用户名: 密码: 验证码:
湖北省阳新县鸡笼山金铜矿床成因与找矿方向研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖北省阳新县鸡笼山金铜矿床是长江中下游铁铜金多金属成矿带九瑞矿集区典型的矽卡岩型矿床,研究程度较低。本文尝试从成因矿物学、矿床地球化学的角度,运用微量元素地球化学、同位素地球化学、流体包裹体地球化学、同位素年代学等手段,对鸡笼山金铜矿床成因进行了系统的研究。
     鸡笼山岩体以花岗闪长斑岩和石英闪长玢岩为主,具高钾钙碱性、过铝质特征,属I型花岗岩系列,是成矿物质和成矿流体的主要来源。它与三叠统大冶组4~6段(T1dy4-6)的灰岩、白云质灰岩,近东西向褶皱带中的竹林塘倒转复式向斜、北西向压扭性断裂、北北西向张性或张扭性断裂构造以及它们之间的复合带构造是鸡笼山金铜矿床的三大控矿要素。
     鸡笼山矿床的成矿作用可划分为矽卡岩期和石英-硫化物期,又可细分为7个成矿阶段,分别为矽卡岩期的干矽卡岩阶段和湿矽卡岩阶段,主要形成于高中温条件;石英-硫化物期的石英-辉钼矿阶段、金-铜硫化物阶段、金-铅锌硫化物阶段、金-砷硫化物阶段和碳酸盐阶段,主要形成于中低温条件。
     微量元素、稀土元素以及硫、铅同位素研究认为矿床的成矿物质主要来自成矿岩体,少量来自地层。氢、氧、碳、氦、氩同位素研究认为成矿流体主要来自岩浆,成矿作用晚期明显受到地壳流体以及大气降水影响。流体包裹体研究显示主成矿流体具弱还原性,且随着流体的演化,还原性逐渐增强。
     矿床围岩蚀变强烈,以矽卡岩化与矿化最为密切。接触带的金属矿化表现出从高温向低温演化的趋势,具体为Cu、Mo—Cu、Au—Au、Cu—Au、Pb、Zn。工业矿体表现出浅部到深部(Au、Cu—Au—Cu、Mo)→(Cu、Au—Cu)→(Cu—Cu、Au)→(Au、Cu—Cu、Mo)的循环变化规律,预示着深部继续出现Au、Cu矿体的可能。
     锆石U-Pb测年获得鸡笼山岩体的成岩年龄为151.75±0.70Ma,辉钼矿Re-Os测年获得成矿年龄为150.79±0.82 Ma,成岩、成矿具有同步性特征。
     综合以上研究成果,本文完善了鸡笼山金铜床的成矿模式,归纳了找矿标志,并对找矿方向给出建议。
Jilongshan Au-Cu deposit is a typical skarn deposit in Hubei province, which islocated in the Jiurui ore-clustered district of the Middle-Lower Yangtze RiverFe-Cu-Au metallogenic belt. But little study has been made in this deposit before.We have tried to make systematic research on this deposit from aspects of geneticmineralogy and geochemistry using the theories and techniques of trace elementgeochemistry, isotope geochemistry, fluid inclusions geochemistry, isotopechronology, etc.
     Granodiorite porphyry and quartz diorite porphyrite are the main rock ofJilongshan rock mass, which belongs to I-type granite series with characteristics ofhigh-K calc-alkalic and peraluminous. Jilongshan rock mass are the main source ofore-forming materials and fluid. Jilongshan rock mass, carbonate strata andstructures together form three major ore-controlling factors of Jilongshan Au-Cudeposit. Carbonate wall rocks are mainly composed by limestone or dolomiticlimestone of Daye Formation from Group 4 to 6 of Lower Triassic. Structuresare mainly composed by Zhulintang reverse duplex syncline belonging to nearlyEW-trending fold belt, the NW-trending pressure-shear fracture, the NWW-trendingtensional or tensional shear faults, and their composite structure parts.
     The metallogenesis of Jilongshan deposit can be divided into two majormetallogenic epochs of Skarn and Quartz-sulfide. Skarn epoch is made up of dryskarn stage and wet skarn stage formed in high–temperature conditions.Quartz-sulfide epoch is made up of quartz-molybdenite stage, gold-copper sulfidestage, gold-lead and zinc sulfide stage, gold-arsenic sulfide stage and carbonate stage,which are formed in middle - low temperature conditions.
