用户名: 密码: 验证码:
弹载合成孔径雷达成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(Synthetic Aperture Radar,SAR)成像是一种全天时、全天候的微波遥感技术,它能够提供目标区域的高分辨率、高精度的二维图像。如果能通过装载在导弹上的SAR获取目标区域图像,则可进行目标检测,提取目标形状、尺寸等特征,进而能够对攻击点进行选择。利用该图像作匹配处理修正弹上惯导系统的长时间积累误差和初始定位误差,能够大大提高打击效率。因此,弹载SAR成像技术是导弹制导技术目前的一个重要发展方向。由于攻击目标以及规避敌方防空阵地等战术需要,导弹在飞行过程中往往要做一定的机动,在垂直方向存在一定的速度和加速度。这就使得现有的适用于机载、星载SAR等匀速直线运动的SAR成像算法对于弹载SAR平台不再有效。另外,在导弹飞行末段成像时,导弹的飞行方向和信号发射方向重合,目标的方位向和距离向存在耦合,这也为弹载SAR的成像带来了困难。本文就是结合导弹的运动特点分别对弹载侧视SAR、大斜视以及前视SAR的成像问题进行研究,主要的研究工作包括以下几个方面:
     1)在分析SAR成像原理的基础上,针对弹载SAR平台俯冲加速运动的特点,建立了弹载侧视SAR成像的几何模型。通过该模型对目标斜距在单个孔径时间内随时间的变化关系进行了详细的分析,得到了距离随时间变化的一次、二次和三次分量。采用级数反演的方法推导了弹载SAR回波信号的二维频域的精确表达式,构造出了不同的补偿函数,从而提出了一种适用于弹载SAR俯冲加速运动下的成像算法。该算法采用全孔径处理并能够精确的校正距离徙动,仿真结果验证了该算法的有效性。
     2)对于大场景目标来说,由于弹载SAR平台的俯冲加速运动,会造成较大的距离徙动,距离空变也是非线性的,补偿函数的距离空变也复杂的多,因而其成像难度较大。根据弹载SAR平台的运动特点,使用高阶逼近模型建立了SAR的回波信号模型。考虑到大场景下的距离空变问题,对目标斜距随时间的变化关系进行了详细的分析,并结合级数反演法得到了弹载SAR回波信号的二维频域的精确表达式。通过弹载SAR几何关系近似得到了距离空变量的解析表达式,在此基础上提出了一种适用于弹载SAR俯冲加速运动下的SR-ECS(Series Reversion-Extended Chirp Scaling)大场景成像算法。理论分析和实验结果表明,该算法能够对大场景进行成像并取得了较好的成像效果。
     3)针对斜视角较大时,SAR成像结果发生散焦的问题,提出了一种改进的斜视成像算法。结合Chirp Scaling算法的优点,首先利用SAR系统和回波数据在时域内的特性在时域进行距离徙动校正,然后对信号进行CS变标处理,再在频域进行弯曲校正、距离压缩、二次距离压缩;在方位向匹配滤波时考虑了三次相位的影响,使方位向聚焦效果得到改善。通过对点目标和点阵目标分别进行了成像仿真,仿真结果验证了算法的有效性。同时,还对大斜视SAR成像过程中的几个问题进行了分析和说明。
     4)从SAR成像原理上来说,要求其载体运动方向和波束的照射方向有一定的夹角。由于攻击目标的需要,导弹在飞行末段时转为前视成像阶段,目标位于导弹飞行方向的正前方。此时,导弹的飞行方向和雷达的照射方向一致,距离向和方位向存在严重耦合,在成像区域上存在固有盲区。基于“收发分置”的思想,提出了一种双站弹载前视SAR成像模型。发射机、接收机分别放置于飞机和导弹上。导弹处于半主动工作模式,不发射信号,只接收信号。通过对空间几何构型的分析,推导了双站弹载前视SAR系统模糊函数的表达式。结合该模糊函数,对双站弹载前视SAR的分辨率进行了分析。分析了双站几何构型和速度矢量对前视分辨率的影响。理论分析与仿真结果表明双站弹载前视SAR系统的分辨率不仅与发射信号带宽、合成孔径长度有关,还取决于双站的构型。
     5)针对弹载SAR无法对飞行路线正前方进行高分辨率成像的问题,提出了一种双站弹载前视SAR成像方法。通过使用高阶逼近模型建立SAR的回波信号模型,推导了目标距离的数学表达式,结合级数反演法,得到了弹载SAR回波信号的二维频域的精确表达式,给出了各相位补偿因子表达式及算法实现步骤,从而完成了该双站弹载SAR前视成像算法。通过点目标的成像仿真验证了该算法能够完成弹载前视成像。
Missile-borne synthetic aperture radar (SAR) is an active microwave remote sensor. It can work all-time, all-weather, gain high resolution images of the target from which we can get the characters of the targets by imaging detection, such as shape and size. In addition, by using the imaging results, we can also correct the accumulative errors of INS and then control the missile to hit the target by matching operation. So, missile-borne SAR imaging has played an important role in modern war and becoming an important developing direction. But in the need of attacking the target, the movement of missile-borne SAR discussed here is larger different with the conventional airborne and spaceborne SAR. The velocity in the vertical direction and some special flights for evading antiaircraft area make the missile’s movement flexibility. So, for the missile-borne SAR system, the classical imaging algorithms available for airborne and spaceborne SAR are disabled. Our focus is on the issues such as side-looking SAR, squint SAR and forward-looking SAR when the missile moves in high-speed, non-level straight line. The main contributions can be summarized as follows.
