用户名: 密码: 验证码:
大型LNG储罐基础隔震与晃动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展低碳经济需要低碳能源的支撑,天然气(LNG)无疑是现阶段最现实的选择之一。保存LNG的重要设施是LNG储罐,由于存贮易燃、易爆LNG介质,其抵御突发性地震等自然灾害的能力是该设施的重要设计指标,特别是次生灾害易造成火灾和环境污染,给人类的生存和生态环境造成严重的影响,给生产和国民经济造成严重损失。所以其减震设计研究在LNG储罐设计中显得尤为重要。本文针对国内外研究现状,在已有研究成果的基础上开展大型LNG储罐基础隔震与晃动控制研究,主要研究内容如下:
     (1)大型LNG储罐钢制内罐基础隔震理论基础:为了给LNG储罐钢制内罐基础隔震提供理论支撑,将基础隔震措施引入到现有储罐抗震简化模型中,采用数值积分法对150000m3储罐进行隔震分析与孙建刚模型进行对比,结果表明:基础隔震能够降低储罐的地震响应,不能有效控制晃动波高,本文采用的模型是可行的,适用的。
     (2)大型LNG储罐基础隔震基本理论:为了给大型LNG储罐基础隔震设计提供理论和技术支撑,以大型全容式LNG储罐为研究对象,推导了LNG储罐基础隔震水平与竖向地震激励下的动响应分析理论,建立了基底剪力、倾覆力矩、晃动波高等基本理论表达。针对160000m3大型LNG储罐进行数值分析,结果表明:基底剪力和倾覆力矩明显降低,晃动波高有所放大,设计时应考虑隔震层参数的影响,进行优化对比设计;LNG储罐抗震减震设计时,应考虑竖向地震激励的影响。
     (3)大型LNG储罐基础隔震有限元数值仿真分析:为了给LNG储罐基础隔震基本理论提供数值支撑,应用有限元数值仿真技术建立160000m3全容式LNG储罐基础隔震有限元模型,对其进行基底剪力、倾覆力矩、晃动波高等地震响应分析,并与理论分析进行了对比。表明:LNG储罐的罐壁加速度、动液压力、有效应力、基底剪力和基底弯矩等地震响应减震效果明显,晃动波高有所放大;理论解与有限元解基底剪力比较接近,晃动波高的理论解需要进行增大修正。
     (4)大型LNG储罐基础隔震反应谱设计研究:为了便于工程设计人员应用,将LNG储罐基础隔震力学模型进一步简化,基于反应谱设计理论,推导了LNG储罐基础隔震的反应谱设计方法。通过160000m3LNG储罐基础隔震反应谱设计算例分析和时程分析补充计算,表明:该反应谱设计方法是可行的,能够便于工程设计人员对LNG储罐进行基础隔震设计的需要。
     (5)大型LNG储罐晃动控制研究:为了控制储液晃动波高,在引入基础隔震措施的基础上,在储液表面附加防晃装置,构成综合减震体系,推导系统控制方程。选取160000m3全容式LNG储罐对其进行晃动控制分析,结果表明:刚性浮盘防晃阻尼装置能够有效降低储液的晃动波高,与基础隔震装置联合使用,能够起到综合减震的目的。
     (6)大型LNG储罐模拟地震振动台实验研究:为了给理论计算、有限元分析和工程设计提供实验支撑,以1000m3储罐为原型,给出了1:5储罐结构缩尺模型以及采用铅芯橡胶垫隔震支座隔震体系的模拟振动台试验方案;在地震激励下,通过参数测量技术得到储罐的位移和加速度地震响应,并将试验结果同理论计算的有限元数值分析结果进行比较。表明:有限元解和理论解是可行的,三者互相验证。
The development of low-carbon economy needs the support of low-carbon energy; natural gas is one of the most realistic options at this stage. The LNG storage tanks are important facilities which are saving LNG, because of storage flammable, explosive media, the ability to anti sudden earthquakes and other natural disasters is an important design index, especially the secondary disaster-prone cause fires and environmental pollution, and cause serious effects to human existence and the ecological environment, causing serious losses to the production and the national economy. So, damping design research is particularly important in the LNG storage tank design. In this paper, based on existing research development, the base isolation and sloshing control of large LNG storage tanks are carried out, the main contents are as follows:
     (1) Steel inner tank base isolation theoretical basis large-scale of LNG storage tank: To provide theoretical support for the steel inner tank base isolation theory, base isolation measures to introduce seismic simplified model of the existing storage tank, using numerical integration method, through isolation analysis of 150000m3 tank compared with the Sun Jiangang model, the results shows that:base isolation can reduce the seismic response of the tank, but not effectively control the sloshing wave height, adopting model is feasible, and applicable.