     The study of trace elements, rare earth elements as well as sulfur andlead isotope shows that the ore-forming materials derive mainly fromthe ore-forming rock and little from the strata. The study of hydrogen, oxygen,nitrogen, helium, argon isotopes shows that the ore-forming fluids mainly derivefrom the magma, but which were significantly affected by crustal fluids and meteoric water in the late mineralization. The study of fluid inclusions shows that theore-forming fluids had the characteristics of weak reducing and the reducinggradually increased with the evolution of fluids.
     The wall rock alteration is extensive, and of which skarn alteration has theclosest relationship with mineralization. The metal mineralization in the contactzone shows an evolutionary trend from high temperature to low temperature, whichform a mineralization zoning of Cu-Mo~Cu-Au~Au-Cu~Au-Pb-Zn.Jilongshan orebodies show a cyclic variation from upper to deep level, which is (Au-Cu~Au~Cu-Mo)→(Cu-Au~Cu)→(Cu~Cu-Au)→(Au-Cu~Cu-Mo). The Zonation indicatesthat the Au-Cu ore body may continue to appear in deep level of Jilongshan Au-Cudeposit.
     Zircon U-Pb dating shows that the diagenetic age of Jilongshan rock mass is151.75±0.70 Ma, and molybdenite Re-Os dating shows that the metallogenic age is150.79±0.82 Ma. The diagenesis and mineralization of the deposit are almostsynchronous.
     Based on above research results, we improved the metallogenic model,summarize the prospecting criteria and give advice on prospecting direction in thispaper.
引文
Abdel-Rahman A M. Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas [J].Journal of Petrology. 1994, 35(2): 525-541.
    Baptiste P J, F ouquet Y. Abundance and is otopic composition of helium in hydrothermal sulfides fromthe East Pacific Rise at 13°N[J].Geochim Cosmochim Acta,1996,60:87-93.
    Baptiste P J, Fouquet Y. Abundance and isotopic composition of helium in hydrothermal sulfides from theEast Pacific Rise at 13°N [J]. Geochim Cosmochim Acta, 1996, 60: 87-93.
    Belousova E.A, Griffin W L, O’Reilly S Y. Zricon crystral morphology,trace element signaturesand Hf isopote composition as a tool for petrogenetic modeling:examples from easternAustralian Granitoids[J]. J. of Petrology,2005,doi:10.1093/petrology/egi077.
    Calagari A A, Hosseinzadeh G. The mineralogy of copper-bearing skarn to the east of the Sungun-Chayriver, East-Azarbaidjan, Iran [J]. Journal of Asian Earth Sciences, 2006, 28: 423-438.
    Calagari A A. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit atSungun,East-Azarbaidjan, Iran[J]. Journal of Asian Earth Sciences, 2004, 23: 179-189.
    Chen Yuwei,Mao Cunxiao,Zhu Bingquan.Lead isotopic composition and genesis of Phanerozoic metaldeposits in China [J]. Geochemistry, 1982, 1 (2): 137-158.
    Clayton R N, O'Neil J R,.Mayeda T K.Oxygen isotope exchange between quartz and water [J]. Journal ofGeophysical Research, 1972, 77: 3057-3067
    Crofu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy andGeochemistry, 2003, 53: 469-495.
    Darrell J. Henry, Charles V. Guidotti and Jennifer A. Thomson. The Ti-saturation surface forlow-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitutionmechanisms [J]. American Mineralogist, 2005, 90(2): 316-328.
    Einaudi M T, Burt D M. Introduction: Terminology, classification and composition of skarn deposit.Economic Geology, 1982, 77 (4): 745-760.
    Einaudi M T, Meinert L D, Newberry R J. Skarn deposits[J].Econ Geology, 75 th Anniv, 1981: 317-391.
    Etsuo Uchida, Sho Endo, Mitsutoshi Makino. Relationship Between Solidification Depth of GraniticRocks and Formation of Hydrothermal Ore Deposits [J]. Resource Geology, 2007, 57 (1): 47-56.
    Foster M D. Interpretation of composition of trioctahedral micas [J]. U.S.Geol.Surv. Prof. Paper, 1960,354-B: 1-49.
    Hellingwerf R H. Paragenetic zoning and genesis of Cu-Zn-Fe-Pb-As sulfide skarn ores in a ProterozoicRift Basin, Gruv sen, Western Bergslagen, Sweden [J]. Economic Geology, 1984, 79: 696-715.
