用户名: 密码: 验证码:
钙基湿法烟气脱硫增效关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电站锅炉燃煤消耗量占燃煤消耗量的70%以上,是主要的大气污染排放大户。2010年,火电脱硫机组装机容量达到5.78亿千瓦,占全部火电机组82.6%。随着我国SO2节能减排力度的不断加大,以引进技术为主的各种脱硫技术在燃煤电厂得到了推广应用(其中湿法约占90%以上),为“十一五"SO2减排做出了重要贡献。然而在实际运行过程中,许多烟气脱硫装备面临着煤质较差、煤种复杂多变、锅炉负荷波动频繁、吸收剂品质多变等现实国情。随着新标准《火电厂大气污染物排放标准》(GB13223-2011)的颁布,SO2排放标准提高到了100mg/Nm3,很多电厂难以达到最新的国家标准排放限值,不能很好地满足国家提出的污染物浓度和总量控制目标的要求,致使大量脱硫机组迫切需要进行升级改造,这势必要花费高昂的改造成本。因此,如何在现有装备下,进一步提升脱硫效率成为了燃煤电厂的难题。本文针对这一亟待解决的实际问题,在查阅了大量国内外文献的基础上,对钙基湿法烟气脱硫优化增效技术进行了研究,并在此基础上实现了工业应用。
     利用自动电位滴定仪进行了添加剂强化石灰石溶解的实验,获得了相关的参数。分析和测量反应后的石灰石粒径发现,添加剂对石灰石有着明显的促溶作用;石灰石的溶解速率随添加剂浓度的增加而增加;因为H+浓度较高为石灰石的溶解提供了显著的推动力,所以较低的pH值有助于石灰石的溶解;搅拌速率的增加强化了传质过程并减少了液相主体与石灰石表面的液膜厚度,有助于H+从液相主体向颗粒表面扩散,故石灰石的溶解速率随搅拌速率的增加而增加;飞灰和氯离子对石灰石的溶解都有一定的阻碍作用;反应温度的提高有助于促进石灰石的溶解;实验条件下,加入添加剂后,石灰石溶解的反应活化能由14.68kJ/mol下降到了8.89kJ/mol。石灰石的溶解反应主要受扩散传质过程控制。
     在双搅拌反应釜内研究了添加剂强化SO2吸收的影响因素,得到了一些动力学参数。入口SO2浓度升高,吸收速率增加。在相同的SO2入口浓度下,添加剂强化石灰石的吸收速率比没有强化的石灰石高0.14-1.22mol/(m2·s)。添加剂浓度升高,吸收速率也相应增加。液气相搅拌速度比的提高,石灰石溶液对SO2吸收速率逐渐增加。温度对8O2的吸收有一定的促进作用。添加剂强化湿法烟气脱硫可降低气液相传质阻力,有效提高传质系数和石灰石的利用率。
     在小型实验台上利用光学测量和脱硫实验的方法进行了内构件和添加剂对塔内流场和脱硫过程的影响实验。不加设内构件时,喷淋液在吸收塔内壁面上有明显的贴壁流动现象,减少了与气相的接触面积,会影响脱硫过程;吸收塔内加设均流板和增强环后可以增加局部区域的湍动以及气液两相的有效接触面积,从而起到强化相间传质、提高气液两相在塔内分布的均匀性等功能作用;不论是在吸收塔中加设均流板、增强环还是在浆液中使用添加剂均可以起到提高脱硫效率的作用。
     WFGD吸收塔内的流动属于两相流动,其流场和温度场的分布对脱硫有着重要的影响。利用CFD技术可以模拟计算塔内的流动及温度场分布情况。模拟结果显示,增加均流板,将使吸收塔内部流动更加均匀,在板上所持的浆液还将增加脱硫反应面积,强化脱硫过程的传质。增加增强环,可以改善浆液壁流情况,更好的发挥其脱硫功能能。使用内构件均可改善塔内的流动情况,从而提高脱硫效率。
     将湿法烟气净化系统脱硫优化增效技术的相关研究成果应用于工程实际。系统运行数据表明,系统运行稳定,且各设备运行良好,脱硫效果达到了设计的性能保证值。此外,添加剂的应用可有效地提高脱硫效率。
Due to its coal consumption accounted for more than70%of the national taotal consumption, the coal-fired power stations are the main air pollution sources in China. Accounting for82.6%of all coal-fired power units, the installed capacity with FGD units was up to578million kilowatts. With the enhanced efforts in our country's energy conservation and emission reduction, various desulfurizing technologies, mainly imported technologies, have been applied in the coal-fired power plants. Among these technologies, wet processes o more than90%. All these efforts made an important contribution to SO2reduction during the "Eleventh Five-Year" period. However, in the actual operation processes, many FGD units faced the reality conditions in oue country such as the poor coal quality, the complex coal type, the frequent load fluctuations of the boiler, the changeable absorbent quality, and so on. With the issue of the new standard, GB13223-2011, the SO2emission standard is up to100mg/Nm3. It is difficult for many power plants to achieve this latest national emission limit value. Therefore, a lot of FGD units will inevitably paied expensive improvement cost for their urgent need of upgrading. It will be very meaningful and promising to improve the efficiency of desulfurization under the existing equipment condition. In this work, the technologies of the optimization and the synertia for WFGD were studied and realized the industrial application.