     1.According to the SAR platform movement features during imaging, the geometric model is set up and the general expression (or mathematic model) of range between point target and radar in single aperture time is founded. By expanding the range expression, the 1st, 2nd and third order expansion coefficients are gained. From the expansion coefficients and the given movement parameter of missile-borne SAR, the range history in a synthetic aperture length is analyzed in details. The accurate two dimensional frequency spectrum expression is derived by the method of series reversion, followed a new imaging algorithm for missile-borne SAR diving acceleration movement is proposed. Finally, simulation results are presented to demonstrate the accuracy and validity of the proposed algorithms.
     2.The large range migration produced by missile diving acceleration flight make SAR image difficult. The echo model of the missile-borne SAR is established by using the high order range model based on the characters of the missile movements. Considering the large scene, the change of the slant range is analyzed in details. Then, the two-dimensional point target spectrum is derived by the method of series reversion. A large scene imaging algorithm used for diving acceleration flight is presented. Finally, simulation results are presented to demonstrate the accuracy and validity of the proposed algorithms. The resolution of range and azimuth are identical with the theoretical values.
     3.According to the characters of the large squint angle which cause degradations for the imaging results, an efficient chirp scaling algorithm was proposed. Firstly, the range cell migration was corrected in the time domain based on the characters of the SAR system and received echo, followed by the CS operation. Then the range compression and secondary range compression (SRC) were finished in the two-dimensional frequency domain. When azimuth compressed, the third order phase is compensated. So, the quality of the focus improved. Several simulation and processing results are presented to demonstrate the validity of the proposed algorithms. Finally, several problems for squint SAR imaging were analyzed and explained.
     4.For the SAR imaging theory, an angle between the direction of the SAR platform and the beam is necessary. In the end stage of missile flight, the directions of the missile and the beam are the same which make the SAR imaging disabled. Based on the bistatic theory, a bistatic forward-looking SAR model is proposed. The transmitter and receiver are mounted on the plane and missile, respectively. The ambiguity function is derived from the geometry of bistatic missile-borne forward-looking SAR system. The results of the simulations demonstrate the efficacy of the proposed ambiguity function. Further, by analyzing the ambiguity function, it is clear to demonstrate the influence of the bistatic missile-borne configuration on the system resolution, which provides principle for the selection of system parameters.
     5.An innovative missile-borne forward-looking SAR system is proposed based on the problem that side-looking SAR can not image in flight direction with high azimuth resolution. According to the spatial geometry and the model of echo signal, the signal spectrum derived by the method of series reversion and the phase compensation factors and realized steps of algorithm are given. Several simulation and processing results are presented to demonstrate the validity of the proposed algorithms.
引文
[1]王小谟,张光义,雷达与探测:现代战争的火眼金睛,北京:国防工业出版社,2000.
    [2] Merrill I.Skolnik著,王军等译,雷达手册,北京:电子工业出版社,2003.
    [3]郭华东等,感知天地——信息获取与处理技术,北京:科学出版社,2000.
    [4]郭华东,雷达对地观测理论与应用,北京:科学出版社,2000.
    [5]林为明,高军波,邵长军,信息战与雷达“四抗”,电子对抗,No.6,2000.
    [6]黄世奇,郑健,刘代志,王金泉,“SAR/红外双模成像复合制导系统研究与设计”,飞航导弹,2004,No.6,pp.38-43.
    [7]刘隆和,多模复合寻的制导技术,北京:国防工业出版社,1998.
    [8]高社生,李华星,INS/SAR组合导航定位技术与应用,西安:西北工业大学出版社,2004.
    [9]邹维宝,任思聪,李志林,“合成孔径雷达在飞行器组合导航系统中的应用”,航天控制,2002,No.1,pp.71-81.
    [10]杨士中,合成孔径雷达,北京:国防工业出版社,1981.
    [11]张澄波,综合孔径雷达原理-系统分析与应用,北京:科学出版社,1989.
    [12]刘永坦等,雷达成像技术,哈尔滨:哈尔滨工业大学出版社,1999.
    [13]保铮,邢孟道,王彤,雷达成像技术,北京:电子工业出版社,2005.
    [14]袁孝康,星载合成孔径雷达导论,北京:国防工业出版社,2003.
    [15]张直中,机载和星载合成孔径雷达导论,北京:电子工业出版社,2004.
    [16]张直中,微波成像术,北京:科学出版社,1990.
    [17]张直中,“合成孔径、逆合成孔径和成像雷达”,现代雷达,Vol.7,No.5,No.6,1985. Vol.8. No.1,1986.
    [18]魏钟铨,合成孔径雷达卫星,北京:科学出版社,2001.
    [19]王超,张红,刘智,星载合成孔径雷达干涉测量,北京:科学出版社,2002.
    [20] John.C.Curlander, Robert.N.McDonough, Synthetic Aperture Radar: System and Signal Processing. New York: John Wiley & Sons. Inc., 1991.
    [21] W.G.Carrara, R.S.Goodman, R.M.Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Boston, 1995.
    [22] Mehrdad Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, New York: John Wiley & Sons. Inc., 1999.
    [23] W.M.Brown,“Synthetic Aperature Radar”, IEEE Trans. on AES, 1967, Vol.3, No.2, pp.217-229.
    [24] W.M.Brown, Porrcello,“An Introduction to Synthetic Aperture Radar”, IEEE Spectrum, 1969, Vol.4, Sept. pp.52-62.
