用户名: 密码: 验证码:
表面活性剂强化地下水循环井技术修复NAPL污染含水层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来地下水有机污染事件时有发生,特别是有机物的泄漏、随意排放等,严重的威胁了人类健康及社会安全,已经成为全球领域亟待解决的环境问题。
     目前,针对地下水有机污染的修复技术较多,其中原位修复技术被认为是最有发展前景的修复技术。在众多的原位修复技术中,地下水循环井技术(groundwater circulation well, GCW)得到了快速发展,在国外已有上百个成功的场地修复实例,但在国内研究尚处于起步阶段,特别是对于循环井技术影响半径(radius of influence, ROI)的表征及影响因素的定量分析、有机物的浓度衰减规律、循环井修复区域的研究等,需要具体系统分析。针对NAPL普遍存在溶解度低的特点,表面活性剂强化修复技术(surfactant enhanced aquifer remednation,SEAR)被认为是提高有机物去除率最有效的原位修复技术之一,但目前该技术主要集中于机理及影响因素分析,且多为静态实验研究,对于动态冲洗过程中涉及到的影响因素等,尚需进一步深入研究。
     针对以上存在的问题,本论文选用典型NAPL代表物苯、硝基苯和萘作为目标污染物,其中涵盖了LNAPL和DNAPL、挥发性和半挥发性有机物,本论文利用GCW和SEAR,单独进行NAPL污染含水层的修复实验,同时利用表面活性剂强化GCW修复效果,以期为地下水中挥发性和半挥发性有机物的去除提供新的途径。通过一系列模拟实验深入系统的研究了GCW的ROI估计及影响因素、GCW对有机物的修复效果、表面活性剂强化含水层修复效果及表面活性剂强化GCW等。论文取得的研究成果对于GCW技术的改进及其在地下水污染场地的实际应用具有重要的理论和实际意义。本论文的主要研究成果包括以下4个方面:
     (1) GCW的ROI估计及影响因素
     地下水循环井影响半径实验在二维模拟槽中进行,实验研究了地下水初始水位、曝气量、地下水初始流速和上下花管间距对ROI的影响,主要成果为:
     ①地下水初始水位主要影响临界曝气量及ROI。地下水初始水位越高,形成地下水循环的临界曝气量越小、ROI越大,但同时存在井内地下水水位上升过快、地下水由尾气口溢出情况,综合分析地下水初始水位定位45cm,即与循环井上部花管中间位置齐平。
     ②曝气量对ROI影响较小;随着曝气量提高,∑△h值显著增加,但曝气量上升至0.7m~3/h后,∑△h变化不再明显,综合确定曝气量为0.7m~3/h。
     ③地下水初始流速在0.1~1.0m/d范围内,几乎不影响ROI,但∑△h较静水条件下略有上升,实验结论表明地下水初始流速影响基本可忽略不计。
     ④上下花管间距对ROI影响不大,但间距变大增强了地下水循环流速,结论说明循环井结构主要影响地下水循环强度。
     ⑤实验过程中发现,各测压管内水位高度变化迅速并能较快达到平衡,说明循环井能够快速启动、稳定运行。
     (2) GCW修复NAPL污染含水层
     循环井技术修复NAPL污染含水层实验也在二维模拟槽中进行,实验分析了苯、硝基苯和萘的迁移规律及循环井的修复效果,具体研究成果为:
     ①苯、硝基苯和萘在实验介质上的吸附均满足线性吸附,吸附系数受有机物性质、介质粒径及介质有机质含量影响,其中有机质含量影响程度大于介质粒径。
     ②有机物在地下水中同时发生水平和垂向迁移,以硝基苯的垂向迁移最为明显,萘的迁移具有明显滞后性,污染第50d后,整个模拟槽被全部污染。
     ③靠近循环井的有机物被优先去除,并逐渐形成一个以循环井为轴的锥形修复区域。苯的修复效果良好,累积曝气14h后,地下水中已基本检测不到苯,但硝基苯和萘的去除明显具有拖尾现象,拖尾浓度分别为71.19mg/L和1.82mg/L。循环井修复效果受有机物挥发性和迁移性综合影响。
     ④硝基苯和萘相对浓度在0~0.5范围内时,C/Co与S/So近似线性正相关,可以大致估算不同修复程度下循环井的相对修复区域。
     (3)表面活性剂强化NAPL污染含水层修复
     ①基于表面活性剂增溶和增流的修复机理,初步选用阴离子型表面活性剂SDBS和非离子型表面活性剂Tween80,从吸附性、降低表面张力能力和增溶性能3个方面进行考察,综合对比选用Tween80作为强化表面活性剂。
     ②Tween80修复NAPL污染含水层的冲洗浓度应大于2.0g/L;实验中存在最佳表面活性剂冲洗浓度10.0g/L和最佳冲洗流速3.0mL/min。
     ③实验中发现,介质粒径较细,存在轻微阻塞现象,此时应适当降低表面活性剂浓度;介质粒径较粗时,存在表面活性剂优先纵向迁移问题,此时应适当减缓冲洗流速。
     ④有机质含量(15.67%)较高的介质,苯、硝基苯和萘的去除严重受阻,累积去除率不足50%,表面活性剂强化修复技术不再适用。
     (4)表面活性剂强化GCW修复NAPL污染含水层
     针对循环井技术单独运行时,存在硝基苯和萘的浓度拖尾现象,利用Tween80溶液进行强化修复。
     ①Tween80溶液进入地下水后,纵向迁移距离明显大于横向迁移;不同曝气时间下,浓度均大于2.0g/L的区域基本固定在循环井两侧,没有发生明显的扩散现象,实验结论表明循环井可以有效控制Tween80的水力迁移。
     ②Tween80溶液提高了硝基苯和萘的水相溶解度,平均浓度分别为147.07mg/L和3.62mg/L,但明显小于静态增溶数据。实验结果说明,增溶效果不仅受表面活性剂和有机物性质影响,同时也受环境介质影响。
     ③硝基苯和萘的修复效果均有显著提高,累积曝气14h后,拖尾浓度分别下降至41.43mg/L和0.69mg/L,明显小于GCW单独使用时的拖尾浓度,说明表面活性剂对循环井技术具有很好的强化效果。
     ④硝基苯的衰减系数大于萘,但两者与循环井的相对位置均呈现两边高、中间低的趋势,实验结论说明,表面活性剂的注入提高了有机物的迁移性,此时循环井修复效果主要受有机物挥发性影响。
     ⑤硝基苯和萘相对浓度在0~0.5范围内时,随着C/Co减小,S/So呈缓慢下降,说明表面活性剂提高了循环井的修复区域。
In recent years, groundwater organic pollution incidents are frequently occurredin china especially duing to the waste leakage, discharge and explosion, and havebecome the urgent problems in the environmental domain. Groundwater circulationwell is a effective mean to removal volatile organic compounds and has been proveneffective in the processing of field remediation application. However, the study ofGCW has just began in china, and ROI (radius of influence) representation andrelated influencing factors, concentration attenuation of organic compounds as wellas the zone of influencing are all needed to study systematically. In the light of thelow aqueous solubility of NAPL (Non Aqueous Phase Liquids), surfactant-enhancedaquifer remediation is considered to be the most effective in situ remediationtechnology. In the past research, most studies focused on the mechanism study, whilethe dynamic flushing process needs further research.