     The impact of additives, pH value, temperature, stirring rate, gypsum, fly ash, and Cl-on the dissolution of limestone was studied with an automatic potentiometric titrator. The results indicated that the additive can obviously promote the dissolution of limestone. The lower pH value, the higher reaction temperature and stirring rate are favorable to the limestone dissolution. Fly ash and Cl-have the block effect on the dissolution of limestone. Under the experimental condition, the activation energy of the limestone dissolution dropped from14.68kJ/mol to8.89kJ/mol. Both values indicate that the limestone dissolution is controlled by the diffusion process.
     The influence factors of additives strengthening the processes of SO2absorption were investigated in a stirred tank reactor, and some kinetic parameters were gotten. It was found that SO2absorption rate was enhanced by the increasing of the SO2inlet concentration. In the same SO2inlet concentration, SO2absorption rate with additives is higher than that without additves0.14-1.22mol/(m2·s). The experimental results show that the SO2absorption rates increase with the increasing of the additive concentration, the SO2inlet concentration, reaction temperature, and the stirring speed ratio of the Liquid and the gas but decrease as the reaction time is longer. The additive increases the enhancement factor and the mass transfer coefficients so that it can improve the SO2absorption rate.
     The optical measurement and the desulphurization experiment were carried out in a small-scale testbed for the influence of the internals and additves on WFGD process. The flow in the WFGD scrubber is of two-phase flow, so the distribution of the flow field and the temperature field in the tower has an important impact for desulfurization process and efficience. The distribution of the flow field and the temperature field in the tower can be described by CFD. The experimental and simulated resulta showed that the internals can prevent that flue gas escaped along scrubber wall, and the mass transfer in the Scrubbing tower is enhanced. Due to the rectified flue gas flow field and the strengthened gas-liquid mixture, it is favorable to the absorption of SO2The experimental results showed that the desulfurization efficiency can be improved by the usage of internals and the additives.
     The related research results have been applied industrially. The practical running demonstrates that the system operated properly and stably, the equipment ran well, and the desulfurization efficiency reached the designed guaranteed value of the performance. It was also testified that the additives can improve the desulfurization efficiency effectively.
引文
[1]周一工.循环流化床锅炉在中国的发展与问题[J].节能与环保,2005,10:5-7.
    [2]BP Statistical Review of World Energy [R].2005,6.
    [3]中华人民共和国环境保护部,2010环境统计年报[R].available from:
    [4]http://zls.mep.gov.cn/hjtj/nb/2010tjnb/201201/t20120118_222725.htm
    [5]中华人民共和国工业和信息化部, available from:
    [6]http://www.miit.gov.cn/n11293472/n11293832/n13095885/14132231.html
    [7]朱法华.电力工业发展与环境保护[J].电力环境保护,2006,22(5):1-7.
    [8]陈向阳,邹介棠.使用PIV技术测量喷嘴附壁射流的冷态流场[J].流体机械,2003,31(9):5.
    [9]薛健.循环悬浮式半干法烟气脱硫工艺中石灰活性及干式消化性能的研究[D].杭州:浙江大学,2006.
    [10]王志轩.日本烟气脱硫设备指南的内容及对我国的启示[J].电力环境保护,2003(3):8-14.