    [25] C.Elachi, T.Bicknell, R.L.Jordan, and C.Wu,“Spaeborne Synthetic-Aperture Imaging Radars: Apllication, Techniques, and Technology”, Proc.Of IEEE, 1982, Vol.70, No.10, pp.1174-1209.
    [26] Wiley.C.A.,“Synthetic Aperture radar”, IEEE Trans. on AES, 1985, Vo1.21, No.3, pp.440-443.
    [27] R.K.Raney,“Synthetic Aperture Imaging Radar and Moving Targets”, IEEE Trans. on AES, Vol.7, No.3, pp.499-505, 1971.
    [28] D.A.Ausherman, A.Kozma, J.L.Walker, H.M.Jones, E.C.Poggio,“Developments in Radar Imaging”, IEEE Trans. on AES, Vo1.20, No 4, pp.363-399, 1984.
    [29]陈宇新,安东,任思聪,“地形辅助的INS/SAR组合导航系统”,西北工业大学学报,1997,Vol.15, No.4, pp. 598-602.
    [30]安东,任思聪,郑谔,“图像辅助的惯性导航系统”,系统工程与电子技术,1996,No.3,pp.62-67.
    [31]安东,董光明,任思聪,“INS/SAR组合导航系统的原理及其性能研究”,西北工业大学学报,1997,Vol.15,No.4,pp.586-591.
    [32]高社生,邹维宝,任思聪,“INS/SAR组合系统对捷联惯性元件的要求及系统性能分析”,西北工业大学学报,2000,Vol.18,No.1,pp.147-151.
    [33] C.W.Sherwin, J.P.Ruina, R.D.Rawcliffe,“Some Early Developments in Synthetic Aperture Radar Systems”, IRE Trans.On Military Electronics, Vol.6, No.2, pp.111-115, 1962.
    [34] J.J.Kovaly, High Resolution Radar Fundamentals, In Eli Broakner, Radar Technology, Dedham, Mass: Artech House, 1977.
    [35]向敬成,张明友,雷达系统,北京:电子工业出版社,2001.
    [36] J.C.Kirk,“Digital Synthetic Aperture Radar technology”, IEEE International Radar Conference, 1975.
    [37] Lacomme P., Hardange J.P., Marchais J.C., Normant E., Air and Spaceborne Radar Systems, US: William Andrew, 2001.
    [38] D Curti Schleher, Lectronic Warfare in the Information Age, Boston: Artech House, 1999.
    [39]龙方,刘湘斌,“无人机载合成孔径雷达的发展现状与趋势”,电子对抗,2004,No.2.
    [40] Born G.H., Dunne J.A., and Lame D.B.,“Seasat Mission Overview”, Science, 1979, 204:1405-1406.
    [41] Cimino J., Elachi C.,“IR-B-The Second Shuttle Imaging Radar Experiment”, IEEE Transactions on Geoscience Remote Sensing, July, 24(4): 445-452, 1986.
    [42] Polge R, Green A H, Mullins J H,“Extension of Synthetic Aperture Radar Imagilag to Nonlinear Trajectories”, New Orleans, LA, USA, 1990, 161-166.
    [43]李道京,张麟兮,俞卞章,“主动雷达成像导引头几个问题的研究”,现代雷达,2003,25(5):12-15.
    [44]俞根苗,尚勇,邓海涛等,“弹载侧视合成孔径雷达信号分析及成像研究”,电子学报,2005,33(5):778-782.
    [45]俞根苗,邓海涛,张长耀等,“弹载条带SAR成像研究”,中国合成孔径雷达会议论文集,2003,241-244.
    [46]谢文冲,孙文峰,王永良,“目标三维转动对弹载毫米波SAR成像分析”,现代雷达,2004,26(1):37-40.
    [47]孙兵,周荫清,陈杰等,“基于俯冲模型的SAR成像处理和几何校正”,北京航空航天大学学报,2006,32(4):435-439.
    [48]李军显,岳应娟,刘岩,李萍萍,“空空导弹雷达导引头成像研究”,弹箭与制导学报,2006,26(2):3-5.
    [49]孙兵,周荫清,陈杰,“高速俯冲SAR成像方法研究”,电子与信息学报,2004 ,26(9):173-180.
    [50]房丽丽,王岩飞,“俯冲加速运动状态下SAR信号分析及运动补偿”,电子与信息学报,2008,30(6):1316-1320.
    [51] Raney R.K., Runge H., Bamler R., Cumming I., and Wong F.,“Precision SAR Processing Using Chirp Scaling”, IEEE Trans. on GRS, 1994, 32(4):786-799.
    [52] Moreira A., Mittermayer J., Scheiber R.,“Extended Chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes”, IEEE Trans.on GRS, 1996, 34(5):1123-1139.
    [53]黄岩,李春升,陈杰,周荫清,“高分辨率星载SAR改进Chirp Scaling成像算法”,电子学报,2000,28(3):35-38.
    [54]秦玉亮,王建涛,王宏强,黎湘,“基于距离-多普勒算法的俯冲弹道条件下弹载SAR成像”,电子与信息学报,2009,31(11):2563-2567.
    [55]张强,梁甸农,董臻,“一种弹载条带式SAR成像方法”,中国合成孔径雷达会议,2005,119-123.
    [56] Mahafza B R, Knight D L, Audeh N F,“Three-dimensional SAR Imaging Technique for MMW Seekers”, IEEE Aerospace Applications Conference Proceedings, Vail, CO, USA, 1994:185-198.
    [57]黄晓芳,“反舰导弹聚束式SAR导引头成像算法研究”,制导与引信,2005,26(4):6-13.