    Hu R Z, Burnard, P G, Bi X W, Zhou M F, Peng J T, Su W C, Wu K X. Helium and argon isotopegeochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jingshajiang fault belt, SW China [J]. Chem Geol, 2004, 203: 305- 317.
    Hu R Z, Burnard P G, Turner G, Bi X W. Helium and argon systematics in fluid inclusions ofMachangqing copper deposit in west Yunnan Province, China [J]. Chem Geol, 1998, 146: 55- 63.
    Hugh R Rollinson. Using geochemical data:Evaluation, Presentation, Interpretation[M].1993
    Hutchinson R W. Massive sulphide deposits and their possible significance to other ores in SoutheastAsia [J]. Geol. Soe. Malaysia. Bulletin, 1986, 19: l-22.
    Ian McDougall, T. Mark Harrison. Geochronology and Thermochronology by the40Ar-39Ar Method [M].Oxford: Oxford Univ.Press, 1988.
    Ivine T N.A guide to the chemical classification of the common volcanic rocks [J]. Canad.J.Earth Sci., 1971.
    Jia B J, Li S R, Pang A J, et al. Lead isotope geochemistry of the Jilongshan skarn-host Au-Cu deposit,Hubei Province, China [J]. Advanced Matenrials Research, 2012, 468-471 (2012): 1952-1956.
    Jiang YH, Jiang SY, Ling HFet al. Petrology and geochemistry of shoshonite plutons from thewesternKunlun orogenic belt, Xinjiang, northwest China: implication for granitoid geneses [J]. Lithos. 2002.63: 165-187.
    Kelley S, Turner G, Butterfield D, et al. The source and significance of argon isotopes in fluid inclusionsfrom areas of mineralization [J]. Earth and Planetary Science Letters, 1986, 79 (3-4): 303-318.
    Li S R, Santosh M., Zhang H F, et al. Inhomogeneous lithospheric thinning in the central North ChinaCraton: Zircon U–Pb and S–He–Ar isotopic record from magmatism and metallogeny in the TaihangMountains [J]. Gondwana Research, 2012.
    Marty B,Jambon A,Sano Y.Helium isotope and CO2in volcanic gases of Japan [J]. Chem Geol,1989,76:25- 40.
    Meinert L D, Dipple G M, Nicolescu S. World skarn deposits [J]. Economic Geology, 2005, 100:299-336.
    Meinert L D, hedenquist J W, Satoh H, et al. Formation of anhydrous and hydrous skarn in Cu-Au oredeposits by magmatic fluids [J]. Economic Geology, 2003, 98: 147-156.
    Meinert L D. Gold in skarns related to epizonal intrusions [J]. Reviews in Economic Geology, 2000, 13:347-375.
    Muller A, O’Brien P J, Kennedy A,et al.Linking growth episodes of zircon and metamorphictextures to zircon chemistry:an example from the ultrahigh-T granulites of Rogaland[J].EMUnotes in Minearlogy, 2003, 5:65-82.
    O’Neil J R,Clayton R N and Mayeda T K.Oxygen isotope fractionation in divalent mentalcarbonates.J.Chem.Phys,1969,51:5547-5558
    Oen I S, Maesschalck A A, Lustenhouwer W J. Mid-proterozoic exhalative-sedimentary Mn skarnscontaining possible microbial fossils, Grythyttan, Bergslagen, Sweden[J]. Economic Geology, 1986,81:1533-1543.
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits [J]. Econ. Geol., 1972,67:551-578.
    Pan Y M, Dong P. The lower Changjing (Yangzi / Yangtze River) metallogenic belt, east centralChina:Intrusion–and wall rock–hosted Cu - Fe - Au, Mo, Zn, Pb, Ag deposits. Ore GeologyReviews, 1999, 15 (4): 177-241.
    Raith J G. Stratabound tungsten mineralization in regional metamorphic calc-silicate rocks from theAustroalpine Cyrstalline Complex, Austria [J]. Mineral Deposita, 1991, 26: 72-80.
    Ray G E, Webster I C L. An overview of skarn deposits. B.C [J]. Ministry of Energy, Mines andPetroleum Resources Paper, 1991, 4: 213-252.
    Ray J S, Ramesh R and Pande K. Carbonisotopes in Kerguelen plume-derived carbonatites: evidence forrecycled inorganic carbon [J]. Earthand PlanetaryScienceLetters, 1999, 170:205-214.
