Univetsity,1991,50-58P
    [63]Li Xiaobo. Detection of signals in chaos. PhD Dissertation, McMaster Univetsity,1995,72-76P
    [64]Bauer M, Heng H, Martienssen W. Characterization of spatiotemporal chaos from time series. Physical Review Letters,1993,71(4):521-1-4P
    [65]Pinter A, Lucke M, Hoffmann C. Competition between traveling fluid waves of left and right spiral vortices and their different amplitude combinations. Physical Review Letters,2006,96(4):044506-1-4P
    [66]Bestehorn M, Neuffer K. Surface patterns of laterally extended thin liquid films in three dimensions. Physical Review Letters,2003,87(4): 046101-1-4P
    [67]Plumecoy J, Szwaj C, Lefranc M, et al. Spatiotemporal chaos in a laser. European Quantum Electronics Conference,2003:125-125P
    [68]Egolf D A, Melnikov I V, Pesch W, et al. Mechanisms of extensive spatiotemporal chaos in rayleigh-Benard convection. Nature,2000,404: 733-736P
    [69]Cross M C, Hohenberg P C. Spatiotemporal Chaos. Science,1994,263(18): 1569-1570P
    [70]Rempel E L, Chian A C L. Origin of Transient and Intermittent Dynamics in Spatiotemporal Chaotic Systems. Physical Review Letters,2007,98(1): 014101-1-4P
    [71]Bell P S. Shallow water bathymetry derived from an analysis of x-band marine radar images of waves. Coastal Engineering,1999,37:513-527.
    [72]O'Hern C S, Egolf D A, Greenside H S. Lyapunov spectral analysis of a nonequilibrium Ising-like transion. Physical Review E,1996,53(4): 3374-3386P
    [73]Pethel S D, Corron N J, Bollt E. Symbolic dynamics of coupled map lattices. Physical Review Letters,2006,96(3):034105-1-4P
    [74]Weiming Yang, E-Jiang Ding, Mingzhou Ding. Universal scaling law for the largest Lyapunov exponent in coupled map lattices. Physical Review Letters,1996,76(11):1808-1811P
    [75]Egolf D A. Equilibrium Regained From Nonequilibrium Chaos to Statistical Mechanics. Science,2000,287:101-104P
    [76]Ouellette N T, Gollub J P. Curvature fields, topology, and the dynamics of spatiotemporal chaos. Physical Review Letters,2007,99(19):194502-1-4P
    [77]Egolf D A. Dynamical Dimension of Defects in Spatiotemporal Chaos. Physical Review Letters,1998,81(19):4120-1-4P
    [78]Yuan Gannan, Wang Fuyou, Hao Yanling. Research on data encryption technology based on chaos theory, The 8th International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,2007,2:93-98P
    [79]裴留庆,顾勇.混沌与噪声.电子学报,1999,19(6):80-90页
    [80]Mandelbrot B B. The fractal geometry of nature. New York, Freeman, 1982:10-15P
    [81]Mandelbrot B B. Fratcals:form, chance and dimension, San Francisco, Freeman,1977:25-30P
    [82]Pawel O Jaroslaw K W, Stanislaw D. Wavelet versus detrended fluctuation analysis of multi fractal structures. Physical Review E 2006, 74(1):016103-1-17P
    [83]巫兆聪.分形分析中的无标度区确定问题.测绘学报,2002,31(3):240-244页
    [84]武薇,范影乐,庞全.基于广义维数距离的语音端点检测方法.电子与信息学报,2007,29(2):465-468页
    [85]Movaheda M S, Hermanisc E. Fractal analysis of river flow fluctuations. Physica A,2008,387:915-932P
    [86]Kantelhardt J W, Zschiegner S A, Koscielny B E. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A,2002,316: 87-114P
    [87]孙博玲.分形维数(Fractal dimension)及其测量方法.2004,32(3):116.119页
    [88]郝柏林.混沌与分形.上海科学技术出版社.2004:59-60页
    [89]江田汉,邓莲堂.Hurst指数估计中存在的若干问题—以在气候变化研究中的应用为例.地理科学,2004,24(2):177-182页