     (2) Base isolation basis theory of large LNG storage tank:To provide theoretical and technical support to large full containment LNG storage tanks, the base isolation basis theory of LNG storage tank under vertical seismic excitation theory is derived. The expression of base shear, overturning moment, and sloshing wave height are established. Through numerical analysis of 160000m3 LNG storage tank, the results showed that:the base shear and overturning moment is significantly reduced, the sloshing wave height is amplified, it should optimize design take into account the impact of the isolation layer parameters when the design. Considering the impact of vertical seismic excitation is necessary when design LNG storage tank.
     (3) Finite element numerical simulation analysis of base isolation large LNG storage tanks:To provide numerical support to the basic theory of the base isolation storage tank,160000m3 full containment LNG storage tanks base isolation finite element model is established using the finite element numerical simulation technology, through analyzing base shear, overturning moment, and sloshing wave height, and compared with the theoretical analysis. The results show that:the damping of tank wall acceleration, dynamic fluid pressure, effective stress, base shear and base moment are obvious, the sloshing wave height has been enlarged; the base shear of theoretical solution close to the finite element, theoretical sloshing wave height need correction.
     (4) Response spectrum design of base isolation LNG storage tank:To facilitate the application of engineering, base isolation mechanical model of the LNG storage tank is further simplified. Based on the response spectrum theory, the response spectrum design method of LNG storage tank base isolation is derived. By 160000m3LNG tank base isolation response spectrum design and time history analysis supplement calculation. The method is feasible, to facilitate the engineering design.
     (5) Sloshing control of large LNG tank:To control sloshing wave height of storage tank, on the basis of base isolation measures, additional anti-sloshing device, constitute the integrated. damping system, and control equations of system is derived. Selecting 160000m3 full containment LNG storage tanks, the results show that:rigid floating plate anti-sloshing damping device can effectively reduce the sloshing wave height, used in conjunction with the base isolation device can play an integrated damping purposes.
     (6) Shaking table test of large LNG storage tanks:To provide experimental support to theoretical, finite element analysis and engineering design, selecting 1000m3 tank prototype, shaking table test scheme of 1:5 tank structure scale model with lead rubber isolation bearing isolation system is given; displacement and acceleration of the tank through the parameter measurement techniques are obtained, and experimental results with theoretical and finite element numerical results are compared. The finite element solution and theoretical solution is feasible, the three mutual authentication.
引文
[1]http://www.oilchem.net/oil/2_1_2572278.html
    [2]http://baike.baidu.com/view/16739.htm
    [3]张国辉.大型LNG储罐灾难性破裂后LNG扩散范围分析.安全健康和环境(风险评价):2005,5(7).
    [4]张营.大型全容式LNG储罐地震响应数值模拟研究:(硕士学位论文).大庆:东北石油大学,2011.
    [5]温德超、郑兆昌、孙焕纯.储液罐抗震研究进展,力学进展,1995,25(1):60-71.
    [6]唐友刚.储液罐翘离实验研究及液—固—土耦合非线性振动分析:(博士学位论文).天津:天津大学,1996.
    [7]孙建刚.立式储罐地震反应控制研究:(博士学位论文).哈尔滨:中国地震局工程力学研究所2002.
    [8]郭骅.美国储液罐地震反应的研究概况.地震工程与工程振动,1982,1(3):75-104.
    [9]徐薇、项忠权.在地面水平振动作用下储液罐的辐射阻尼.地震工程与工程振动,1992,12(2):29-38.
    [10]温德超、李群生,孙焕纯等.不同地震激励、不同液面条件下储液罐的提离实验研究,振动与冲击,1991,40(4):8-15.
    [11]周锡元.建筑结构的隔震、减震和振动控制.建筑结构学报,2002,23(2):2-26.