    Ray J S, Ramesh R, Pande K, et al. Isotopeandrareearth element chemistry of carbonatite-alkalinecomplexes of Deccan volcanic province: implications to magmatic andalteration processes [J]. AsianEarthSciences, 2000, 18:177-194.
    Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe:someexamples from the western Alps[M]. Cathodoluminescence in Geoscience,Springer-Verlag BerlinHeidelberg, Germany.2000:373-400.
    Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe:some examples from the western Alps [M]. Cathodoluminescence in Geoscience,Springer-Verlag Berlin Heidelberg, Germany.2000: 373-400.
    Simmons S F,Sawkins F J,Schlutter D J.Mantle-derived helium in two Peruvian hydrothermal oredeposits [J]. Nature, 1987, 329 (6138): 429-432.
    Stuart F M,Turner G,Duckworth R C,Fallick A E.Helium isotopes as tracers of trapped hydrothermalfluids in ocean- floor sulfides [J]. Geology, 1994, 22: 823- 826.
    Stuart F.M., Burnard P.G., Taylor R.P., et al. Resolving mantle and crustal contributions to ancienthydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, SouthKorea[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and theMeteoritical Society, 1995, 59 (22): 4663-4673.
    Taylor BE.Magmaticvolatiles: Isotopevariationof C, Hand Sreviews in mineralogy [A]. In: Stableisotopes in high temperature geological process [M]. Mineralogical Society of America, 1986, 16:185-226.
    Tornebohm, A.E., Om lagerfoljde inom norbergs nalmfalt [J]. Geol, Foren. Stockholm Forh, 1875,v.2.p.329-335.
    Trull T W, Kurz M D, J enk insW J. Diffusion of cosmogenic3He in olivine and quartz:implications forsurface exposure dating[J]. Earth and Planetary Science Letters, 1991, 103: 241-256.
    Turner G, Burnard P B, Ford J L, et al. Tracing fluid sourcesand interaction [J] . Phil Trans R Soc Lond A.,1993, 344: 127-140.
    Turner G,Stuart F.Helium/heat ratios and deposition temperatures of sulfides from the ocean floor[J].Nature, 1992, 357: 581-583.
    Veizer J, Holser W T andWilgus C K. Correlation of13C/12C and34S/32S secular variation [J]. Geochim.Cosmochim. Acta, 1980, 44:579-588.
    Wones D R, Eugster H P. Stability of biotite: experiment, theory and application [J]. The AmericanMineralogist, 1965, 50: 1228-1235.
    Yali Sun, Peng Xu, Jing Li, et al. A practical method for determination of molybdenite Re-Os age byinductively coupled plasma-mass spectrometry combined with Carius tube-HNO3 digestion [J].Analytical Methods, 2010, 2(5): 575-581.
    Ye Xianren, Tao Mingxin, Yu Chuanao, et al. Helium and neon isotopic compositions in the ophiolitesfrom the Yarlung Zangbo River, Southwestern China: The information from deep mantle [J]. Sciencein China Series D: Earth Sciences, 2007, 50: 801-812.
    Zartman R E, Doe B R. Plumbotectonics—the model [J]. Tectonophysics, 1981, 75 (1-2): 135-162.
    Jochen Hoeffs.稳定同位素地球化学[M].刘季花,石学法,卜文瑞译.北京:海洋出版社,2002:118-121.
    闭忠敏,杨松.鸡笼山矽卡岩金(铜)矿床地质矿产特征、物质来源及成矿机制研究[J].矿产与地质,2008,22(6):496-502.
    常印佛,董树文,黄德志.论中—下扬子“一盖多底”格局与演化[J].火山地质与矿产,1994,17(1-2):1-15.
    常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M].北京:地质出版社,1991:1-238.
    陈光远,邵伟,孙岱生.胶东金矿成因矿物学与找矿[M].重庆:重庆出版社,1989.
    陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[M].重庆:重庆出版社,1987.
    陈光远,孙岱生,周珣若,邵伟,宫润潭,邵岳.胶东郭家岭花岗闪长岩成因矿物学与金矿化[M].北京:中国地质大学出版社,1993.
    陈腊春,王泽华,李朗田.湖北阳新丰山矿田矿床类型及其空间分布规律[J].资源环境与工程,2009,23(3):229-233.
    陈力军,黄亚南,刘永发等.湖北省阳新县鸡笼山金铜矿床0~68线勘探地质报告[R].武汉:冶金工业部中南地质勘查局604队,1991:5-156.