    [1]谌国森,陈晓丽,“美军巡航导弹的现状及发展趋势”,飞航导弹,2005(2):37-40.
    [2]李为民,朱永锋,赵宏钟,付强,“基于多普勒谱的多目标鉴别技术”,系统工程与电子技术,2005,27(12):2030-2034.
    [3]李为民,赵宏钟,石志广,付强,“水面舰队目标的探测与识别技术研究”,现代防御技术,2004,32(3):58-63.
    [4]董江曼,李应岐,邓飚,“SAR图像舰船目标的特征识别”,陕西师范大学学报(自然科学版),2004,32(6):203-205.
    [5]董绪荣,张守信,华仲春,GPS/INS组合导航定位及其应用,长沙:国防科技大学出版社,1998.
    [6]徐鹏,某型无人机姿态航向参考系统的设计与实现,西安:西北工业大学硕士学位论文,2007.
    [7]张楠,高空长航时无人机组合导航系统研究,西安:西北工业大学硕士学位论文,2006.
    [8]张澄波,综合孔径雷达:原理、系统分析与应用,北京:科学出版社,1989.
    [9] Curlander J.C., Mc Donough R.N., Synthetic Aperture Radar: System and Signal Processing, John Wiley&Sons, INC., 1991.
    [10]刘永坦,雷达成像技术,哈尔滨:哈尔滨工业大学出版社,1999年10月.
    [11]俞根苗,弹载合成孔径雷达成像及系统设计研究,西安电子科技大学博士论文,2006年5月.
    [12] Zhang Zhizhong,“The Principle and Technique of Doppler Beam Sharpening (DBS)”, CIE 1991 International Conference on Radar, Beijing, China, 1991.
    [13]孙泓波,顾红,苏卫民等,“机载脉冲多普勒雷达DBS成像实验研究”,数据采集与处理,2001,16(4):pp.423-427.
    [14]毛士艺,李少洪,黄永红等,“机载PD雷达DBS实时成像研究”,电子学报,2000,28(3):pp.32-34.
    [15]仇启明,张林让,易予生,“弹载雷达舰船编队DBS成像算法研究”,第十届全国雷达年会论文集,pp.596-599.
    [16] Qiming Qiu, Linrang Zhang, Yusheng Yi,“Study on Ship-Formation Detection by Missile-Borne Radar Using DBS Imaging Algorithm”, The 8th International Symposium on Antennas, Propagation and EM Theory, November, 2008, Kunming, China, pp.875-878.
    [17] J.R.Bennett, I.G.Cumming, R.A.Deane,“The Digital Processing of Seasat Synthetic Aperture Radar Data”, IEEE International radar conference, 1980.
    [18] C.Wu,“A Digital Fast Correlation Approach to Produce Seasat SAR Imagery”, IEEE International Radar Conference, 1980.
    [19] M.Jin, C.Wu,“A SAR Correlation Algorithm which Accommodates Large Range Migration”, IEEE Trans. G.E. Vol.22 (6).1984.
    [20] A.M.Smith,“A New Approach to Range-Doppler SAR Processing”, Int.J.Remote Sensing, Vol.12(2).1991.
    [21] Raney R K, Runge H, Bamler R, et al,“Precision SAR Processing Using ChirpScaling”, IEEE Trans.On GRS, Vol.32(4).1994.
    [22] A.Moreira, J.Mittermayer, R.Scheiber,“Extended Chirp Scaling Algorithm for Air- and Space-borne SAR Data Processing in Stripmap and ScanSAR Imaging Modes”, IEEE Trans.On GRS, Vol.34(5).1996.
    [23] G.W.Davidson, I.G.Cumming, M.R.Ito,“A Chirp Scaling Approach for Processing Squint Mode SAR Data”, IEEE Trans.On AES, Vol.32(1).1996.
    [24] J.Mittermayer, A.Moreira,“Spotlight SAR Processing Using the Frequency Scaling Algorithm”, IEEE Trans.On GRS, Vol.37(5).1997.
    [25] C.Cafforio, C.Prati, F.Rocca,“SAR Data Focusing Using Seismic Migration Techniques”, IEEE Trans.On AES, Vol.27(2).1991.
    [26] R.Bamler,“A Comparison of Range-Doppler and Wave-number Domain SAR Focusing Algorithms”, IEEE Trans.On GRS, Vol.30.1992.
    [27]卢光跃,逆合成孔径雷达(ISAR)成像技术的改进,西安电子科技大学博士论文,1999年7月.
    [28]邢孟道,基于实测数据的雷达成像方法研究,西安电子科技大学博士论文,2002年3月.
    [29]卢光跃,保铮,“基于谱估计的ISAR距离瞬时多普勒成像算法”,西安电子科技大学学报,1998,Vol.25,No.5,pp.593-597.
    [30]卢光跃,保铮,“ISAR成像中散射点越分辨单元走动校正算法”,西安电子科技大学学报,1999,26(4):487-492.
    [31] A.Jain, I.Patel,“Dynamic Imaging and RCS Measurements of Aircraft”, IEEE Trans. On AES, Vol.31,No.1, 1995, pp.221-226.
    [32] D.Rapsilber,“Air-borne ISAR Processing for Ship Target Imaging”, Proc. EUSAR, Konigswinter (Germany), 1996, 26-28, March, pp.435-438.
    [33] F.Berrizzi, M.Diani,“ISAR Imaging of Rolling, Pitching and Yawing Targets”, Proc. ICE Conf.On Radar, Beijing (China), 1996, pp.246-249.