    [90]Montanari A, Taqqu M S. Teverovsky V. Estimating long-range dependence in the presence of periodicity:an empirical study. Mathematical and computer modeling,1999,29:217-228P
    [91]Veitch D, Abry P. A wavelet-based joint estimator of the parameters of long-rangedependence. IEEE Transactions on Information Theory,1999, 45(3):878-897P
    [92]Demitre S. Effect of noise on fractal structurestar. Chaos, Solitons and Fractals,2008,38:921-924P
    [93]Stoev S, Taqqu M S, Park C, et al. On the wavelet spectrum diagnostic for Hurst parameter estimation in the analysis of Internet traffic. Computer Networks,2005,48:423-445P
    [94]Riedi R H, Crouse M S, Ribeiro V J, et al. A Multifractal wavelet model with application to network traffic. IEEE Transactions on Information Theory,1999,45(3):992-1018P
    [95]何宜军.成像雷达海浪成像机制.中国科学(D辑),2000,30(5):554-560页
    [96]Shimizu Y, Thurner S, Ehrenberger K. Multifractal spectra as a measure of complexity in human posture. Fractals,2002,10(1):103-116P
    [97]Gyuchang L, SooYong K, Hyoung L, et al. Multifractal detrended fluctuation analysis of derivative and spot markets. Physica A,2007,386: 259-266P
    [98]Hu Jing, Gao Jianbo, Posner F L, et al. Target detection within sea clutter: a comparative study by fractal scaling analyses. Fractals,2006,14(3): 187-204P
    [99]Hu Kun, Ivanov P C, Chen Zhi, et al. Effect of trends on detrended fluctuation analysis. Physical Review E,2001,64(1):011114-1-19P
    [100]Chen Zhi, Ivanov P C, Hu Kun, Stanley H E. Effect of nonstationarities on detrended fluctuation analysis. Physical Review E,2004,65(4): 041107-1-15P
    [101]Riedi R. An improved multifractal formalism and self-similar measures. Journal of Math Analysis and Applications,1995,189:462-490P
    [102]Arneodo A, Bacry E b, Muzy J F. The thermodynamics of fractals revisited with wavelets. Physica A,1995,213:232-275P
    [103]谢文录,谢维信.时间序列中的分形分析和参数提取.信号处理,1997,13(2):97-104页
    [104]朱炬波,梁甸农.组合分形Brown运动模型.中国科学(E辑),2000,30(4):312-319页
    [105]黄真理.湍流的分形特征.力学进展,2000,30(4):581-596页
    [106]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉大学出版社.2005,101-105页
    [107]Cowper M R, Mulgrew B, Unsworth C P. Nonlinear prediction of chaotic signals using a normalized radial basis function network. Signal Processing,2002,82:775-789P
    [108]陆振波,蔡志明,姜可宇.基于稀疏Volterra滤波器混沌时间序列自适应预测.系统工程与电子技术,2007,29(9):1428.1431页
    [109]张家树,肖先赐.混沌时间序列的Volterra自适应预测.物理学报,2000,49(3):403-408页
    [110]陆振波,蔡志明,姜可宇.基于奇异值分解的混沌时间序列Volterra预测.武汉理工大学学报(交通科学与工程版),2007,31(4):672-375页
    [111]Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing, in Advancesin Neural Information Processing Systems. Cambridge, MA:MIT Press, 1996,9:281-287P
    [112]Leung H, Lo T, Wang Sichun. Prediction of noisy chaotic time series using an optimal radialbasis function neural network. IEEE Transactions on Neural Networks,2001,12(5):1163-1172P
    [113]Han Min, Xi Jianhui, Xu Shiguo, et al. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Transactions on Signal Processing,2004,12(52):3409-3416P
    [114]Francisco G, Muruganandam P. Local dimension and finite time prediction in spatiotemporal chaotic systems. Physical Review E,2003, 67(6):066204-1-5P
    [115]Centeno T M, Selleron G. Spatiotemporal prediction applying fuzzy logic in a sequence of satellite images. Proceedings of SPIE,2002,45:84-91P