     According to the previous studies, benzene, nitrobenzene and naphthalene werechosen as the typical NAPLs, and the remediation effect of contaminated aquiferwith surfactant enhanced groundwater circulation well was carried out. A series ofsimulations experiments were conducted to investgate: radius of influence of GCWand the influencing factors, such as groundwater initial level, aeration rate,groundwater velocity and structure of GCW; the effect of GCW, including thesorption of organic compounds on different experimental medium, concentrationattenuation of contaminants in the process of CGW and the zone of influence ofGCW; the effect of SEAR, including: the surfactant selection, the critical flushingconcentration as well as the influencing factors; surfactant-enhanced GCW, including the hydraulic control of surfactant by GCW, the surfactant sulibilozaiton,concentration attenuation of organic compounds and the zone of influence.
     A two-dimensional sand tank was used to identified the ZOI of GCW, the effectof influencing factors, such as groundwater initial level, aeration rate, groundwatervelocity and structure of GCW were all studied, the results demonstrate that:(1)maximum horizontal distance of the zone that water level change can be defined asthe ROI of GCW;(2) the higher of the initial groundwater level, the smaller of thecritical aeration rate and the stronger of the ciucuration of groundwater.(3) aerationrate was positive to∑△h, but has litter influence on ROI.(4) A slight increment of∑△h was observed when the groundwater flow velocity increased from0.1to1.0m/d, but the ROI was basically stable at60cm.(5) The groundwater circulation flowvelocity increased with the increment of the distance between upper and bottom tube,and the highest circulation velocity was up to28.60m/d.
     The remediation of NAPL contaminated aquifer by GCW was carried out in atwo-dimension sand tank. The mainly experimental results are:(1) the sorptionisotherm of benzene, nitrobenzene and naphthalene were linear models and theadsorption coefficient was affected by medium size and organic matter content.(2)The preferentially lateral was observed when organic compounds leaked intogroundwater as well as the longitudinal concentration diffusion, the time thatbenzene, nitrobenzene and naphthalene polluted the whole sand tank were30d,30dand50d, respectively.(3) After accumulated aeration time exceeded14h, benzenecan not be detectived in the groundwater, whereas the remove of nitrobenzene andnaphthalene entered the stage of tail and the tail concentration were71.19mg/L and1.82mg/L, respectively.(4) The relative average concentration of organic matter ineach column was negative to the log of the accumulated aeration time; concentrationattenuation of each column was decreased with the increment of the distancebetween each column and the GCW; benzene attenuation coefficient was higher thannitrobenzene and naphthalene.(5) The position of nitrobenzene and naphthaleneconcentration dropped fastest located in the left of the sand tank, and the S/Sowaspositive to the C/Cowhen C/Coof nitrobenzene and naphthalene ranged from0to 0.5.
     According to the mechanism of solubilization and mobilization, SDBS andTween80were selected and the investigation of sorption, lowering the surfacetension and solibilizaiton properties were carried out.(1) The sorption isotherms ofSDBS and Tween80in the medium sand were Langmiur model and Frundlich model,respectively. The highest saturated adsorption amounts were2.04and7.87mg/g.(2)the capability of reduce surface tension of Tween80was superior to SDBS.(3) Kmcof benzene, nitrobenzene and naphthalene in Tween80solution were4.44×103,4.38×103and1.52×103mL/g, that greater than Kmcin the SDBS solution.(4)Temperature and ion strength were positive to the solubilization of naphthalene inTween80solution, and the higher of the Tween80solution concentration, the greaterof the naphthalene apparent solubility.
     A one-dimension columns were utilized to study benzene, nitrobenzene andnaphthalene removal efficiency in groundwater with surfactant flushing, the mainresults are:(1) The critical flushing concentration of Tween80was2.0g/L.(2) Theremoval efficiency was increased by the increment of Tween80solutionconcentration, but the removal efficiency increase was not significant once theTween80solution concentration exceeded10.0g/L.(3) The removal efficiency canbe imporved with the increase of flushing velocity, but too higher flushing velocitymay decrease the removal efficiency.(4) Medium size has great effect on theremoval efficiency. Too small or to large size of the medium would both notconducive to the removal of organic matter.(5) Surfactant enhanced aquiferremediation would be not appropriate when the organic matter content was toohigher.
     According to the residual concentration of nitrobenzene and naphthalene,Tween80solution was used to enhance the removal efficiency of GCW. The mainresults are:(1) the preferentially longitudinal of Tween80solution was observed aswell as the lateral concentration diffusion.(2) The migration of Tween80in theaquifer can be controlled by GCW; Tween80concentration that higher than2.0g/L,which covered an area of more than80%of the contaminated aera distributed evently on both sides of GCW after aeration time exceeded14h.(3) Nitrobenzeneand naphthalene concentration in aqueous were greatly increased by surfactantsolubilization and the average concentration were up to147.07mg/L and3.62mg/L,but lower than solibilizaiton experimental results. The tail concentration ofnireobenzene and naphthalene decreased to41.43mg/L and0.69mg/L after aeration14h.(4) Concentration attenuation of nitrobenzene and naphthalene in each columnwas negative to the log of accumulated aeration time, and naphthalene concentrationattenuation was higher than naphthalene.(5) The position that nitrobenzene andnaphthalene concentration dropped fastest in the middle of the sand tank, and C/Cowas positive to S/Soas C/Corange from0to0.5.