    [11]中华人民共和国环境保护部,2011中国环境状况公报[R].available from: http://www.mep.gov.cn/gzfw/xzzx/wdxz/201206/P020120613514213036579.pdf
    [12]Rochelle G T, Chan P K, Toprac A T. Limestone dissolution in flue gas desulfurization process [R]. Industrial Environmental Research Lab, NTIS, August 1983.
    [13]Shaffer N R, Sadowski R. Indiana limestones and dolomites for flue gas desfulurization [R]. Indiana Geological Survey an Institute of Indiana University.
    [14]Stumpf T, Roeder A, Hennicke H W. The reaction behavior of carbonate stone dusts in acid solutions, more particularly of sulphurous acid. Part Ⅱ:Important parameters and measurement on various carbonate stone dusts for flue gas desulfurization [J]. ZKG Int, 1984,37(9):454-461.
    [15]Harvey R D. Petrographic and mineralogical characteristics of carbonate rocks related to sorption oxides in flue gases [R]. Illinois Geological Survey and Environmental Geology, 1970,38:31.
    [16]曹莉莉,杨东,计永跃.石灰石/石膏湿法脱硫真空皮带脱水机脱水效果影响因素研究[J].中国电力,2005,38(1):73-75.
    [17]崔喜春.添加镁离子对碳酸钙结晶形貌的影响[J].桂林工学院学报,2005,25(2):208-210.
    [18]Miller S F, Miller B G., Scaroni A W. Limestone performance in a pilot-scale forced-oxidation scrubber [C]. EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium, the Mega Symposium SO2 Control Technologies and Continuous Emissions Mintors (Volume 2), Washington DC, August 25-29,1997.
    [19]Brogren C, Karlsson H T. A model for prediction of limestone dissolution in wet flue gas desulfurization applications [J]. Ind. Eng. Chem. Res.,1997,36:3889-3897.
    [20]Hosten C, Gulsum M. Reactivity of limestones from different sources in Turkey [J]. Miner. Eng.,2004,17:97-99.
    [21]Ahlbeck J, Engman T, et al. measuring the reactivity of limestone for wet flue gas desulfurization [J]. Chem. Eng. Sci.,1995,50(7):1081-1089.
    [22]Ukawa N, Takashina T, Shinoda N. Effects of particle size distribution on limestone dissolution in wet FGD process applications [J]. Environ. Prog.,1993,12(3):238-242.
    [23]Allers T, Luckas M, Schmidt K G Modeling and measurement of the dissolution rate of solid particles in aqueous suspensions-Part Ⅱ:Experimental results and validation [J]. Chem. Eng. Technol.,2003,26(12):1225-1229.
    [24]Fellner P, Khandl V. Characterization of limestone reactivity for absorption of SO2 from fume gas [J]. Chem. Pap.,1999.53(4):238-241.
    [25]Toprac A J, Rochelle G T. Limestone dissolution in stack gas desulfurization [J]. Environ. Prog.,1982,52-64.
    [26]Berner R A, Morse J W. Dissolution kinetics of calcium carbonate in sea water:IV. Theory of calcite dissolution [J]. Am. J. Sci.,1974,274:108-134.
    [27]Lund K, Fogler H S, McCune C C, et al. Acidization-II. The dissolution of calcite in hydrochloric acid [J].Chem. Eng. Sci.,1975,30(8):825-835.
    [28]Sjoberg E L, Rickard D T. Temperature dependence of calcite dissolution kinetics between 1 and 62 ℃ at pH 2.7 to 8.4 in aqueous solutions [J]. Geochim. Cosmochim. Ac.,1984, 48:485-493.
    [29]Chan P K, Rochelle G T. Limestone dissolution-Effects of pH, CO2, and buffers modeled by mass transfer [C]. ACS Symposium Serial.1982,188:75-97.
    [30]Wallin M, Bjerle I. A mass transfer model for limestone dissolution from a rotating cylinder [J]. Chem. Eng. Sci.,1989,44(1):61-67.
    [31]Shih S M, Lin J P, Shiau G Y. Dissolution rates of limestones of different sources [J]. J. Hazard. Mater.,2000(B79):159-171.
    [32]时正海,赵彩虹,周屈兰,等.微型鼓泡床中石灰石溶解特性的实验研究[J].热能动力工 程,2004,19(3):234-237
    [33]Naohiko U, Toru T, Michio O, et al. Effects of salts on limestone dissolution rate in wet limestone flue gas desulfurization [J]. Environ. Process,1993,12(04):294-299.