    [34] F.Berrizzi, M.Diani,“Target Angular Motion Effects on ISAR Imaging”, IEE Proc. -F, Vol.144, No.2, pp.87-95.
    [35] Fabrizio B., Giovanni C.,“Autofocusing of Inverse Synthetic Aperture Radar Images Using Contrast Optimization”, IEEE Trans AES., Vol.32, No.3, 1996, pp.1185-1191.
    [36] G.Y.Delisle, and H.Wu,“Moving Target Imaging and Trajectory Computation Using ISAR”, IEEE Trans AES., Vol.30, No.3, 1994, pp.887-899.
    [37]保铮,邢孟道,王彤,雷达成像技术,电子工业出版社,2005,4.
    [38]丁鹭飞,耿富录,雷达原理(第三版),西安:西安电子科技大学出版社,2002年6月.
    [39]谢文冲,孙文峰,王永良,“弹载毫米波聚束SAR对地面目标成像研究”,系统工程与电子技术,2003,25(7):860-862.
    [1]俞根苗,邓海涛,吴顺君,“弹载SAR图像几何失真校正方法”,西安电子科技大学学报,2006,6(33):386-389.
    [2] ZHOU Qiang, QU Chang-wen, SU Feng, et al,“A New Approach of Extended Chirp Scaling Algorithm for High Squint Missile-borne SAR Data Processing”, 2008 International Symposium on Computer Science and Computational Technology.
    [3] YI Yu-sheng, ZHANG Lin-rang, LIU Xin, et al,“Study on Imaging Algorithm for Missile-borne Side-looking SAR”, 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, November.5-9, 2007, 413-417.
    [4]燕英,周荫清,李春升等,“弹载合成孔径雷达成像处理及定位误差分析”,电子与信息学报,2002,24(12):1932-1938.
    [5]孙兵,周荫清,陈杰,“高速俯冲SAR成像方法研究”,电子与信息学报,2004,26(9):173-180.
    [6]俞根苗,尚勇,邓海涛等,“弹载侧视合成孔径雷达信号分析及成像研究”,电子学报,2005,33(5):778-782.
    [7]孙兵,周荫清,陈杰等,“基于俯冲模型的SAR成像处理和几何校正”,北京航空航天大学学报,2006,32(4):435-439.
    [8]房丽丽,王岩飞,“俯冲加速运动状态下SAR信号分析及运动补偿”,电子与信息学报,2008,30(6):1316-1320.
    [9] Raney R.K., Runge H., Bamler R., Cumming I., and Wong F.,“Precision SAR Processing Using Chirp Scaling”, IEEE Trans. on GRS, 1994, 32(4):786-799.
    [10] Moreira A., Mittermayer J., Scheiber R.,“Extended Chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes”, IEEE Trans.on GRS, 1996, 34(5):1123-1139.
    [11]黄岩,李春升,陈杰,周荫清,“高分辨率星载SAR改进Chirp Scaling成像算法”,电子学报,2000,28(3):35-38.
    [12]秦玉亮,王建涛,王宏强,黎湘,“基于距离-多普勒算法的俯冲弹道条件下弹载SAR成像”,电子与信息学报,2009,31(11):2563-2567.
    [13] YI Yu-sheng, ZHANG Lin-rang, LIU Xin, LIU Nan, SHEN Dong,“An Efficient Imaging Algorithm for Missile-borne Side-looking SAR”, International Radar Conference 2009, 20-22, April 2009, Guilin, China.
    [14] Y.L.Neo, F.H.Wong, I.Cumming,“Processing of Azimuth-Invariant Bistatic SAR Data Using the Range Doppler Algorithm”, IEEE TRANSATIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46(1):14-21.
    [15] Y.L.Neo, F.H.Wong, I.Cumming,“A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion”, IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (1):93-96.
    [1] Currie A, and Brown M A,“Wide-swath SAR”, IEE Proc.–Radar, Sonar Navig., 1992, 139(2): 122-135.
    [2] Callaghan G D, and Longstaff I D,“Wide-swath Space-borne SAR and Range Ambiguity”, Radar 97, Edinburgh, UK,1997: 248-252.
    [3] Callaghan G D, and Longstaff I D,“Wide-swath Space-borne SAR Using Aquad-element array”, IEE Proc.–Radar, Sonar Navig., 1999, 146(1): 159-165.
    [4] Cumming I G, and Wong Frank H, Digital Processing of Synthetic Aperture Radar Data. Boston: Artech House, 2005: 425-455.
    [5] YI Yu-sheng, ZHANG Lin-rang, LIU Xin, LIU Nan, SHEN Dong,“Study on Imaging Algorithm for Missile-borne Side-looking SAR”, 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, November.5-9, 2007, 413-417.
    [6]燕英,周荫清,李春升,许丽香,“弹载合成孔径雷达成像处理及定位误差分析”,电子与信息学报,2002,24(12):1932-1938.
    [7]孙兵,周荫清,陈杰,“高速俯冲SAR成像方法研究”,电子与信息学报,2004 ,26(9):173-180.
    [8]俞根苗,尚勇,邓海涛,张长耀,葛家龙,吴顺君,“弹载侧视合成孔径雷达信号分析及成像研究”,电子学报,2005,33(5):778-782.
    [9]孙兵,周荫清,陈杰,李春升,“基于俯冲模型的SAR成像处理和几何校正”,北京航空航天大学学报,2006,32(4):435-439.
    [10]房丽丽,王岩飞,“俯冲加速运动状态下SAR信号分析及运动补偿”,电子与信息学报,2008,30(6):1316-1320.