    [12]孙建刚.立式储罐动响应若干问题研究:(博士后研究报告).哈尔滨:哈尔滨工程大学,2005.
    [13]王振.立式浮放储罐三维地震反应分析及试验研究:博士学位论文).哈尔滨:哈尔滨工程大学,2006.
    [14]Kianoush M R, Chen J Z.Effect of vertical acceleration on response of concrete rectangular liquid storage tanks. Engineerring Structure,2006,28(5):704-715.
    [15]Marchaj T J. Importance of vertical acceleration in the design of liquid containing tanks.Proc..2nd US National Conf. Eng., Stanford, Calif.,1979:146-166.
    [16]韦树莲.必须重视大型石油储罐的抗震问题.国际地震动态,1995(3):17-21.
    [17]Haroun M A. Vibration studies and tests of liquid storage tanks. Earthq. Eng. Struct. Dyn.,1983,11:179-206.
    [18]Zayas V S, and Low D S. Application of seismic isolation to industrial tanks. Proc. Pressure Vessels and piping on f., ASME/JSME, Hawaii,1995, vol.319 268-273.
    [19]Malhotra P K. Method for seismic base isolation of liquid-storage tanks. J. Struct. Engrg.,ASCE,1997a,123(1):113-116.
    [20]Malhotra P K. New method for seismic base isolation of liquid storage tanks Earthquake Engineering and Structural Dynamics,1997,26:839-847.
    [21]Malhotra P K. Seismic strengthening of liquid-storage tanks with energy-dissipating anchors. J. Struct. Engrg.,ASCE,1998,124(4):405-414.
    [22]Shenton Ⅲ, H W, Hampton, F P. Seismic response of isolated elevated water tanks. J. Struct. Eng., ASCE,1999,125:965-976.
    [23]Wang Y P, Teng M C, Chung K W. Seismic isolation of rigid cylindrical tanks using friction pendulum bearing. Earthquake Engineering and Structural Dynamics,2001, 30:1083-1099.
    [24]Shrimali M K, Jangid R S. Seismic response of liquid storage tanks isolated by sliding bearings. Eng. Strcut.,2002,24(7):907-919.
    [25]Shrimali M K,Jangid R S.Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation. Nuclear Engineering & Design,2002,217 (1/2):1-20.
    [26]Shrimali M K, Jangid R S. A COMPARATIVE STUDY OF Performance of various isolation systems for liquid storage tanks.International Jounal of Stuctual Stability and Dynamics,2002,2(4):573-591.
    [27]Shrimali M K, Jangid R S. Seismic Response of Base-Isolated Liquid Storage Tanks Journal of Vibration & Control,2003,9(10):1201-1217.
    [28]Shrimali M K, Jangid R S. Seismic analysis of base-isolated liquid storage tanks Journal of Sound & Vibration,2004,275(1/2):59-75.
    [29]Shrimali M K, Jangid R S. Earthquake response of isolated elevated liquid storage steel tanks. Journal of Constructional Steel Research,2003,59:1267-1288.
    [30]Jadhav M B, Jangid R S. Response of base-isolated liquid storage tanks. Shock and Vibration,2004,11:33-45.
    [31]Kim M K, Lim Y M, Cho S Y et al. Seismic analysis of base-isolated liquid storage tanks using the BE-FE-BE coupling technique. Soil Dynamics & Earthquake Engineering, 2002,22 (9-12):1151-1157.
    [32]Cho K H, Kim M K, Lim Y M et al. Seismic response of base-isolated liquid storage tanks considering fluid-structure-soil interaction in time domain. Soil Dynamics & Earthquake Engineering,2004,24(11):839-852.
    [33]Jadhav M B, Jangid R S. Response of base isolated liquid storage tanks to near-fault motions. Structural Engineering and Mechanics 2006;23(6):615-634.
    [34]Shrimali M K. Seismic Response of Elevated Liquid Storage Steel Tanks Under Bi-direction Excitation. Steel Structures,2007,7:239-251.
    [35]Abbas Maleki, Mansour Ziyaeifar. Damping enhancement of seismic isolated cylindrical liquid storage tanks using baffles. Engineering Structures,2007,29: 3227-3240
    [36]Panchal V R, Jangid R S. Variable friction pendulum system for seismic isolation of liquid storage tanks. Nuclear Engineering and Design,2007:1-12.