    [34]孙文寿.添加剂强化石灰石/石灰湿式烟气脱硫研究[D].杭州:浙江大学,2001。
    [35]奚胜兰.石灰石湿法烟气脱硫添加剂的实验研究[J].能源环境保护,,2003,17(1):33-35.
    [36]徐洋.有机添加剂强化石灰石(石灰)-石膏湿法烟气脱硫过程的研究[D].北京:清华大学,2003.
    [37]韩玉霞,李鑫,赵爽,等.有机羧酸添加剂对石灰石WFGD工艺过程的影响[J].能源研究与利用,2010,1:29-43.
    [38]王乃光,阿娜尔,刘启旺,等.有机酸盐强化石灰石湿法烟气脱硫试验研究[J].中国电机工程学报,2008,28(17):61-65
    [39]Terjesen S F, Erga O, Thorsen G, et al. Ⅱ:Phase boundary process as the rate entering steps in reactions between solids and liquids [J]. Chem. Eng. Sci.,1961,4(1):277-288.
    [40]Jarvis J B, Meserole F B, Selm T J, et al. Development of a predictive model for limestone in wet FGD systems [C]. The EPA/EPRI First Combined FGD and Dry SO2 Control Symposium, St. Louis, MO, October 25-28,1988.
    [41]Fradsen Jan B W, Kiil S, Johnsson J E. Optimization of a wet FGD pilot plant using fine limestone and organic acids [J]. Chem. Eng. Sci.,2001,56(10):3275-3287
    [42]钟秦,刘爱民.湿法烟气脱硫中石灰石溶解特性[J].南京理工大学学报,2000,24(6):561-569.
    [43]Ukawa N, Okino S. Effects of salts on limestone dissolution rate in wet flue gas desu lfurization [J]. J. Chem. Eng. JPN,1993,26(1):112-113.
    [44]Eden D, Luckas M. A heat and mass transfer model for the simulation of the wet limestone flue gas scrubbing process [J]. Chem. Eng. Technol.,1998,21(1):56-60.
    [45]Rehm T R, Moll A J, Babb A L. Unsteady state absorption of carbon dioxide by dilute sodium hydroxide solutions [J]. AICHE J.,1963,9:760-765.
    [46]Bontozoglou V K, Belas A J. Simultaneous absorption of H2S and CO2 in NaOH solutions [J]. Ind. Eng. Chem. Res.,1993,32(1):165-172.
    [47]Juvekar V A, Sharma M M. Absorption of CO2 in a suspension of ILime [J]. Chem. Eng. Sci.,1973,28:825-837.
    [48]滕斌,高翔,刘海蛟,等.添加剂对消石灰结构特性和脱硫性能的影响[J].浙江大学学报(工学版),2004,38(2):101-110.
    [49]高翔,骆仲泱,陈亚非.钙基吸收剂脱硫反应特性的研究[J].燃烧科学与技术,1998,4(4):369-372.
    [50]Scala F, Dascenzo M. Absorption with instantaneous reaction in a droplet with sparingly soluble fines [J]. AIChE Journal,1969,48(8):1719-1726.
    [51]Danckwerts P V. Significance of liquid-film coefficients in gas absorption [J]. Ind. Eng. Chem.,1951,43:1460-1467.
    [52]Hikita H, Asia, S, Takatsuka T. Gas absorption with a two step instantaneous chemical reaction [J]. Chem. Eng J.,1972,4:31-40.
    [53]Bjerle I, Bengtsson S, Farnkvist R. Absorption of SO2 in CaCO3 slurry in a laminar jet absorber [J]. Chem. Eng. Sci.,1972,27:1853-1861.
    [54]Uchida S, Wen, C Y. Rate of gas absorption into a slurry accompanied by instantaneous reaction [J]. Chem. Eng. Sci.,1977,32:1277-1281.
    [55]Uchida S, Ariga O. Absorption of sulfur dioxide into Limestone slurry in a stirred tank [J]. J. Chem. Eng.,1985,63:778-783.
    [56]Mehra A. Gas absorption in reactive slurries:particle dissolution [J]. Eng. Sci.,1996,51: 461-477.