引文
[1] Rail C D. Groundwater Contamination: Source, Control and PreventiveMeasures [M]. New York: Technical Publishing Co. Inc.,1989,540.
    [2] Zoftman B C J. Persistence of organic contaminants in groundwater. In:Duivenboodne W V. Quality of Groundwater. Netherlands: Elsevier ScientificPublishing Company,1981:464-480.
    [3]王昭,王慧珍,石建省,等.地下水有机污染研究进展[J].勘察科学技术,2008,6(5):23-27.
    [4]钱永,张兆吉,费宇红,等.地质环境中挥发性有机污染研究进展[J].南水北调与水利科技,2010,8(6):86-90.
    [5]张新钰,辛宝东,王晓红,等.我国地下水污染研究进展[J].地球与环境,2011,39(3):415-422.
    [6]高存荣,王俊桃.我国69个城市地下水有机污染特征研究[J].地球学报,2011,32(5):581-591.
    [7]汪珊,孙继朝,张宏达,等.珠江三角洲环境有机污染现状与防治对策[J].环境与可持续发展,2006,4(5):28-31.
    [8]刘菲,王苏明,陈鸿汉.欧美地下水有机污染调查评价进展[J].地质通报,2010,29(6):907-917.
    [9] Squillace P J, Moran M J, Lapham W W. Volatile Organic Compounds inUntreated Ambient Groundwater of the United States [J]. Environmental Science&Technology,1999,33(23):4176-4187.
    [10] USEPA. List of Drinking Water Contaminants and MCLs: National SecondaryDrinking Water Regulations (EPA816-F-02-013)[S]. U.S. Environmental ProtectionAgency,2002.
    [11] World Health Organization. Guidelines for Drinking-water, Volume1Recommendations,third edition [S].2004.
    [12]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单[M].中国环境监测,1990,6(5):1-3.
    [13]傅德黔,孙宗光,周文敏.中国水中优先控制污染物黑名单筛选程序[J].中国环境监测,1990,6(5):48-50.
    [14] Michael O. Rivett, Steven W. Chapman, Richelle M. Allen-King, et al.Pump-and-Treat Remediation of Chlorinated Solvent Contamination at a ControlledField-Experiment Site [J]. Environ. Sci. Technol.,2006,40(21):6770-6781.
    [15] L. Shawn Matott, Alan J. Rabideau, James R. Craig. Pump-and-treatOptimization Using Analytic Element Method Flow Models [J]. Advances in WaterResources,2006,29(5):760-775.
    [16] Liang-Cheng Chang, Hone-Jay Chu, Chin-Tsai Hsiao. Optimal Planning of aDynamic Pump-treat-inject Groundwater Remediation System [J]. Journal ofHydrology,2007,342(3/4):295-304.
    [17] Mackay D M, Cherry J A. Groundwater contamination: Pump-and-treatremediation [J]. Environ. Sci. Technol.,1989(23):630–636.
    [18] Travis CC, Doty CB. Can contaminated aquifers at Superfund sites beremediated [J]. Environ. Sci. Technol.,1990(24):1464-1466.
    [19] Alan J. Rabideau, James M. Blayden, Chandragupta Ganguly. Fieldperformance of air-sparging system for removing TCE from Groundwater [J].Environ. Sci. Technol.,1999,33(1):157-162.
    [20] Barbara L. Hall, Thomas E. Lachmar, R. Ryan Dupont. Field Monitoring andPerformance Evaluation of an in Situ Air Sparging System at agasoline-contaminated Site [J]. Journal of Hazardous Materials,2000,74(3):165-186.
    [21] Xiaomin Yang, Dennis Beckmann, Stephanie Fiorenza, et al. Field Study ofPulsedAir Sparging for Remediation of Petroleum Hydrocarbon Contaminated Soiland Groundwater [J]. Environ. Sci. Technol.,2005,39(18):7279-7286.
    [22] C.M. Kao, C.Y. Chen, S.C. Chen, et al. Application of in situ biosparging toremediate a petroleum-hydrocarbon spill site: Field and microbial evaluation [J].Chemosphere,2008,70(8):1492-1499.
    [23] Stephen D. Richardson, Maiysha D. Jones, David R. Singleton, et al.Long-term simulation of in situ biostimulation of polycyclic aromatichydrocarbon-contaminated soil [J]. Biodegradation,2012,23(4):621-633.
    [24] Zengguang Xu, Yanqing Wu, Fei Yu. Transport Modeling of an AquiferContaminated by Perchloroethylene Subject to Multi-PRB Remediation [J].Transport in Porous Media,2012,91(1):319-337.
    [25] Shejiang Liu, Xingang Li, Hongxing Wang. Hydraulic analysis forgroundwater flow through permeable reactive Barriers [J]. Environ Model Assess,2011,16(4):591-598.
    [26] L. Edmond. Eary, Dhanpat Rai. Kinetics of chromium (III) oxidation tochromium (VI) by reaction with manganese dioxides [J]. Environ. Sci. Technol.,1987,21(12):1187-1193.
    [27] Jae Gon Kim, Joe B. Dixon, Charrtes C. Chusuei, et al. Oxidation ofChromium (III) to (VI) by Manganese Oxides [J]. Soil Science Society of AmericaJournal,2002,66(1):306-315.
    [28] Hermann Rugner, Michael Finkel, Arno Kaschl, et al. Application ofMonitored Natural Attenation in Contaminated Land Management-A Review andRecommended Approach for Europe [J]. Environmental Science&policy,2006,9(6):568-576.
    [29] T. Prabhakar Clement, Michael J Truex, Peter Lee. A Case Study forDemonstrating the Application of U.S. EPA′s Monitored Natural AttenationScreening Protocol at a Hazardous Waste Site [J]. Journal of contaminant Hydrology,2002,59(1/2):133-162.
    [30] Kate M Scow, Kristin A Hichs. Natural Attenuation and EnhencedBioremediation of organic contaminants in groundwater [J]. Current Opinion inBiotechnology,2005,16(3):246-253.