    [37]EmreAbali, ErenUc-kan. Parametric analysis of liquid storage tanks base isolated by curved surface sliding bearings. Soil Dynamics and Earthquake Engineering,2010, 30:21-31.
    [38]Shekari M R, Khaji N, Ahmadi M T. On the seismic behavior of cylindrical base-isolated liquid storage tanks excited by long-period ground motions. Soil Dynamics and Earthquake Engineering,2010,30:968-980
    [39]Sonia D P, Mistry B B, Panchal V R. Double variable frequency pendulum isolator for seismic isolation of liquid storage tanks. Nuclear Engineering and Design,2011, 241:700-713
    [40]Ayman A. Seleemah, Mohamed El-Sharkawy Seismic response of base isolated liquid storage ground tanks. Ain Shams Engineering Journal 2011,2:33-42.
    [41]Tsopelas P, Constantinou M C, Reinhorn A M.3D-BASIS-ME:Computer program for nonlinear dynamic analysis of seismically isolated single and multiple structures and liquid storage tanks[R]. Buffalo, NY:National Center for Earthquake Engineering Research, State Univ. of New York,1994.
    [42]Bohler J, Baumann T. Different numerical models for the hysteretic behaviour of HDRB's on the dynamic response of base-isolated structures with lumped-mass models under seismic loading[C]. Proceedings of the First European Conference on Constitutive Models for Rubber:Taylor & Francis,1999.
    [43]Josef Rotzer, Hamish Douglas, and Helmut Maurer. Hazard and Safety Investigations for LNG Tanks Part 1:Earthquakes. LNG journal,2005:23-24.
    [44]Vassilis P. Gregoriou, Stephanos V. Tsinopoulos and Dimitris L. Karabalis. SEISMIC ANALYSIS OF BASE ISOLATED LIQUEFIED NATURAL GAS TANKS.5th GRACM International Congress on Computational Mechanics. Limassol,2005.
    [45]Christovasilis I P. Seismic analysis of liquefied natural gas tanks [D]. State University of New York at Buffalo,2006.
    [46]Christovasilis I, Whittaker A. Seismic analysis of conventional and isolated LNG tanks using mechanical analogs. Earthquake Spectra,2008,24 (3):599-616.
    [46]Chalhoub M S, Kelly J. Theoretical and experimental studies of cylindrical water tanks in base isolated structures, A Report no. UCB/EERC-88/07, USA, Berkeley 1988.
    [47]Chalhoub M S, Kelly, J M. Shake table test of cylindral water tank in base isolated structures.Journal of Structural Engineering,ASCE,1990,116(7):1451-1472.
    [48]Tajirian F E. Seismic isolation of critical components and tank. proc., ATC-17-1 Seminar on Seismic Isolation,1993 Passive Energy Dissipation, and Active Control. San Francisco,Calif.,1993,1:233-244.
    [49]Kim N S and Lee D G. Pseudo-dynamic test for evalution of seismic performance of base isolated liquid storage tanks. Engineering Strcuctures,1995,17(3):198-208.
    [50]Castellano MG, Infanti S, Dumoulin C, Ducoup L, Martelli A, Dusi A. Shaking table tests on a liquefied natural gas storage tank mockup seismically protected with elastomeric isolators and steel hysteretic torsional dampers. In:Proceedings of the 12th world conference on earthquake engineering.2000 [Paper 2082].
    [51]Tajirian F E. BASE ISOLATION DESIGN FOR CIVIL COMPONENTS AND CIVIL STRUCTURES. PROCEEDINGS, STRUCTURAL ENGINEERS WORLD CONGRESS, SAN FRANCISCO, CALIFORNIA, JULY (1998)
    [52]孙建刚.大型立式储罐隔震——理论、方法及实验.北京:科学出版社,2009.
    [53]孙建刚,郝进锋.立式储液罐基础橡胶垫隔震控制分析.大庆石油学院学报,1998,22(4):69-71.
    [54]孙建刚.弹性圆柱钢制储液容器橡胶基底隔震分析模型.大庆石油学院学报,1998,22(3):91-95.