    [57]Sada E, et al. Desulfurization by limestone slurry with added magnesium sulfate [J]. Chem. Eng. J.,1981,22:133-141.
    [58]Sada E, et al. Absorptions of sulfur dioxide into aqueous double slurries containing limestone and lagnesium Hydroxide [J]. AIChE Journal,1983,29(1):6065
    [59]Chang C S, et al. SO2 absorption into NaOH and Na2SO3 aqueous solutions [J]. Ind.Eng. Chem. Fundam.,1985,24:7-11.
    [60]陈赓良.二氧化硫气液吸收过程的反应机理和传质模型[J].化工环保,4(5):1984,279-287.
    [61]Rochelle G T, et al. Buffer additives for lime/limestone slurry scrubbing [C]. ACS National Meeting.
    [62]Mobley J D, Chang J C S. The adipic acid enhanced limestone flue gas desulfurization process:An assessnent [J]. J of the Air Pollution Control Association,1981,31(12):1249.
    [63]Chang C S, Rochelle G T. Effect of organic acid additives on SO2 absorption into CaO/CaCO3 slurries [J]. AIChE J.,1982,28(2):261-266.
    [64]Weems W T. Enhanced absorption of sulfur dioxide by sulfite and other buffers [D]. The University of Texas at Austin, May,1981.
    [65]Whiteman W G. The two-film theory of gas absorption [J]. Chemistry and Metal Engineering,1923.29(1):147-157.
    [66]Higbie R. Trans [J]. Am. Inst. Chem. Engrs.,1935.31:365.
    [67]Sherwood T K, Shipley G H, Holloway F A L. Flooding velocities in packed columns [J]. Ind.Eng.Chem.1938.30(7):765-769.
    [68]Dudek S A, Cohara W F, Rogers J A. Computational Fluid Dynamics (CFD) model for predicting two-Phase flow in a flue-gas-desulfurization wet scrubber [R]. EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium.August 16-20,1999, Atlanta, Georgia, U.S.A.
    [69]杨贤平,赵长遂,陈晓平,等.液体分布环对喷淋塔中烟气流场影响的数值模拟[J].南京工程学院(自然科学版),2007,5(1):35-40.
    [70]Watson G B, Gohara W F, Chaney L J. Advanced low-Pressure-Drop tower inlet design [C]. EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium. August 16-20,1999. Atlanta, Georgia, U.S.A.
    [71]肖国俊.湿法脱硫喷淋塔烟气入口角度优化数值模拟[J].电站辅机.2007,100:18-21.
    [72]Strock T, Gohara W. Experimental Approach and Techniques for the Scrubber Fluid Mechanics [J]. Chemical Engineering Science,1994,49(24A):4667-4679
    [73]Gohara W F, Strock T W, Hall W H. New Perspective of Wet Scrubber Fluid Mechanics in an Advanced Tower Design [C]. EPRI-DOE-EPA Combined Utility Air Pollutant Control Symp osium. Washington D.C. August 25-29,1997.
    [74]Silva A A, Williams P J, Balbo J. WFGD Case Study--Maximizing SO2 Removal by Retrofit with Dual Tray Technology[C]. EPRI-DOE-EPA-AWMA Combined Power Plant Air Pollutant Control Mega Symposium Baltimore, Maryland, U.S.A.,2006(8):28-31.
    [75]李仁刚,管一明,周启宏,等.烟气脱硫喷淋塔流体力学特性研究[J].电力环境保护,2001.17(4):4-9.
    [76]过小玲,金保升,孙志翱.托盘式烟气脱硫喷淋塔空塔冷态流场数值模拟[J].江苏环境科技.2006,5(19):37-39.
    [77]过小玲,金保升,沈丹.装有多孔板的脱硫喷淋塔流场数值模拟研究[J].锅炉技术,2007,38(6):5-9.
    [78]叶春珍,高翔,骆仲泱,等.无溢流筛板塔烟气脱硫的实验研究[J].动力工程,1999.19(6):494-497.
    [79]Feeney S, Gohara W R, Telesz R W. Beyond 2000:Wet FGD in the Next Century [C]. ASME International Joint Power Conference, Minneapolis, Minnesota, U. S. A.1995.
    [80]何萍.喷淋塔和鼓泡塔式湿法脱硫的工艺比较[J].江西电力,2004.30(5):1-3.