    陈毓川,朱裕生,等.中国矿床成矿模式[M].北京:地质出版社,1993.
    陈岳龙,杨忠芳,赵志丹,等.同位素地质年代学与地球化学[M].北京:地质出版社,2005:262–270.
    陈正,陈殿芳,邹星.金属矿物颜色指数研究[J].北京:地质出版社,1979.
    迟清华、鄢明才.应用地球化学元素丰度数据手册.地质出版社.2007
    葛良胜.成矿模式研究若干问题[J].黄金地质科技,1994,3:22-27.
    季绍新,王文斌,邢文臣,等.赣西北铜矿[M].北京:地质出版社,1990:115-119.
    贾宝剑,李胜荣,杨庆雨,庞阿娟,杨成栋,严育通.湖北省阳新县鸡笼山矽卡岩型金铜矿床铅同位素地球化学研究[J].现代地质. 2012,26(3).(待刊)
    贾宝剑,李胜荣,杨庆雨,许永中,杨成栋,庞阿娟,严育通.湖北鸡笼山金铜矿床流体包裹体He、Ar同位素组成及其地质意义[J].黄金,2012,33(7)(待刊).
    姜常义,安三元.论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J].矿物岩石,1984(3):1-9.
    李胜荣,陈光远,邵伟,等.胶东乳山金矿石英中H2O和CO2相对光密度研究[J].矿物学报,1995,15(1):97–103.
    李胜荣,陈光远,邵伟,等.胶东乳山金矿田成因矿物学[M].北京:地质出版社,1993:1–24.
    李胜荣,陈光远,邵伟,等.胶东乳山金青顶金矿区黄铁矿化学成分研究[J].黄金科学技术,1994,2(6):7–12.
    李延河,李金城,宋鹤彬,等.矿物流体包裹体的氦同位素分析及地质应用[J].矿床地质(增刊),2002,21:982-985.
    李耀辉.青海双朋西金矿区花岗岩稀土元素地球化学[J].四川地质学报.2011,31(1).
    李真真.冀西石湖金矿区脉岩的岩石学、锆石成因矿物学和年代学及其与金矿化得关系.2009
    刘彬、马昌前,等.鄂东南铜山口铜(钼)矿床黑云母矿物化学特征及其对岩石成因与成矿的指示.岩石矿物学杂志.2010,29(2)
    刘建明,张宏福,孙景贵,等.山东慢源岩浆岩的碳-氧和锶-钕同位素地球化学研究[J].中国科学(D辑),2003,33(10):921-930.
    刘先武.湖北鸡笼山金铜矿控矿地质特征[J].黄金,1989,10(3):7-12.
    刘玉平,李朝阳,刘家军.都龙矿床含矿层状夕卡岩成因的地质地球化学证据[J].矿物学报,2000,20(4):378-384.
    路远发.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464.
    毛景文,Holly S,杜安道,等.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示[J].地质学报,2004,78(1):121-131.
    毛景文,李厚民,王义天,等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J].地质学报,2005,79(6):839-857.
    毛景文,邵拥军,谢桂青,等.长江中下游成矿带铜陵矿集区铜多金属矿床模型[J].矿床地质,2009,28(2):109-119.
    倪师军,滕彦国,张成江,等.成矿流体活动的地球化学示踪研究综述[J].地球科学进展,1999,14(4):346-352.
    潘兆橹.结晶学与矿物学下册(第三版)[M].地质出版社,1994:113-114.
    彭聪,赵一鸣.长江中下游及其邻区深部地球物理背景与含金夕卡岩矿床的分布[J].物探与化探,1998,22(3):175-182.
    舒广龙.湖北丰山矿田成矿地质背景及斑岩成矿系列与微细浸染金矿[D].长沙:中南大学,2004:64-65.
    舒全安,陈培良,程建荣,等.鄂东铁铜矿产地[M].北京:冶金工业出版社,1992:313-318.
    宋继叶.山东省繁峙县孙庄杂岩体的锆石成因矿物学与岩石地球化学研究[D].北京:中国地质大学(北京),2009.
    谭桂丽,吴俊奇,凌洪飞,陈培荣.赣中盛源盆地及邻区橄榄玄粗岩系列火山岩中黑云母化学成分特征[J].资源调查与环境,2010,31(1).
    王大勇.长江中下游矿集区综合地质地球物理研究[D].长春:吉林大学,2010.
    王星,肖荣阁,杨立朋,等.青海谢坑铜金矿床石榴石矽卡岩成因研究[J].现代地质,2008,22 (5):733-742.