    [55]孙建刚,周抚生,郝进峰.立式储液罐橡胶基底隔震体系的研究.地震工程与工程振动,1999,19(3):136-143.
    [56]孙建刚,周抚生,郝进峰.立式储液罐橡胶基底隔震模型实验研究.地震工程与工程振动,1999,19(4):102-106.
    [57]孙建刚,吕睿,郝进峰.立式储液容器自复位隔震体系研究.地震工程与工程振动,2000,20(1):141-148.
    [58]孙建刚,袁朝庆,郝进峰等.立式钢制圆柱储液容器基底隔震的地震动仿真计算.大庆石油学院学报,2000,24(2):64-67.
    [59]孙建刚,郝进峰,袁朝庆等.立式浮放钢制储罐抗震减震研究.中国科协2001年学术年会,中国吉林长春.
    [60]孙建刚,王振,袁朝庆.储罐隔震设计简化分析方法.地震工程与工程振动,2001,21(2):157-160.
    [61]孙建刚,张丽,袁朝庆.立式储罐基底隔震动力反应特性分析.地震工程与工程振动,2001,21(3):140-144.
    [62]孙建刚,郝进峰,王振.储罐基底隔震振型分解反应谱计算分析研究.哈尔滨工业大学学报,2005,37(5):649-651.
    [63]孙建刚,齐晗兵,王莉莉.立式储罐橡胶隔震工程应用设计研究.大连民族学院学报,2006,34(5):4-7.
    [64]孙建刚,齐晗兵,王莉莉.双参数的立式储罐隔震设计.哈尔滨工业大学学报,2008.40(6):970-973.
    [65]孙建刚,崔利富,王金国.柔性储罐底环梁基础隔震地震动响应分析.建筑结构学报,2008,29(增刊):68-73.
    [66]孙建刚,王向楠,张荣花等.立式储罐并联隔震地震反应分析.哈尔滨工业大学学报,2009,41(10):105-109.
    [67]孙建刚,蒋峰,张荣花.隔震立式储罐地震反应谱分析.世界地震工程,2009,25(2)130-139.
    [68]孙建刚,王向楠,赵长军.立式储罐基底隔震的基本理论.哈尔滨工业大学学报,2010,42(4):639-643.
    [69]孙建刚,蒋峰,王向楠等.刚性储罐基底隔震的动力反应.哈尔滨工程大学学报2011,32(1):38-43.
    [70]于洋,刘锋,孙建刚等Exdomtank在立式储罐隔震中的应用.油气田地面工程,2008,27(10):54
    [71]王振,沈笑飞,唐立强.基础隔震高举架储油罐地震反应分析,东北林业大学学报,2006,34(6):72-76.
    [72]张云峰.立式储罐并联隔震基础研究:(博士学位论文).大庆:大庆石油学院,2009.
    [73]崔利富.立式储罐三维基础隔震体系动响应分析研究:(硕士学位论文).大庆:大庆石油学院,2008.
    [74]张亮.立式钢制储罐并联基础隔震研究:(硕士学位论文).大庆:大庆石油学院,2009.
    [75]王振,袁朝庆,孙建刚.立式钢制储罐隔震抗震设计的工程化方法.世界地震工程,2000,16(4):92-95.
    [76]郝进峰.柔性基底减震耗能立式钢制储罐的研究:(硕士学位论文).大庆:大庆石油学院,2008.
    [77]郝进锋,孙建刚,程铁航.软土地基大型储罐减震基础研究.油气田地面工程,2002,21(5):67-68.
    [78]宫克勤.新型立式储罐结构体系地震响应分析:(博士学位论文).大庆:大庆石油学院,2007.
    [79]宫克勤,孙建刚,袁朝庆.隔震频率和阻尼对储罐抗震效果的影响.西安石油大学学报(自然科学版),2010,25(3):75-78
    [80]杨宇.双向地震作用立式储罐基础隔震研究:(博士学位论文).大庆:东北石油大学,2011.
    [81]邹德磊.双向地震激励下非线性隔震立式浮顶储罐地震响应研究:(硕士学位论文).大庆:东北石油大学,2012.
    [82]孙颖.大型立式储罐抗震性能与隔震效应数值分析:(博士学位论文).大庆:东北石油大学,2012.