    [31] Chiou, C. T., Peters, L. J., V. H. A Physical concepy of soil-water equilibria fornonionic organic compounds. Science,1979,206,831-832.
    [32] Powers S E, Loureiro C O, Abriola L M, et al. Theoretical study of thesignificance of nonequilibrium dissolution of nonaqueous phase liquids insubsurface systems [J]. Water Resources Research,1991,27(4):463-477.
    [33] Sleep B E, Sykes J F. Modeling of transport of volatile organics in variablysaturated media [J]. Water Resources Research,1989,25(1):81-92.
    [34] Wilson E J,Geankoplis C J.Liquid mass transfer at very low Reynoldsnumbers in packed beds [J]. Ind. Eng. Chem. Fund.,1966,5(1):9-14.
    [35] Dwivedi P N, Upadhyay S N. Particle-fluid mass transfer in fixed and fluidizedbeds [J]. Ind. Eng. Chem., Process Des. Dev.,1977,16(2):157-165.
    [36] Kumar S, Upadhyay S N, Mathur V K. Low Reynolds number mass transfer inpacked beds of cylindrical particles [J]. Ind. Eng. Chem., Process Des. Dev.,1977,16(1):1-8.
    [37] Pfannkuch H O. Determination of the contaminant source strength from massexchange processes at petroleum-groundwater interface in shallow aquifer systems.In: Proceedings of the NWWA Conference on Petroleum Hydrocarbons and OrganicChemicals in Groundwater. pp:111-129,Dublin, Ohio,1984.
    [38] Nauman E B, Buffham B A. Mixing in continuous flow systems. John Wileyand Sons, Inc., New York,1983.
    [39] Van Genuchten M Th, Wagenet P J. Two-site/two-region models for pesticidetransport and degradation: the theoretical development and analytical solutions [J].Soil Sci. Soc. Am. J,1989,53(5):1303-1310.
    [40] James C S,Gujin T.Evaluation of continuous distribution models forrate-limited solute adsorption to geologic media [J]. Water Resources Research,2000,36(7):1627-1639.
    [41] Simmons C S.A stochastic-convective transport representation of dispersion inone-dimensional porous media [J].Water Resources Research,2000,18(4):1193-1214.
    [42]陈宝梁.表面活性剂在土壤有机污染修复中的作用及机理[D].江苏:浙江大学,2004.
    [43] David A. Edwards, Zafar Adeel, Richard Luthy. Distribution of nonionicsurfactant and phenanthrene in a sediment/aqueous system [J]. Environ. Sci.Technol.,1994,28(8):1550-1560.
    [44]姜霞,井欣,区自清.表面活性剂对土壤中多环芳烃生物有效性影响的研究进展[J].应用生态学报,2002,13(9):1179-1186.
    [45] Ramsburg C. A., Pennell K. D. Density-modified displacement for DNAPLsource zone remediation: Density conversion and recovery in heterogeneous aquifercells [J]. Environ. Sci. Technol.,2002,36(14):3176-3187.
    [46] Pennell, K. D. et al. Influence of viscous and buoyancy forces on themobilization of residual tetrachloroethylene during surfactant flushing [J]. Environ.Sci. Technol.,1996,30(4):1328-1335.
    [47]罗启仕,张锡辉,王慧,等.生物修复中有机污染物的生物可利用性[J].生态环境,2004,13(1):85-87.
    [48] Gerald L. Morrison, Tala1I. Zeineddine, Mogens Henriksen, et al.Experimental Analysis of the Mechanics of Reverse Circulation Air Lift Pump [J].Ind. Eng. Chem. Res.1987,26(2):387-391.
    [49] Haim Gvirtzman, Oir Gonen. Feasibility study of In-well Vapor StrippingUsing Airlift Pumping [J]. GWMR,1995,23(3):155-162.
    [50] Stenve M. Gorelick, San Carlos, Calif., Haim Gvirzman, et al. In-situ VaporStripping for Removing Volatile Organic Compounds from Groundwater. Compiler:US,5180503[P/OL].1993-01-19.
    [51] Haim Gvirzman, Stenve M. Gorelick. The Concept of In-Situ Vapor Strippingfor Removing VOCs from Groundwater [J]. Transport in Porous Media,1992,8(3):71-92.
    [52] EPA Site Technology Capsule,“Unterdruck-Verdampfer-Brunnen Technology(UVB) Vacuum Vaporizing Well,” EPA/540/R-95/500a, July1995.
    [53] Herrling, B. and Stamm, J. Numerical results of calculated3D verticalcirculation flows around wells with two screen sections for in situ on-site aquiferremediation, In: T. F. Russel, R. E. Ewing, C. A. Brebbia, W. Gray and G. Pinder(eds), Computational Methods in Water Resources IX, vol. I, Numerical Methods inWater Resources, Elsevier, New York,1992, pp.483-492.
    [54] Zlotnik, V. and Ledder, G. Theory of flow in uniform anisotropic aquifers [J].Water Resour. Res.1996,32(4):1119-1128.
    [55] Gvirtzman, H. and Gorelick, S. M., The concept of in situ vapor stripping forremoving VOCs from groundwater [J]. Transport in Porous Media,1992,8:71-92.
    [56] Dan Van Peusem, Glenn Ledder, Vitaly zlotnik. The Kinematic Flow Structurefor the Gvirtzman–GorelickIn Situ VOC Remediation System [J]. Transport inPorous Media,1998,30(2):363-376.
    [57] Baer, A. L. and Hult, M. F. Evaluation of unsaturated zone air permeabilitythrough pneumatic tests [J]. Water Resour. Res.,1991,27(10):2605-2617.
    [58] Shan, C. R., Falta, R. W. and Javandel, I. Analytical solutions for steady stategas flow to a soil vapor extraction well [J]. Water Resour. Res,1992,28(4):1105-1120.
    [59] Falta, R. W. Analytical solutions for gas flow due to gas injection andextraction from horizontal wells [J]. Ground Water,1995,33(2):235-246.
    [60] Ross D. Philip, Gary R. Walter. Prediction of Flow and Hydraulic Head Fieldsfor Vertical Circulation Well [J]. Groundwater,1992,30(5):765-773.
    [61] Richard L. Johnson, Michelle A. Simon. Evaluation of groundwater flowpatterns around a dual-screened groundwater circulation well [J]. Journal ofContaminant Hydrology,2007,93(5):188-202.