    王彦博,顾雪祥,张宗保,等.湖北铜绿山矽卡岩型铜铁矿床同位素地球化学研究[J].现代地质,2011,25(4):730-739.
    王泽华.鄂东鸡笼山金铜矿床成矿地质特征及找矿前景分析[J].地质与勘探,2008,44(5):17-22.
    吴承健,王大伟.鸡笼山金铜矿载金矿物特征及金的赋存状态[J].中南矿冶学院学报,1994,25(5):555-559.
    吴言昌.论岩浆矽卡岩——种新类型矽卡岩[J].安徽地质,1992,1(2)12-26.
    吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    伍超群,杨洪之.鸡笼山夕卡岩型金铜矿床地球化学特征及成矿模式[J].地质与勘探,1993,29(8):52-57.
    伍超群.湖北鸡笼山金铜矿床成矿物质来源探讨[J].大地构造与成矿学,1992,16(2):190-192.
    伍超群.鸡笼山金铜矿床成矿地球化学特征初探[J].湖南地质,1992(S1):190-192.
    徐耀通.论鸡笼山金铜矿成矿构造地球化学障[J].地质与勘探,1992,28:79,80-81.
    杨进辉,朱美妃,刘伟,翟明国,等.胶东地区郭家岭花岗闪长岩的地球化学特征及成因[J].岩石学报,2003,19(4).
    姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006:78-90.
    姚鹏,顾雪祥,李金高,等.甲马铜多金属矿床层控矽卡岩流体包裹体特征及其成因意义[J].成都理工大学学报(自然科学版),2006,33(3):285-293.
    叶先仁,陶明信,余传螯,等.用分段加热法测定的雅鲁藏布江蛇绿岩的He、Ne同位素组成:来自深部地幔的信息[J].中国科学(D),2007,37(5):573—583.
    叶先仁,吴茂炳,孙明良.岩矿样品中稀有气体同位素组成的质谱分析[J].岩矿测试,2001,20(3):174-178.
    于耀先,李胜荣,栾文楼等.河北宣化贾家营斑岩型钼矿地质特征及矿床成因[J].河北地质学院学报,1983,24(4):1-33.
    喻光明,王经荣,郭俊华,吴继承,吴春俊.甘肃文县阳山金矿带花岗岩岩石地球化学特征及其成矿意义[J].矿产与地质,2009,23(4).
    曾志刚,李朝阳,刘玉平,等.老君山成矿区变质成因夕卡岩的地质地球化学特征[J].矿物学报,1999,19(1):48-55.
    张理刚.稳定同位素在地质科学中的应用:金属活化热液成矿作用及找矿[M].西安:陕西科学技术出版社,1985.
    张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学,2000,29(3):231-238.
    张术根,王大伟.长江中下游铜金成矿岩体稀土地球化学特征[J].中南矿冶学院学报.1994,25(4)436-440.
    张轶男.长江中下游及其邻区重要含金(铜)夕卡岩矿床地质地球化学特征[D].北京:中国地质科学院研究生部,1999:58-60.
    张振儒,等.金矿研究[M].长沙:中南工业大学出版社,1989.
    赵斌.中国主要矽卡岩及矽卡岩型矿床[M].北京:科学出版社,1989:97-123.
    赵劲松,夏斌,丘学林,等.海南岛石碌矽卡岩铁矿石中石榴子石的熔融包裹体及其意义[J].岩石学报,2008,24(1)149-160.
    赵丽丽.安徽铜陵狮子山矿田金矿床和铜矿床微量元素地球化学[D].合肥:合肥工业大学,2009.
    赵希林、毛建仁.闽西南地区燕山晚期花岗岩黑云母特征及成因意义[J].资源调查与环境.2010.31(1).
    赵希林、毛建仁等.福建上杭地区晚中生代花岗质岩体黑云母的地球化学特征及成因意义[J].矿物岩石地球化学通报.2009,28(2).
    赵一鸣.夕卡岩矿床研究的某些重要新进展[M].矿床地质,2002,21(2):113-136.
    中国科学院矿床地球化学开放研究实验室.矿床地球化学[M].北京:地质出版社, 1997:1-11.
    朱炳泉,李献华,戴橦谟,等.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京:科学出版社,1998:216-235.
    朱炳泉.矿石Pb同位素三维空间拓扑图解用于地球化学省与矿种区划[J].地球化学,1993(3):209-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700