    [83]于洋.储罐减震耗能有垠元数值模拟分析:(硕士学位论文).大庆:大庆石油学院,2002.
    [84]薛景宏,李键.基于形状记忆合金储罐隔震.低温建筑技术,2011(3):47-48.
    [85]Liang B, Tang J X. Vibration studies of base isolated storage tanks. Computers and structures,1994,52:1051-1059.
    [86]孙晋,易平.应用SMA复合橡胶垫的大型储液罐抗震控制分析.科技咨询,2008,14:42-46.
    [87]李扬,李自力,张艳.不同类型场地对隔震储罐地震响应的影响.中国石油大学学报(自然科学版),2008,32(5):108-113.
    [88]李扬,李自力,毕静.基底隔震储罐频率特征与减震机理分析研究.世界地震工程,2009,25(4):153-160.
    [89]李扬,李自力.铅芯橡胶支座参数对隔震储罐地震响应的影响.四川建筑科学研究,2009.35(4):171-176.
    [90]李扬,李自力,张艳.铅芯橡胶支座隔震储罐地震响应特性分析.工程抗震与加固改造,2009,31(3):39-72.
    [91]温丽,王曙光,杜东升等.大型储液罐摩擦摆基底隔震控制分析.世界地震工程,2009,25(4):130-139.
    [92]马德萍.隔震LNG储罐的地震反应分析:(硕士学位论文).哈尔滨:哈尔滨工业大学,2007.
    [93]王金昌,杨森.大型LNG全容罐抗震隔震设计.油气田地面工程,2009,28(10):53-55.
    [94]刘晓丽.夹层橡胶垫隔震预应力液化天然气(LNG)储罐地震响应分析:(硕士学位论文)大庆:东北石油大学,2010.
    [96]张云峰,田晓雪,郭迎利等.夹层橡胶垫隔震液化天然气储罐地震响应分析.科学技术与工程2010,10(25):6318-6321.
    [96]赵长军.LNG储罐滚动自复位隔震研究:(硕士学位论文).大庆:东北石油大学,2011.
    [97]张瑞甫,翁大根,倪伟波等.特大型LNG储罐抗(减)震研究发展综述.结构工程师,2010,26(5):164-171.
    [98]张瑞甫,翁大根,倪伟波等.基于阻尼器反力墙体系的特大型LNG储罐控制研究.防灾减灾工程学报,2011,31(2):138-145.
    [99]Zhang Ruifu, Weng Dagen, Ren Xiaosong. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system. EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION,2011,10 (2):253-262.
    [100]孙建刚,郝进峰,张文福等.采用滚动隔震体系的立式储液罐(敞口)振动的模型试验研究.大庆石油学院学报,1998,22(3):101-105.
    [101]孙建刚,袁朝庆,郝进峰.橡胶基底隔震储罐地震模拟试验研究.哈尔滨工业大学学报,2005,37(6):806-809.
    [102]Hugo Hernandez-Barrios, Ernesto Heredia-Zavoni, Alvaro A. Aldama-Rodriguez Nonlinear sloshing response of cylindrical tanks subjected to earthquake ground motion. Engineering Structures,2007,29:3364-3376.
    [103]Dodge F T. The new dynamic behavior of liquids in moving containers, San Antonio (TX):Southwest Research Institute.2000.
    [104]Garza L R, Abramson HN. Measurements of liquid damping provided by ring baffles in cylindrical tanks. Southwest Research Institute, Technical report prepared for NASA.1963.
    [105]Miles J W. Ring damping of free surface oscillations in a circular tank. Journal of Applied Mechanics,1958,25:274-276.
    [106]Silveira M A, Stephens D G, Leonard W. An experimental investigation of the damping of liquid oscillations in cylindrical tanks with various baffles. Langley Research Center, Technical note prepared for NASA.1961.
    [107]万水,朱德懋,张福祥.液体防晃研究进展.弹道学报,1996,8(3):90-94.
    [108]Isaacson M, Premasiri S. Hydrodynamic damping due to baffles in a rectangular tank. Canadian Journal of Civil Engineering,2001,28:608-616.
    [109]Biswal K C, Bhattacharyya S K, Sinha P K. Nonlinear sloshing in partially liquid filled containers with baffles. International Journal for Numerical Methods in Engineering,2006,68:317,337.