    [62] Mark N. Goltz, Murray E. Close, Hyouk Yoon, et al. Validation of twoinnovative methods to measure contaminant mass flux in groundwater [J]. Journal ofContaminant Hydrology,2009,106(5):51-61.
    [63] Mark N. Goltz, Rahul K. Gandhi, Steven M. Gorelick, et al. Field Evaluationof In Situ Source Reduction of Trichloroethylene in Groundwater UsingBioenhanced In-Well Vapor Stripping [J]. Environ. Sci. Technol,2005,39(6):8963-8970.
    [64] M. Scholz, O. Weber, U. Mohrlk, et al. Large scale experiments for in situflushing using groundwater circulation wells: identification of processes and limitingparameters [J]. Groundwater Quality,1998,250(4):185-189.
    [65] DeHart, T.; Pennington, L; and Urban, D.“Operation of In-Well Aeration andSoil Vapor Extraction Remediation Systems,” U.S. EPA Region VIII CorrectiveActions Conference, Salt Lake City, Utah, August1997.
    [66] Jennifer S. Berkey, Thomas E. Lachmar, William J. Doucette, et al. Tracerstudies for evaluation of in situ air sparging and in-well aeration system performanceat a gasoline-contaminated site [J]. Journal of Hazardous Materials,2003, B98,127-144.
    [67] Michael C. Brooks, Michael D. Annable, P. Suresh C. Rao, et al. Controlledrelease blind tests of DNAPL characterization using partitioning tracers [J]. Journalof Contaminant Hydrology,2002,59(4):187-210.
    [68] Gilmore, T.J.; Spane, F.A.; White, M.D.; Lewis, R.E.; and Gee, G.W.“TheEffect of Geologic Heterogeneities on the Installa-tion and Operation of the PilotIn-Well Vapor Stripping System at an Air Force Base in California,”28th AnnualMeeting of the Geological Society of America, Denver, Colorado, October28-31,1996.
    [69] Wasatch Environmental, Inc. DDC In-Well Aeration TechnologyDemonstration, Keesler Air Force Base, AOC A (ST-06), BX Service Station,U.S.EPA I.D.#MS2570024164, Biloxi Mississippi, prepared for the Air ForceCenter for Environmental Excellence, Brooks Air Force Base, Texas, July1998.
    [70] Bannon, Jeffrey L.; Sontag, J.G.; Sabol, J.R.; and Dominick, M.T. In-SituGroundwater Remediation: Pilot Study of the UVB-Vacuum Vaporizer Well, MarchAir Force Base, California, presented at the88th Annual Meeting and Conference ofthe Air and Waste Management Association, San Antonio, Texas, June18-23,1995.
    [71] Parsons Engineering Science, Inc., Evaluation of Groundwater CirculationWell Technology at the Massachusetts Military Reservation (MMR) on Cape Cod,Massachusetts, prepared for the Air Force Center for Environmental Excellence,Brooks Air Force Base, Texas, and June1997.
    [72] Spargo, B.J.(ed.) In Situ Bioremediation and Efficacy Monitoring, NavalResearch Laboratory, Washington, DC Report No. NRL/PU/6115-96-317,1996.
    [73] Mark N. Goltz, Junqi Huang, Murray E. Close, et al. Use of tandem circulationwells to measure hydraulic conductivity without groundwater extraction [J]. Journalof Contaminant Hydrology,2008,100(7):127-136.
    [74]屈智慧.柴油污染地下环境的监测自然衰减与井中汽提强化修复污染含水层研究[D].吉林,吉林大学,2011.
    [75]赵素丽.西沙珊瑚岛礁淡水透镜体的生物修复试验研究[J].水处理技术,2007,33(8):77-78.
    [76]赵素丽,孟秀花,周从直.地下水曝气修复技术DDC井的评估[J].山西建筑,2005,31(2):100-101.
    [77] Santanu Paria, Pak K. Yuet. Solubilization of Naphthalene by Pure and MixedSurfactants [J]. Ind. Eng. Chem. Res.,2006,45(1):3552-3558.
    [78] Guanyu Zheng, Ammaiyappan Selvam, Jonathan W. C. Wong. EnhancedSolubilization and Desorption of Organochlorine Pesticides (OCPs) fron Soil byOil-swollen Micelles Formed with a Nonionic Surfactant [J]. Environ. Sci. Technol.,2012,46(4):12062-12068.
    [79] Alex J. Hill, Subhasis Ghoshal. Micellar Solubilization of Naphthalene andPhenanthrene from Nonaqueous-phase Liquids [J]. Environ. Sci. Technol.,2002,36(18):3901-3907.
    [80] Pascal Castellazzi, Guy Mercier, Jean-Francois. Study of an AmphotericSurfactant in a Soil Decontamination Prosess Using ANS Enhanced Fluorescence:Micellar Behavior and Dosing in Synthetic and Soil Solutions [J]. Water Air SoilPollut,2012,223(1):337-349.
    [81] Deepak K. Gupta, Kishore K. Mohanty. A Laboratory Study of SurfactantFlushing of DNAPL in the Presence of Macroemulsion [J]. Environ. Sci. Technol.,2001,35(13):2836-2843.
    [82] S. Saenton, T.H. Illangasekare, K. Soga, et al. Effects of source zoneheterogeneity on surfactant-enhanced NAPL dissolution and resulting remediationend-points [J]. Journal of Contaminant Hydrology,2002,59(3/4):27-44.
    [83] Dal-Heui Lee, Ho-Wan Chang, Chul Kim. Mixing effect of NaCl andsurfactant on the remediation of TCB contaminated soil [J]. Geosciences Journal,2008,12(1):63-68.
    [84] Dianne J. Luning Prak, Linda M. Abriola, Walter J. Weber, JR., et al.Solubilization Rates of n-Alkanes in Micellar Solutions of Nonionic Surfactants [J].Environ. Sci. Technol.,2000,34(22):476-482.
    [85] Arytyunyan, R. S., Beileryan, N. M. Kolloid. Kinetics of solubilization [J].Colloid J. USSR,1983,45,403-409.
    [86] A. F. Chan, D. Fennell Evans, E. L. Cussler. Explaining solubilization kinetics[J]. AlChE Journal,1976,22(6):1006-1012.