    [116]Parlitz U, Merkwirth C. Prediction of Spatiotemporal Time Series Based on Reconstructed Local States. Physical Review Letters,2000,84(9): 1890-1-4P
    [117]Brunnstrom K, Schenkman B N. Comparison of the predictions of a spatiotemporal model with the detection of distortion in small moving images. Optical Engineering,2002,41(3):711-722P
    [118]韩敏.混沌时间序列预测理论与方法.中国水利水电出版社.2007,203-209页
    [119]Panagopoulos S, John J. Small-target detection in sea clutter. IEEE Transactions on Geoscience and Remote Sensing,2004,42(7): 1355-1361P
    [120]Ji C, Lo T K Y, Leung H. The Use of Fractals for Modeling EM Waves Scattering from Rough Sea Surface. IEEE Transactions on Geoscience and Remote Sensing,1996,34(4):966-972P
    [121]Alsteris L D, Paliwal K K. Short-time phase spectrum in speech processing:A review and some experimental results. Digital Signal Processing,2007,17:578-616P
    [122]Kara S, Icier S, Endogen S. Spectral broadening of lower extremity venous Doppler signals using STFT and AR modeling. Digital Signal Processing,2007,9(2):1-8P
    [123]Kara S. Classification of mitral stenosis from Doppler signals using short time Fourier transform and artificial neural networks. Expert Systems with Applications,2007,33:468-475P
    [124]Huang H J, Chen F L. A synthetic control chart for monitoring process dispersion with sample standard deviation. Computers & Industrial Engineering,2005,49:221-240P
    [125]Livingston E H. The mean and standard deviation:what does it all means. Journal of Surgical Research,2004,119:117-123P
    [126]Goldman A, Cohen I. Anomaly detection based on an iterative local statistics approach. Signal Processing,2004,84:1225-1229P
    [127]Blunt S D, Gerlach K, Heyer J. HRR detector for slow-moving targets in sea clutter. IEEE Transactions on Aerospace and Electronic Systems,2007, 43(7):965-974P
    [128]Kim D C, Sayama S, Sekine M. Detection of target embedded in sea clutter by means of millimeter wave radar. International Journal of Infrared and Millimeter Waves,2003,24(9):1499-1508P
    [129]Lu Kun, Liu Xingzhao, Liu Yongtan. Ionospheric decontamination and sea clutter suppression for HF skywave radars. IEEE Journal of Oceanic Engineering,2005,30(2):455-462P
    [130]王福友,袁赣南,卢志忠.X波段导航雷达浪高实时测量研究.海样工程,2007,25(4):84-87页
    [131]Forget P, Saillard M, Broche P. Observations of the sea surface by coherent L band radar at low grazing angles in a nearshore environment. Journal of Geophysical Research,2006, 111(C09015):1-14P
    [132]王福友,袁赣南,卢志忠等.基于实测数据的海杂波及小目标回波特性分析.中国惯性技术学报,2008,16(4):439-444页
    [133]张剑.雷达海杂波背景下的恒虚警率目标检测方法研究及实现.哈尔滨工程大学硕士论文,2008,7.10页
    [134]Borge J C N, Rodriguez G. R, Hessner K. Inversion of nautical radar images for surface wave analysis. Journal of Atmospheric and Oceanic Technology,2004,21(8),1291-1300P
    [135]Dankert H, Rosenthal W. Ocean surface determination from X-band radar-image sequence. Journal of Geophysical Research 2004,109 (C04016):1-11P
    [136]Senet C M, Seemann J, Ziemer J. The near-surface current velocity determined from image sequences of the sea surface. IEEE Transactions on Geoscience and Remote Sensing,2001,39 (3),492-505P