    [110]Shaaban S H, Nash W A. Finite element analysis of a seismically excited cylindrical storage tank, ground supported, and partially filled with liquid. Amherst (MA):University of Massachusetts; 1976.
    [111]Cho J R, Lee H W,Ha S Y. Finite element analysis of resonant sloshing response in 2-D baffled tank. Journal of Sound and Vibration,2005,288:829-845.
    [112]Kim Y W, Lee Y S. Coupled vibration analysis of liquid-filled rigid cylindrical storage tank with an annular plate cover. Journal of Sound and Vibration,2005, 279:217-235.
    [113]Lee S Y, Cho J R, Park TH, Lee WY. Baffled fuel-storage container:Parametric study on transient dynamic characteristics. Journal of Structural Engineering and Mechanics,2002,13(6):653-670.
    [114]Warnitchai P, Pinkaew T. Modeling of liquid sloshing in rectangular tanks with flow dampening devices. Engineering Structures,1998,20(7):593-600.
    [115]Gedikli A, Erguven M E. Seismic analysis of a liquid storage tank with a baffle. Journal of Sound and Vibration,1999,223(1):141-155.
    [116]Gedikli A, Erguven M E. Evaluation of sloshing problem by variational boundry element method. Engineering Analysis with Boundary Elements,2003,27:935,943.
    [117]Abbas Maleki, Mansour Ziyaeifar. Damping enhancement of seismic isolated cylindrical liquid storage tanks using baffles. Engineering Structures,2007,29: 3227-3240.
    [118]Abbas Maleki, Mansour Ziyaeifar. Sloshing damping in cylindrical liquid storage tanks with baffles. Journal of Sound and Vibration,2008,311:372-385.
    [119]王佳栋,周叮,刘伟庆.带环形隔板圆柱形储液罐中液体晃动的解析研究.振动与冲击,2010,29(2):54-58.
    [120]王佳栋,周叮,刘伟庆.水平激励下带环形刚性隔板圆柱形储液罐中流体的晃动响应.力学季刊,2011,29(2):54-58.
    [121]Housner G W, Earthquake pressures on fluid containers.8th Technical Report under Office of Naval Research, California Institute of Technology, Pasadena, California, August,1954.
    [122]Housner G W. Dynamic pressures on accelerated fluid containers. Bulletin of the Seismological Society of America,1957,47(1):15-35.
    [123]Housner G W. The dynamic behavior of water tanks. Bulletin of the Seismological Society of America,1963,53(2):381-387.
    [124]Veletsos A S, Yang J Y, Earthquake response of liquid storage tanks. Advances in Civil Engineering Through Engineering Mechanics, Proceedings of the Engineering Mechanics Division Specialty Conferences, ASCE, Raleigh, North Carolina,1977,1-24.
    [125]Jacobsen L S. Impulsive hydrodynamics of fluid inside a cylindrical tank and of fluid surrounding a cylindrical pier. Bulletin of the Seismological Society of America,1949,39(3):189-204.
    [126]Wozniak R S, Mitchell W W. Basis of seismic design provisions for welded steel oil storage tanks. American Petroleum Institute,43rd Midyear Meeting, Session on Advances in Storage Tank Design, Toronto, Canada,1978.
    [127]American Petroleum Institute. Welded Steel Tanks for Oil Storage (API 650-1998), Washington, D. C,1998.
    [128]Veletsos A S. Seismic effects in flexible liquid storage tanks. Proc.5th WCEE, Rome, Italy,1974,1:630-639.
    [129]CEN-EC8 (2003). Eurocode 8:Design of Structures for Earthquake Resistance; Part 4:Silos, Tanks and Pipelines; prEN 1998-4:2003, European Committee for Standardization, Brussels,2003.
    [130]Malhotra P K, Wenk T, Wieland M.. Simple Procedure for Seismic Analysis of Liquid Storage Tanks, Structural Engineering International-Journal of the IABSE, 2000,10(3):197-201.
    [131]Veletsos A S, Yang J Y. Dynamics of Fixed-Base Liquid Storage Tanks. Proceedings of U. S.-Japan Seminar for Earthquake Engineering Research with Emphasis on Lifeline Systems, Tokyo, Japan,1976:317-341.