    [11] Carrara W.G., Goodman R. S., and Majewski R.M, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Boston, 1995.
    [12] Jakowatz C.V., Wahl D.E., Eichel P.H., Ghiglia D.C., and Thompson P.A., Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, Kluwer Academic Publishers, Boston, 1996.
    [13] Munson D.C., Obrian J.D., Jenkins W.K.,“A Tomographic Formulation of Spotlight Mode Synthetic Aperture Radar”, Proceding IEEE, 1983, 71(8):917-925.
    [14] Rocca F., Cafforio C., Prati C.,“Synthetic Aperture Radar: A New Application for Wave Equation Techniques, Geophysical Prospecting”, 1989, 37:809-830.
    [15] Gazdag J., Sguazzero P.,“Migration of Seismic Data”, Proceding IEEE, 1984, 72(10):1302-1315.
    [16] C .Caforio, C.Prati, and F.R occa,“SAR Data Focusing Using Seismic Migration Techniques”, IEEE Trans.on AES, Vol.27, No.2, pp.194-206, Mar.1991.
    [17] Raney R K, Runge H, Bamler R, et al,“Precision SAR Processing Using Chirp Scaling”, IEEE Trans.On GRS. Vol. 32 (4).1994.
    [18] A.Moreira, J.Mittermayer, R.Scheiber,“Extended Chirp Scaling Algorithm for Air- and Space-borne SAR Data Processing in Stripmap and ScanSAR Imaging Modes”, IEEE Trans.On GRS. Vol.34(5).1996.
    [19] G.W.Davidson, I.G.Cumming, M.R.Ito,“A Chirp Scaling Approach for Processing Squint Mode SAR Data”, IEEE Trans.On AES, Vol.32(1).1996.
    [20] Y.L.Neo, F.H.Wong, I.Cumming,“Processing of Azimuth-Invariant Bistatic SAR Data Using the Range Doppler Algorithm”, IEEE TRANSATIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46(1):14-21.
    [21] Y.L.Neo, F.H.Wong, I.Cumming,“A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion”, IEEE GEOSCIENCE AND REMOTESENSING LETTERS, 2007, 4 (1):93-96.
    [22]李燕平,邢孟道,井伟,保铮,“一种双基SAR的SR-ECS成像算法”,自然科学进展,2008,3(18):323-333.
    [1] M.Y.Jin, C.Wu,“A SAR Correlation Algorithm which Accomdates Large Range Migration”, IEEE Trans. GRS, Vol.22, pp 592-597, 1984.
    [2] F.H.Wong, I.G.Cumming,“Error Sensitivities of a Secondary Range Compression Algorithm for Processing Squinted Satellite SAR Data”, Proc. IGARSS'89, Vancouver. pp 2584-2587, 1989.
    [3] C.Y.Chang, M.Jin, J.C.Curlander,“Squint Mode SAR Processing Agorithms”, Proc.IGARSS'89, Vancouver, pp 1702-1706, 1989.
    [4] A.M.Smith,“A New Approach to Range-doppler SAR Processing”, Int.J. Remote Sensing, Vol.l2. pp.235-251, 1991.
    [5] Jakowatz, et al.,“Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach”, Kluwer Academic Publishers, Boston, 1996.
    [6] C.Cafforio, C.Prati, F.Rocca,“SAR Data Focusing Using Seismic Migration Techniques”, IEEE Trans. On AES, Vol.27(2), 1991.
    [7] R.Bamler,“A Comparison of Range-Doppler and Wave-number Domain SAR Focusing Algorithms”, IEEE Trans.On GRS, Vol.30, 1992.
    [8] B.D.Rigling, R.L.Moses,“Polar Format Algorithm for Bistatic SAR”, IEEE Trans.On AES, Vol.40(4), 2004.
    [9] J.Mittermayer, A.Moreira,“Spotlight SAR Processing Using the Frequency Scaling Algorithm”, IEEE Trans.On GRS. Vol.37(5), 1997.
    [10] Z.Bi, J.Li, Z-S.Liu,“Super Resolution SAR Imaging via Parametric Spectral Estimation Methods”, IEEE Trans.On AES. Vol.35(1), 1999.
    [11] X.B.Sun, T.S.Yeo, C.B.Zhang,“Time-varying Step-transform Algorithm for High Squint SAR Imaging”, IEEE Trans.On GRS. Vol.37(6), 1999.
    [12] J.Karvonen, M.Simila,“A Wavelet Transform Coder Supporting Browsing and Transmission of Sea Ice SAR Imagery”, IEEE Trans.On GRS. Vol.40(1), 2002.
    [13] X.Hou, G.Liu, Y.Zou,“SAR Image Data Compression Using Wavelet Packet Transform and Universal-trellis Coded Quantization”, IEEE Trans.On GRS. Vol.42(11), 2004.
    [14] H.Xie, L.E.Pierce, F.T.Ulaby,“SAR Speckle Reduction Using Wavelet Denoising and Markov Random Field Modeling”, IEEE Trans.On GRS. Vol.40(10), 2002.
    [15] G.W.Davidson, I.G.Cumming, M.R.Ito,“A Chirp Scaling Approach for Processing Squint Mode SAR Data”, IEEE Trans. AES, Vol.32, No.1, pp 121-133, 1996.
    [16] Raney R K, Runge H, Bamler R,et al,“Precision SAR Processing Using Chirp Scaling”, IEEE Trans.On GRS. Vol.32(4), 1994.