    [87] J.A Shaeiwitz, A.F-C Chan, E.L Cussler, et al. The mechanism ofsolubilizationin detergent solutions [J]. Journal of Colloid and Interface Science,1981,84(1):47-56.
    [88] Ann C. Donegan, Anthony J. I. Ward. Solubilization kinetics of n-alkanes by anon-ionic surfactant [J]. Journal of Pharmacy and Pharmacology,1987,39(1):45-47.
    [89] K. Esselink, Hilbers, P. A. J, et al. Molecular dynamics study of nucleation andmelting of n-alkanes [J]. J. Chem. Phys,1994,101(10):155-167.
    [90] Pingping Shen, Bin Zhu, Xian-Bin Li, et al. An Experimental Study of theInfluence of Interfacial Tension on Water–Oil Two-Phase Relative Permeability [J].Transp Porous Med,2010,85(2):505-520.
    [91] Benyamin Yadali Jamaloei, Riyaz Kharrat. Analysis of MicroscopicDisplacement Mechanisms of Dilute Surfactant Flooding in Oil-wet and Water-wetPorous Media [J]. Transp Porous Med,2010,81(1):1-19.
    [92] Ming Zhang, Lizhong Zhu. Effect of SDBS–Tween80mixed surfactants onthe distri bution of polycyclic aromatic hydrocarbons in soil-water system [J]. J SoilsSediments,2010,10(6):1123-1130.
    [93] A. R. Duffield, R. S. Ramamurthy, J. R. Camanelli. Surfactant EnhancedMobilization of Mineral Oil within Porous Media [J]. Water, Air, and Soil Pollution,2003,143(1/2/3/4):111-122.
    [94] Wen-Lu Chao, J.-Yves Parlange, Tammo S. Stefnhuis. An Analysis of theMovement of Wetting and Nonwetting Fluids in Homogeneous Porous Media [J].Transport in Porous Media,2000,41(2):121-135.
    [95] Pingping Shen, Bin Zhu, Xian-Bin Li, et al. An Experimental Study of theInfluence of Interfacial Tension on Water–Oil Two-Phase Relative Permeability [J].Transp Porous Med,2010,85(2):505-520.
    [96] Vivek Jain, Steven Bryant, Mukul Sharma. Influence of Wettability andSaturation on Liquid–Liquid Interfacial Area in Porous Media [J]. Environ. Sci.Technol.,2003,37(3):584-591.
    [97] A. R. Duffield, R. S. Ramamurthy, J. R. Campanelli. Surfactant EnhencedMobilization of Mineral Oil within Porous Medis [J]. Water, Air, and Soil Pollution,2003,143(1/2/3/4):111-122.
    [98] Itaru Okuda, John F. Mcbride, Simon N. Gleyzer, et al. PhysicochemicalTransport Processes Affecting the Removal of Residual DNAPL by NonionicSurfactant Solutions [J]. Environ. Sci. Technol.,1996,30(7):1852-1860.
    [99] G. Michael Shook, Gary A. Pope, K. Kostarelos. Prediction and minimizationof vertical migration of DNAPLS using surfactant enhanced aquifer remediation atneutral buoyancy [J]. Journal of Contaminant Hydrology,1998,34(4):363-382.
    [100] Turong Hong Tien, Mmhdi Bettahar, Shinsuke Kumagai. Optimization ofthe Surfactant/Alcohol Formulations for the Remediation of Oily ContaminatedPorous Media [J]. Environ. Sci. Technol.,2000,34(18):3977-3981.
    [101] C. Andrew Ramsburg, Kurt D. Pennell. Density-Modified Displacementfor DNAPL Source Zone Remediation: Density Conversion and Recovery inHeterogeneous Aquifer Cells [J]. Environ. Sci. Technol.,2002,36(14):3176-3187.
    [102] Shonall Laha, Richard G. Luthy. Inhibition of Phenanthrene Mineralizationby Nonionic Surfactants in Soil-Water Systems [J]. Environ. Sci. Technol.,1991,25(11):1920-1930.
    [103] Peng Chen, Michael A. Pickard, Murray R. Gray. Surfactant inhibition ofbacterial growth on solid anthracene [J]. Biodegradation,2000,11(2):341-347.
    [104] Fiona H. Crocker, William F. Guerin, Stephen A. Boyd. Bioavailability ofNaphthalene Sorbed to Cationic Surfactant-Modified Smectite [J]. Environ. Sci.Technol.,1995,29(12):2953-2958.
    [105] Marisa Bueno-Montes, Dirk Springael, Jose-Julio Ortega-Calvo. Effect of aNonionic Surfactant on Biodegrad ation of Slowly Desorbing PAHs in ContaminatedSoils [J]. Environ. Sci. Technol.,2011,45(5):3019-3026.
    [106] Benjamin K. Amos, Rebecca C. Daprato, Joseph B. Hughes, et al. Effects ofthe Nonionic Surfactant Tween80on Microbial Reductive Dechlorination ofChlorinated Ethenes [J]. Environ. Sci. Technol.,2007,41(5):1710-1716.
    [107] Hongbo Zhu, David R. Singleton, Michael D. Aitken. Effents of NonionicSurfactant Addition on Populations of Polycyclic Aromatic Hydrocarbon-degradingBacteria in a Bioreactor Treating Contaminated Soil [J]. Environ. Sci. Technol.,2010,44(19):7266-7271.
    [108] Derick G. Brown, Peter R. Jaffe. Effects of nonionic surfactants on bacterialtransport through porous media [J]. Environ. Sci. Technol.,2001,35(19):3877-3883.
    [109] Hongbo Zhu, Michael D. Aitken. Surfactant-enhanced Desorption andBiodegration of Polycyclic Aromatic Hydrocarbons in Contaminanted Soil [J].Environ. Sci. Technol.,2010,44(19):7260-7265.
    [110] Xin-X in Li, Gui-P eng Yang, Xiao-Ya n Cao. Sorption Behaviors ofSodium Dodecylbenzene Sulfonate (SDBS) on Marine Sediments [J]. Water Air SoilPollut,2008,194(7):23-30.
    [111] Shweta Tripathi, Derick G. Brown. Effects of Linear AlkylbenzeneSulfonate on the Sorption of Brij30and Brij35onto Aquifer Sand [J]. Environ. Sci.Technol.,2008,42(5):1492-1498.