    [137]Gangeskar R. Ocean current estimated from X-band radar sea surface images. IEEE Transactions on Geoscience and Remote Sensing,2002,40 (4),783-792P
    [138]Fuyou Wang, Gannan Yuan, Zhizhong Lu. Investigation of real-time wave height measurement by X-band radar. The 3rd International Conference on Wireless Communications, Networking and Mobile Computing,2007,2: 980-983P
    [139]Borge J C N, Reichert K. Use of nautical radar as a wave monitoring instrument. Coastal Engineering,1999,37,331-342 P
    [140]尚晓清,王军锋,宋国乡.基于Bayesian估计和Wiener滤波的阈值去噪方法.光子学报,2003,32(7):889-891页
    [141]Ko S J, Y Hoon. Center weighted median filters and their applications to image enhancement. IEEE Transactions on Circuits and Systems,1991, 38(9):984-993P
    [142]Jagtiani A V, Sawant R, Carletta J, et al. Wavelet transform-based methods for denoising of Coulter counter signals, Measurement Science and Technology,2008,19:(065102):1-15P
    [143]Neville S, Dimopoulos N. Wavelet denoising of coarsely quantized signals. IEEE Transactions on Instrumentation and Measurement,2006,55(3): 892-901P
    [144]Qidao Zhang, Rosse R A, Choi P. Denoising of gamma-ray signals by interval-dependent thresholds of wavelet analysis. Measurement Science and Technology,2006,17:731-735P
    [145]杜浩藩,丛爽.基于MATLAB小波去噪方法的研究.计算机仿真,2003,20(7):119-122页
    [146]刘喜武,刘洪,李幼铭等.局域波分解及其在地震信号时频分析中的应用.地球物理学进展,2007,22(2):365-375页
    [147]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear nonstationary time series analysis. Proceedings of the Royal Society of London A,1998,454(1971): 903-995P
    [148]Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters,2004,11(2):112-114P
    [149]Boudraa A O, Cexus J C, Salzenstein F, et al. EMD-based signal noise reduction. International Journal of Signal Processing,2004,1(1):33-37P
    [150]杨世锡,胡劲松,吴绍同等.旋转机械振动信号基于EMD的希尔伯特变换和小波变换时频分析比较.中国电机工程学报,2003,23(6):102.107页
    [151]Huang N E, Shen Zheng, Long S R. A New view of nonlinear water waves:the Hilbert Spectrum. Annual Review of Fluid Mechanism,1999, 31(1):417-457P
    [152]Veltcheva A D, Soares C G. Identification of the components of wave spectra by the Hilbert Huang transform method. Applied Ocean Research, 2004,26:1-12P
    [153]王福友,袁赣南,卢志忠等.国内外海杂波混沌分形特性及小目标检测研究进展.中国雷达,2008,3:1.5页
    [154]Schlurmann T. Spectral Analysis of Nonlinear Water Waves Based on the Hilbert-Huang Transformation. Journal of Offshore Mechanics and Arctic Engineering,2002,124:22-27P
    [155]Gloersen P, Huang N. Comparison of interannual intrinsic modes in hemispheric sea ice covers and other geophysical parameters. IEEE Transactions on Geoscience and Remote Sensing,2003,41(5):1062-1074 P
    [156]Fuyou Wang, Gannan Yuan, Weidong Zhou, et al. Small target detection within sea clutter based on local backscattering amplitude statistics. International Workshop on Modern Science and Technology 2008, IWMST 2008, China, Harbin.2008:523-527P
    [157]Songhua W, Zhishen L, Bingyi L. Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition methods. Optics Communications,2006,267:137-144P
    [158]刑孟道,王彤,李真芳.雷达信号处理.电子工业出版社.2008,87-88页
    [159]王德纯,丁家会,程望东.精密跟踪测量雷达技术.电子工业出版社.2006,229-231页
    [160]张光义,赵玉洁.相控阵雷达技术.电子工业出版社.2006,75.81页
    [161]贲德,韦传安,林幼权.机载雷达技术.电子工业出版社.2006,95.100页
    [162]王小谟,匡永胜,陈忠先.监视雷达技术.电子工业出版社.2008,137.139页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700