    [17] A.Moreira, J.Mittermayer, R.Scheiber,“Extended Chirp Scaling Algorithm for Air- and Space-borne SAR Data Processing in Stripmap and ScanSAR Imaging Modes”, IEEE Trans.On GRS. Vol.34(5), 1996.
    [18] G.W.Davidson, I.G.Cumming, M.R.Ito,“A Chirp Scaling Approach for Processing Squint Mode SAR Data”, IEEE Trans.On AES, Vol.32(1), 1996.
    [19]刘光炎,斜视及前视合成孔径雷达系统的成像与算法研究,电子科技大学博士论文,2002.12.
    [20]俞根苗,邓海涛,吴顺君,“弹载SAR图像几何失真校正方法”,西安电子科技大学学报,2006,33(3):386-389.
    [21]俞根苗,弹载合成孔径雷达成像及系统设计研究,西安电子科技大学博士论文,2006.5.
    [1] http://www.dlr.de/hr/sirev/home.html.
    [2]周其焕,“前视探测和多传感器综合视景系统在民机上的应用”,航空电子技术,2002,9(33): 1-6.
    [3] Sutor T, Buckreuss S, and Krieger G,“Sector Imaging Radar for Enhanced Vision (SIREV): Theory and Applications. Enhanced and Synthetic Vision 2000”, Proceedings of SPIE, 2000, Vol.4023: 292-297.
    [4] Sutor T, and Witte F,“用于视景增强的新型区域成像雷达”,空载雷达,2001,(2): 7-14.
    [5] Sutor T, Witte F, and Moreira A,“A New Sector Imaging Radar for Enhanced Vision-SIREV. Enhanced and Synthetic Vision 1999”, Proceedings of SPIE, 1999, Vol.3691:39-47.
    [6] Mittermayer J, Wendler M, and Krieger G,“Sector Imaging Radar for Enhanced Vision (SIREV): Simulation and Processing Techniques. Enhanced and Synthetic Vision 2000”, Proceedings of SPIE, 2000, Vol.4023: 298-305.
    [7] Mittermayer J, Wendler M, and Krieger G,“Data Processing of an Innovative Forward Looking SAR System for Enhanced Vision”, In proc. EUSAR, 2000,2000, Munich: 733-736.
    [8] Krieger G, Mittermayer J, and Wendler M,“Sector Imaging Radar for Enhanced Vision. Aerospace Science and Technology”, ELSEVIER, 2003, Vol.7: 147-158.
    [9] Moreira A, Mittermayer J, and Scheiber R,“Extended Chirp Scaling Algorithm for Air-and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes”, IEEE Trans.On GRS, 1996, 34(5): 1123-1136.
    [10] Y.L.Neo, F.H.Wong, I.G.Cumming,“A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion”, IEEE. Geosci. Remote Sensing Letters, 2007, 4(1):.93–96.
    [11] Y.L.Neo, F.H.Wong, I.G.Cumming,“A Comparison of Point Target Spectra Derived for Bistatic SAR Processing”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46(9):2481-2492.
    [12] Y.L.Neo, F.H.Wong, I.G.Cumming,“Processing of Azimuth-Invariant Bistatic SAR Data Using the Range Doppler Algorithm”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46(1):14-21.
    [13] H. Nies, O. Loffeld, K. Natroshvili,“Analysis and Focusing of Bistatic Airborne SAR Data”, Proc. EUSAR 2004, Dresden, Germany, 2006.
    [14] Tsao T, Slamani M, Varshney P, etc,“Ambiguity Function for a Bistatic Radar”, IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. 1997, 33(3):314-321.
    [15] Goodman N A,“Radar Satellite Constellations:SAR Characterization and Analysis”, Proc.2003 Advanced SAR Workshop, Montreal, Canada, June, 2003:1-10.
    [16]汤子跃,张守融,双站合成孔径雷达系统原理,科学出版社,北京,2003.6.
    [17] T. TSAO, M. SLAMANI, P. VARSHNEY,D. WEINER,H. SCHWARZLANDER,“Ambiguity Function for a Bistatic Radar”, IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL.33, NO.3, JULY, 1997.
    [18] Goodman N A,“Radar Satellite Constellations:SAR Characterization and Analysis”, Proc.2003, Advanced SAR Workshop, Montreal, Canada, June, 2003:1-10.
    [19]黄钰林,杨建宇,武俊杰等,“机载双站SAR分辨率特性分析”,电波科学学报,2008,23 (1):174-178.
    [20]李俐.王岩飞,张冰尘,“编队卫星SAR系统的模糊函数分析”,电子与信息学报,2006,28(3):512-516.
    [21]易予生,刘昕,刘楠,张林让,“分布式小卫星SAR系统的模糊性分析”,西安电子科技大学学报(自然科学版),2008,Vol.35,No.1,pp.22-26.
    [22]易予生,张林让,刘昕,刘楠,申东,“机载双站合成孔径雷达模糊函数分析”,系统工程与电子技术,2009,Vol.31,No.11,pp.2297-2601.
    
    [1] M.Soumekh,“Bistatic Synthetic Aperture Radar Inversion with Application in Dynamic Object Imaging”, IEEE Trans. on Signal Processing, 1991, 39(9):2044-2055.
    [2] M.Soumekh,“Wide-bandwidth Continuous-wave Monostatic/Bistatic Synthetic Aperture Radar Imaging”, Image Processing, 1998. ICIP 98. Proceedings, IEEE International Conference.
    [3] M.Soumekh,J.Choi.,and W.Zwolinski,“Target Imaging Using a Synthesized.Bistatic Radar”, Systems Engineering, 1989., IEEE International Conference.