    [112] W. Wyan John, Gaobin Bao, William P. Johnson, et al. Sorption of NonionicSurfactant Oligomers to Sediment and PCE DNAPL: Effects on PCE Distributionbetween Water and Sediment [J]. Environ. Sci. Technol.,2000,34(2):672-679.
    [113] Subrata Borgohain Gogoi. Adsorption–Desorption of Surfactant forEnhanced Oil Recovery [J]. Transp Porous Med,2011,90(4):589-604.
    [114] Shekhar Jayanti, Larry N. Britton, Varadaraian Dwarakanath, et al.Laboratory Evaluation of Custom-designed Surfactants to Remediate NAPL SourceZones [J]. Environ. Sci. Technol.,2002,36(24):5491-5497.
    [115] Meifang Zhou, R. Dean Rhue. Screening Commercial Surfactanes Suitablefor Remediating DNAPL Source Zones by Solubilization [J]. Environ. Sci. Technol.,2000,34(10):1985-1990.
    [116] Fu Zhao, Andres Clarens, Ashley Murphree, et al. Structural Aspects ofSurfactant Selesting for the Design of Vegetable Oil Semi-synthetic MetalworkingFluids [J]. Environ. Sci. Technol.,2006,40(10):7930-7937.
    [117] James J. Deitsch, James A. Smith. Effect of Triton X-100on the Rate ofTrichoroethene Desorption from Soil to Water [J]. Environ. Sci. Technol.,1995,29(4):1069-1080.
    [118] Paula Rodriguze-escales, Tahseen Sayara, Teresa Vicent, et al. Influence ofSoil Granulometry on Pyrene Desorption in Geoundwater Using Surfactant [J].Water Air Soil Ppollut,2011,223(1):125-133.
    [119] Juan C. Mata-sandval, Jeffery Karns, Alba Torrens. Influence ofRhamnolipids and Triton X-100on the Desorption of Pesticides from Soil [J].Environ. Sci. Technol.,2002,36(21):4669-4675.
    [120] Kevin H. Gardner, Miguel S. Arias. Clay Swelling and FormationPermeability Reductions Induced by a Nonionic Surfactant [J]. Environ. Sci.Technol.,2000,34(1):160-166.
    [121] Vivek Jain, Avery H. Demond. Conductivity Reduction Due toEmulsification during Surfactant Enhanced-Aquifer Remediation.1. EmulsionTransport [J]. Environ. Sci. Technol.,2002,36(24):5426-5433.
    [122] Vivek Jain, Avery H. Demond. Conductivity Reduction Due toEmulsification during Surfactant Enhanced-Aquifer Remediation.2. Formation ofEmulsion in Situ [J]. Environ. Sci. Technol.,2002,36(24):5434-5440.
    [123] Dal-Heui Lee, Robert D. Cody. Variation of soil hydraulic conductivity byanionic surfactants in soil column [J]. Geosciences Journal,2001,5(4):287-291.
    [124] M. Oostrom, C. Hofstee, R.C. Walker, et al. Movement and remediation oftrichloroethylene in a saturated heterogeneous porous medium1. Spill behavior andinitial dissolution [J]. Journal of Contaminant Hydrology,1999,37(5):159-178.
    [125] M. Oostrom, C. Hofstee, R.C. Walker, et al. Movement and remediation oftrichloroethylene in a saturated, heterogeneous porous medium2. Pump-and-treatand surfactant flushing [J]. Journal of Contaminant Hydrology,1999,37(5):179-197.
    [126] Linnda M. Abriola, Chad D. Drummond, Eenest J. Hahn, et al. Pilot-ScaleDemonstration of Surfactant-Enhanced PCE Solubilization at the Bachman RoadSite.1. Site Characterization and Test Design [J]. Environ. Sci. Technol.,2005,39(6):1778-1790.
    [127] C. Andrew Ramsburg, Kurt D. Pennell, Linda M. Abriola, et al. Pilot-ScaleDemonstration of Surfactant-Enhanced PCE Solubilization at the Bachman RoadSite.2. System Operation and Evaluation [J]. Environ. Sci. Technol.,2005,39(6):1791-1801.
    [128] James W. Jawitz, Michael D. Aannable, P. S. C. Rao, et al. FieldImplementation of a Winsor Type I Surfactant/Alcohol Mixture for in SituSolubilization of a Complex LNAPL as a Single-Phase Microemulsion [J]. Environ.Sci. Technol.,1998,32(4):523-530.
    [129] John C. Fountain, Robert C. Starr, Thomas Middleton, et al. A controlledfield test of surfactant-enhanced aquifer remediation [J]. Ground water,1996,34(5):910-916.
    [130] Jeffrey Childs, Edgar Acosta, Michael D. Annable, et al. Fielddemonstration of surfactant-enhanced solubilization of DNAPL at Dover Air ForceBase, Delaware [J]. Journal of Contaminant Hydrology,2006,82(3):1-22.
    [131]钟金魁,赵保卫,朱琨,等.表面活性剂对菲的增溶动力学及质量增溶比(WSR)与亲水亲油平衡值(HLB)的关系[J].环境化学,2011,30(10):1737-1742.
    [132]牛艳华,田森林,李英杰,等.重量法研究非离子表面活性剂对典型挥发性有机污染物的增溶作用[J].环境化学,2011,30(10):1732-1736.
    [133]杨建刚,刘翔,余刚,等.非离子表面活性剂溶液中多环芳烃的溶解特性[J].环境科学,2003,24(6):79-82.
    [134]李果,毛华军,巩宗强,等.几种表面活性剂对柴油及多环芳烃的增溶作用[J].环境科学研究,2011,24(7):775-780.
    [135]陈宝梁,马战宇,朱利中.表面活性剂对苊的增溶作用及应用初探[J].环境化学,2003,22(1):53-58.
    [136]余海栗.阴-非离子混合表面活性剂强化微生物修复菲污染土壤[D].浙江:浙江大学,2006.
    [137]陈刚,姜霞.复合表面活性剂(SDS-Tw-80)对长链烷烃的增溶和柴油污染土壤的洗脱作用[J].农业环境科学学报,2010,29(7):1283-1289.