    [81]林永明,大型石灰石-石膏湿法喷淋脱硫技术研究及工程应用[D],浙江:浙江大学,2006
    [82]颜俭,惠润堂,杨爱勇.湿法烟气脱硫系统的吸收塔设备[J].电力环境保护,2006.22(5):13-17.
    [83]Takeda T., et al. A paper submitted to the 12th Fall Meeting of the Society of Chemical Engineering of Japan, Nagoya,1976.
    [84]郭瑞堂.石灰石活性和塔内流场对湿法烟气脱硫效率的影响研究[D].杭州:浙江大学,2008.
    [85]Frandsen Jan B W, Kiil S, Johnsson Jan E. Optimization of a wet FGD pilot plant using fine limestone and organic acids [J]. Chem. Eng. Sci.,2001,56:3275-3287.
    [86]Calderbank P H, Patra R P. Mass transfer in the liquid phase during the formation of bubbles [J]. Chem. Eng. Sci.,1966:719-721.
    [87]Siagi Z O, Mbarawa M. Dissolution rate of South African calcium-based materials at constant pH [J]. J. Hazard. Mater.,2007,163:678-682.
    [88]Romachandran P A, Sharma M M. Absorption with the fast reaction in a slurry containing sparingly soluble fine particles [J]. Chem. Eng. Sci.,1969,24(11):1681-1686.
    [89]Rochelle G T, King C J. The effect of additives on mass transfer in CaCO3 or CaO slurry scrubbing of SO2 form waste gases [J]. Ind. Eng. Chem. Fund.,1977,16:67-75
    [90]Sada E. Kumazawa H, Butt M H. Single and simultaneous absorption of lean SO2 and NO2 into aqueous slurries of Ca(OH)2 and Mg(OH)2 particles [J]. J. Chem. Eng. JPN,1977,12 (2):111-117.
    [91]Sada E, Kumazawa H, Sawada Y, et al. Kinetics of absorptions of lean sulfur dioxide into aqueous slurries of calcium carbonate and magnesium hydroxide [J]. Chem. Eng. Sci.,1981, 36 (1):149-155.
    [92]Sada E, Kumazawa H, Hashizume I, et al. Absorption of dilute SO2 into aqueous slumes of CaSO3 [J]. Chem. Eng. Sci.,1982,37 (9):1432-1435.
    [93]陈贤.湿式石灰石-石膏法烟气脱硫吸收塔型简介[J].上海电力,1998,(2):10-12.
    [94]王树立.鼓泡塔内气液两相流的数值模拟与试验研究[D].大连:大连理工大学,2002.
    [95]盛森芝,沈熊,舒玮.流速测量技术[M].北京:北京大学出版社,1987.
    [96]BachaloW D, Houser M J. Experimentsin polydisperse two-phase turbulent flows [C]. American Society of Mechanical Engineers.1985,135-141.
    [97]Hewitt G F. Measurement of two-Phase flow Parameters [M]. New York:Academie Press, 1978.
    [98]Bremhorst K, Gilmore D B. Response of ho twire anemometer Probes to a stream of air bubbles in a water flows [J]. J. Phy.1976,9:347-352.
    [99]Maeias E S, Radeliffe C. D., Lewis C. W., et al. Proton-indueed gamma ray analysis of atmosphere aerosols for carbon, nitrogen and sulfur compounds [J]. Anal. Chem.,1978, 50:1120-1124.
    [100]Yu P Y W, Varty R L. Laser-Doppler measurement of the veloeity and diameter of bubbles using the triple-peak technique [J]. Int. J. Multi. Flow,1988,14(6):765-776.
    [101]Reese J, Fan L S. Transient flow structure in the entrance region of a bubble column using Particle image velocimeter [J]. Chem. Eng. Sci.,1994,49(24B):5624-5636.
    [102]王君.石灰石溶解特性和液柱冲击塔流场及其脱硫特性的研究[D].杭州:浙江大学,2006.
    [103]李兴华.半干法烟气脱硫塔内速度场PIV测试及LFIAC运行性能优化研究[D].杭州:浙江大学,2005.
    [104]陈湘文.筛板式喷淋塔脱硫脱硝性能试验研究[D].杭州:浙江大学,2008.
    [105]钟毅.基于WFGD系统的硫、硝、汞污染物协同脱除的理论与试验研究[D].杭州:浙江大学,2008。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700