    [4] Y.Ding, and D.C.J.Munson,“A Fast Back-projection Algorithm for Bistatic SAR.Imaging”, Image Processing, 2002 Proceedings, 2002 International Conference.
    [5] D.BRIAN, L.RANDOLPH,“Polar Format Algorithm for Bistatic SAR”, IEEE.TRANS ON AES, 2004, 40(4):1147-1159.
    [6] Y.L.Neo, F.H.Wong, I.Cumming,“Focusing Bistatic SAR Images using.Non-Linear Chirp Scaling”, RADAR 2004, International Conference on Radar Systems.
    [7] G.W.Davidson, I.G.Cumming, and M.R.Ito,“A Chirp Scaling Approach for Processing Squint Model SAR Data”, IEEE Trans.on AES, 1996, 32(1):122-133.
    [8] O.Loffeld, H. Nies, V. Peters, S. Knedlik,“Models and Useful Relations for.Bistatic SAR”, Processing Geoscience and Remote Sensing, IEEE Transactions on.GRS, 2004, 42(10):2031–2038.
    [9] R.Marc, K.Gerhard, W.Michael,“Azimuth-invariant, Bistatic Airborne SAR Processing Strategies Based on Monostatic Algorithms”, in proc. IGARSS, Seoul Korea, 2005.
    [10] K.Natroshvili, O.Loffeld, A.maya, M.Ortiz, and S.Knedlik,“Focusing of General Bistatic SAR Configuration Data With 2-D Inverse Scaled FFT”, IEEE TRANS ON.GRS, 2006, 44(10): 2718-2727.
    [11] J.Ender,“A Step to Bistatic SAR Processing”, in proc. EUSAR’04, Ulm, Germany, May 2004, pp.359-364.
    [12] J.H.G.Ender,I.Walterscheid and A.R.Brenner,“Bistatic SAR-translational.Invariant Processing and Experimental Results”, IEE Proc, Radar Sonar Navig, 2006, 153(3):177-183.
    [13] R.Bamler, E.Boerner,“On the Use of Numerically Computed Transfer Functions.for Processing of Data from Bistatic SARs and High Squint Orbital SARs”, Seoul korea, July, 2005, IGASS2005: 1051-1055.
    [14] D.D.Aria, A.M.Guarnieri, F.Rocca,“Focusing Bistatic Synthetic Aperture Radar Using Dip Move Out”, IEEE Trans Geosci Remote Sensing, 2004, 42(7): 1362–1376.
    [15] A.Monti Guarnieri, and F.Rocca,“Reduction to Monostatic Focusing of Bistatic or Motion Uncompensated SAR Surveys”, Radar, Sonar, Navigat, 153(3): 199–207, Jun, 2006.
    [16] Dave Hale,“Dip-move Out by Fourier Transform”, Geophysics, vol.49, pp. 41-757, 1984.
    [17] C.D.Notfors, R.J.Godfrey,“Dip Move Out in the Frequency-wavenumber Domain”, Geophysics, vol.52, pp.1718-1721, 1987.
    [18] Y.L.Neo, F.H.Wong, I.Cumming,“A Two-Dimensional Spectrum for Bisstatic SAR Processing Using Series Reversion”, IEEE Geosci Remote Sensing Letters, 2007, 4(1): 93– 96.
    [19] Sutor T, Buckreuss S, and Krieger G,“Sector Imaging Radar for Enhanced Vision (SIREV): Theory and applications. Enhanced and Synthetic Vision 2000”, Proceedings of SPIE, 2000, Vol.4023: 292-297.
    [20] Mittermayer J, Wendler M, and Krieger G,“Sector Imaging Radar for Enhanced Vision (SIREV): Simulation and Processing Techniques. Enhanced and Synthetic Vision 2000”, Proceedings of SPIE, 2000, Vol.4023: 298-305.
    [21] Krieger G, Mittermayer J, and Wendler M,“Sector Imaging Radar for Enhanced Vision. Aerospace Science and Technology”, ELSEVIER, 2003, Vol.7: 147-158.
    [22] Sutor T, Witte F, and Moreira A,“A New Sector Imaging Radar for Enhanced Vision-SIREV Enhanced and Synthetic Vision 1999”, Proceedings of SPIE, 1999, Vol.3691:39-47.
    [23]陈琦,杨汝良,“机载前视合成孔径雷达Chirp Scaling成像算法研究”,电子与信息学报,2008,30(1):228-232.
    [24]刘光炎,斜视及前视合成孔径雷达系统的成像与算法研究,电子科技大学博士论文2003年.
    [25] YI Yusheng, Zhang Linrang, LI Yan, Liu Nan, Liu Xin,“The Chirp Scaling Algorithm of Arbitrary Formation Bistatic SAR Imaging”, 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Oct.26-30, 2009, Xian, China,pp.985-988.
    [26] Y.L.Neo, F.H.Wong, I.G.Cumming,“A Comparison of Point Target Spectra Derived for Bistatic SAR Processing”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46(9):2481-2492.
    [27] Y.L.Neo, F.H.Wong, I.G.Cumming,“Processing of Azimuth-Invariant Bistatic SAR Data Using the Range Doppler Algorithm”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46(1):14-21.
    [28] YI Yusheng, Zhang Linrang, LI Yan, Liu Nan, Liu Xin,“Range Doppler Algorithm for Bistatic Missile-borne Forward-looking SAR”, 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Oct.26-30, 2009, Xian, China, pp.960-963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700