    [138]姜霞,陈刚,金相灿,等.复合表面活性剂对污染土壤中柴油的增溶和洗脱作用[J].生态环境学报,2009,18(2):523-530.
    [139]蒋兵,赵保卫,赵兰萍,等.阴-非混合表面活性剂对菲和萘的增溶作用[J].兰州交通大学学报(自然科学版),2007,26(1):154-157.
    [140]朱利中,冯少良.混合表面活性剂对多环芳烃的增溶作用及机理[J].环境科学学报,2002,22(6):774-778.
    [141]董雯娟,赵保卫,蒋兵,等.阴-非混合表面活性剂对DNAPLs的增溶作用[J].安全与环境学报,2007,7(2):24-28.
    [142]郭利国,苏荣国,梁胜庚,等.鼠李糖脂生物表面活性剂对多环芳烃的增溶作用[J].环境化学,2009,28(4):510-514.
    [143]童丹,吴应琴,郭宏栋,等.生物表面活性剂对黄土中菲的增溶作用[J].安徽农业科学,2007,35(16):4911-4912,4938.
    [144]李琦,黄廷林,宋进喜.生物表面活性剂对疏水性有机物的增溶特性[J].化学工程,2011,39(9):1-5.
    [145]刘波,闫书一,梁渠,等.绿色双子表面活性剂的合成研究进展[J].日用化学工业,2010,40(5):369-376.
    [146]聂红艳,徐宝财,周雅文.特种表面活性剂和功能性表面活性剂(Ⅵ)-双子表面活性剂的性质及应用[J].日用化学工业,2009,39(5):348-353.
    [147]邰书信,高志农,葛玉舒,等.新型烷基苯磺酸盐Gemini表面活性剂的合成与性质[J].武汉大学学报(理学版),2011,57(1):1-6.
    [148]赵保卫,朱琨,陈学民.重非水相液体性质对非离子表面活性剂增溶作用的影响[J].环境化学,2007,26(4):452-456.
    [149]李隋,赵勇胜,徐巍,等.吐温80对硝基苯的增溶作用和无机电解质作用机理研究[J].环境科学,2008,29(4):920-924.
    [150]陈丽文.驱油用石油磺酸盐界面张力与驱油效果研究[J].油气田地面工程,2009,28(9):19-20.
    [151]刘其成.三次采油用表面活性剂优选方法研究[J].科学技术与工程,2011,11(10):2185-2189.
    [152]胡小冬,侯明明,胡文庭.超低界面张力表面活性剂体系的研究及应用[J].吐哈油气,2011,16(2):156-158.
    [153]仉莉,吴芳,张弛,等.驱油用表面活性剂的发展及界面张力研究[J].西安石油大学学报(自然科学版),2010,25(6):59-65.
    [154]陈静,胡俊栋,王学军,等.表面活性剂对采油区土壤填装土柱中PAHs迁移渗透的影响[J].环境化学,2005,24(1):12-16.
    [155]陈静,王学军,胡俊栋,等.表面活性剂对人工污染土壤填装土柱中PAHs迁移渗透性的影响[J].环境科学,2005,26(2):190-194.
    [156]秦传玉.表面活性剂强化空气扰动/土壤气相抽提联合修复氯苯污染地下水和包气带研究[D].吉林,吉林大学,2010.
    [157]马锋锋,赵保卫,李玮.表面活性剂增效微生物修复PAHs污染土壤的研究进展[J].环境科学与管理,2010,35(3):157-161.
    [158]陈来国,冉勇.多环芳烃生物修复中的表面活性剂[J].生态环境,2004,13(1):88-91.
    [159]杨建刚,刘翔,余刚,等.非离子表面活性剂Tween20对菲生物降解的影响[J].环境科学,2004,25(1):53-56.
    [160]付彦.表面活性剂增强联苯可生物利用性的研究[D].大连:大连理工大学,2002.
    [161]李克斌,刘惠君,马云,等.不同类型表面活性剂在土壤上的吸附特性比较研究[J].应用生态学报,2004,15(11):2067-2071.
    [162]杨成建,曾清如,张静,等.非离子表面活性剂在土壤/沉积物中的吸附模型研究[J].农业环境科学学报,2007,26(4):1396-1401.
    [163]杨建涛,朱琨,马娟.表面活性剂对黄土中石油污染物的解吸影响研究[J].环境污染治理技术与设备,2003,4(2):6-13.
    [164]陈静,胡俊栋,王学军,等.表面活性剂对土壤中多环芳烃解吸行为的影响[J].环境科学,2006,27(2):361-365.
    [165]黄卫红,李勇,杨岗钦.表面活性剂强化土壤中PCBs的解吸研究[J].安徽农业科学,2010,38(6):3023-3025,3027.
    [166]张景环,曾溅辉.非离子表面活性剂对柴油在水/土壤界面间吸附的影响[J].农业环境科学学报,2007,26(2):583-587.
    [167]马婵媛,赵保卫,吴咏琪,等.表面活性剂对土壤中多环芳烃菲洗脱作用的比较研究[J].安全与环境学报,2008,8(4):19-22.
    [168]支银芳,陈家军,杨官光,等.不同表面活性剂溶液冲洗油污土壤的对比试验研究[J].农业环境科学学报,2006,25(2):354-358.
    [169]支银芳,陈家军,李玮.非离子表面活性剂Triton-100溶液冲洗油污土壤的试验研究[J].农业环境科学学报2006,25(2):349-353.
    [170]臧振远,尉黎,赵毅,等.非离子表面活性剂淋洗萘污染土壤的修复研究[J].生态毒理学报,2010,5(1):136-142.
    [171]吴咏琪,赵保卫,朱瑞佳,等.阴/非表面活性剂对土壤中菲的洗脱及影响因素研究[J].农业环境科学学报,2008,27(6):2211-2215.
    [172]饶品华,何明.表面活性剂在土壤中的行为及其对土壤物理特性的影响[J].上海交通大学学报(农业科学版),2005,23(3):325-331.
    [173]王宝辉,张学佳,纪巍,等.表面活性剂环境危害性分析[J].化工进展,2007,26(9):1263-1268.
    [174]张学佳,纪巍,康志军,等.水环境中表面活性剂的危害及其处理方法[J].石化技术与应用,2008,26(6):581-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700