    [132]American Petroleum Institute.Welded Steel Tanks for Oil Storage (API 650-2007), ADDENDUM 2:NOVEMBER 2009, Washington, D. C,2007.
    [133]中国石油化工总公司(行业)标准中国石油化工总公司上海高桥石油化工公司.常压立式储罐抗震鉴定标准(SH3026-1990),1990.
    [134]Handam F H. Seismic behavior of cylindrical steel storage tanks. Journal of Construction Steel Research,2000,53:307-333.
    [135]Haroun Medhat A, Wajdi Abou-Izzeddine. Parameter study of seismic soil-tank interaction,, I:Horizontal Excitation. Journal of Structural Engineering, ASCE,1992, 3,118(3):783-797.
    [136]Richart F E, Woods R D, Hall J R. Vibrations of soils and foundations. rentice-Hall, Englewood Cliffs, N. J.1970.
    [137]李思.全容式LNG储罐的地震响应分析:(硕士学位论文).天津:天津大学,2010.
    [138]Edwards H W. A procedure for dynamic analysis of thin walled liquid storage tanks Subjected to lateral ground motions:[dissertation] University of Michigan, 1969.
    [139]Shaaban S H, Nash W A. Finite element analysis of a seismically excited cylindrical storage tank. Ground supported and partially filled with liquid[, University of Massachusetts, Amherst, Massachusetts,]976.
    [140]Daysal H, Nash W A. Soil structure interaction effects on the seismic behavior of cylindrical liquid storage tanks, Proc.8th WCEE, San Fran-cisco, Calif.,1984,5: 223-229
    [141]Balendra T, Nash W A. Seismic analysis of a cylindrical liquid storage tank with a dome by the finite element method,80-C2/PVP-74, ASME Century 2 PVP Conf., San Francisco, Calif.,1980.
    [142]Seeber R, Fischer F D, Rammerstorfer F G. Analysis of a three-dimensional tank-liquid-soil interaction problem, ASME J. Pres. Ves. Tech.,1990,112:28-33.
    [143]邓民宪,张永凯,施俊平。压力式储液罐地震反应的有限元计算.地震学刊,2000,20(3):18-22
    [144]秦小勇.储液罐静力与动力响应有限元数值分析:(硕士学位论文).大连:大连理工大学,2002.
    [145]刘焕忠,李青,庄茁,等.发展附加质量模型应用于储液罐的动力分析.工程力学,2005,22:161-171.
    [146]吴灵宇,考虑液体晃动和罐底提离的立式储液罐地震反应分析:(硕士学位论文).哈尔滨:哈尔滨工业大学,2005.
    [147]Niwa A, Clough R W. Buckling of cylindrical liquid-storage tanks under earthquake loading. Earthq Engngr and Struct Dyna 1982,10:107-122.
    [148]沈建民.大型油罐的静强度及动力响应分析:(博士学位论文).杭州:浙江大学,2006.
    [149]周利剑.水平地震激励下立式储罐与地基相互作用动力响应分析:(博士学位论文)哈尔滨:哈尔滨工程大学,2006.
    [150]孙建刚,宫克勤,齐含兵,王莉莉.水平地震作用下无锚固储罐应力与应变响应分析.地震工程与工程振动,2007,27(3):110-115
    [151]赵晓磊,15万立方米浮放储罐静动力数值分析:(硕士学位论文).大庆:大庆石油学 院,2009
    [152]张彬.预应力LNG储罐混凝土外墙地震响应分析:(硕士学位论文).大庆:大庆石油学院,2009.
    [153]杜显赫.预应力LNG储罐在地震作用下的流固藕合数值模拟:(硕士学位论文).沈阳:沈阳工业大学,2010.
    [154]杨涛、LNG储罐壳体抗风与抗震力学性能研究:(硕士学位论文).大庆:东北石油大学,2010.
    [155]潘德涛.液固耦合作用下的LNG外罐地震响应分析:(硕士学位论文).大庆:东北石油大学,2011.
    [156]中国石油天然气集团公司.立式圆筒形钢制焊接油罐设计规范(GB50341-2003)(S)中国计划出版社,2003.
    [157]中国建筑科学研究院.建筑抗震设计规范(G850011-2010)(S).中国建筑工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700