用户名: 密码: 验证码:
左氧氟沙星在针铁矿上的吸附:磷酸盐和腐殖酸的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素是环境中重要的新型污染物,而针铁矿是包气带中分布最广的铁氧化物,其对抗生素的吸附行为是重要的环境过程。本文主要研究了左氧氟沙星(LEV)在针铁矿上的吸附过程,讨论了pH、Ca2+、磷酸盐和天然有机物(NOM)的影响,同时也研究了不同来源NOM与针铁矿的相互作用,结果表明:
     (1)由于针铁矿表面电荷的不对称性和吸附过程中对H+的消耗,LEV在针铁矿上的吸附量(0.034μmol/m2)在pH6附近达到最大,吸附曲线在最大吸附量(pH6)两边是不对称的。
     (2)Ca2+的存在会明显抑制LEV在针铁矿上的吸附。这是因为溶液中Ca2+与LEV形成了稳定的络合物(CaH2L3+),由于静电作用和溶液中游离态LEV浓度的降低,导致吸附量降低。
     (3)在单体系(LEV-针铁矿,磷酸盐-针铁矿)中,吸附数据都能够较好地利用电荷分布多位络合(CD-MUSIC)模型进行模拟。在复合体系中,磷酸盐会极大地抑制LEV在针铁矿上的吸附,而LEV对磷酸盐的吸附几乎没有影响。静电竞争作用是LEV和磷酸盐在针铁矿上竞争吸附的主要机理。
     (4)腐殖酸(HA)在针铁矿上的吸附量在5min内就能接近平衡吸附量(0.51mg C/m2),大分子量的HA主要被针铁矿吸附,低pH有利于针铁矿对HA的吸附。针铁矿与HA之间的作用机理除了静电吸引作用外,还可能存在专属吸附和疏水作用等其他作用。
     (5)不同来源的NOM都不同程度地促进了LEV在针铁矿上的吸附。LEV的吸附曲线符合Langmuir和CD-MUSIC的线性可加模型。计算得出的LEV与NOM的结合常数(log K)与NOM的摩尔吸光系数(SUVA)呈现非常好的正相关关系,而与E2/E3、羧基含量和极性呈负相关关系。因此,NOM的SUVA的大小能够反映NOM对LEV的吸附能力。疏水作用和-作用是LEV等抗生素在(矿物结合态的)NOM上吸附的主要机理。
In the environment, antibiotics are a group of new organic contaminants. In thevadose zone, their adsorption on a kind of common iron mineral goethite is veryimportant. In this study, effects of pH, Ca2+, phosphate, and natural organic matter(NOM) on levofloxacin (LEV) adsorption to goethite were investigated, and theinteractions between NOM and goethite were also studied. The results from our studyindicated that:
     (1) The adsorbed amount of LEV to goethite reached its maximum (0.034μmol/m2)at pH values around6, and then decreased when pH was lower or higher than thisrange. The LEV adsorption envelope was asymmetric on the two sides of themaximum adsorption around pH6. This was because to a large extent of theasymmetric charge change on goethite surface and the consumption of protons duringthe adsorption of LEV to goethite
     (2) In the presence of Ca2+, a decrease in adsorption was observed, because theCa-LEV complexes (CaH2L3+) was formed in solutions, which would cause theelectrostatic interactions and the decrease in free LEV in solutions.
     (3) Adsorption of LEV (or phosphate) to goethite in single systems was wellpredicted using the CD-MUSIC (Charge Distribution Multi-Site Complexation)model. In the binary systems, the presence of phosphate decreased LEV adsorption togoethite significantly over the whole pH range. Electrostatic competition was themain reason for the competition of LEV and phosphate to goethite surface in thebinary systems.
     (4) The amount of humic acid (HA) adsorbed to goethite was near its equilibriumvalue (0.51mg C/m2) in5min. HA with high molecular weight was mainly adsorbed.More HA was adsorbed to goethite at low pH. Specific adsorption and hydrophobicinteraction might also involved during the interactions between HA and goethitebesides electrostatic attraction.
     (5) The presence of nine types of NOM samples increased the adsorption of LEV over the whole pH range. The adsorption envelops were well fitted to the linearadditive model which applies the CD-MUSIC model to simulate LEV adsorption togoethite and the Langmuir model to simulate LEV adsorption to NOM. The optimizedstability constants (log K) for LEV adsorption to NOM were significantly andpositively correlated with Specific UV absorbance (SUVA) values of NOM, andnegatively correlated with E2/E3values, carboxyl contents, and the polarity of NOM.H-bond and cationic complexation are probably not that important in the LEVadsorption process to NOM. Hydrophobic interactions and-interactions wereproposed as the major mechanisms in the adsorption of LEV to (mineral-complexed)NOM.
引文
Ahmad R, Kookana R S, Alston A M, Skjemstad J O. The nature of soil organic matter affectssorption of pesticides.1. relationships with carbon chemistry as determined by13C CPMASNMR spectroscopy. Environ. Sci. Technol.2001,35(5):878–884
    Al-Mustafa J. Magnesium, calcium and barium perchlorate complexes of ciprofloxacin andnorfloxacin. Acta Chim. Slov.2002,49(3):457-466
    Antelo J, Avena M, Fiol S, López R, Arce F. Effects of pH and ionic strength on the adsorption ofphosphate and arsenate at the goethite–water interface. J. Colloid Interface Sci.2005,285(2):476–486
    Antelo J, Arce F, Avena M, Fiol S, López R, Macías F. Adsorption of a soil humic acid at thesurface of goethite and its competitive interaction with phosphate. Geoderma,2007,138(1-2):12-19
    Aristilde L, Sposito G. Molecular modeling of metal complexation by a fluoroquinolone antibiotic.Environ. Toxicol. Chem.2008,27(11):2304-2310
    Aristilde L, Sposito G. Binding of ciprofloxacin by humic substances: a molecular dynamics study.Environ. Toxicol. Chem.2010,29(1):90-98
    Aristilde L, Sposito G. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatichumic substances. Environ. Toxicol. Chem.2013,32(7):1467–1478
    Artinger R, Buckau G, Geyer S, Fritz P, Wolf M, Kim J I. Characterization of groundwater humicsubstances: influence of sedimentary organic carbon. Appl. Geochem.2000,15(1):97-116
    Ates N, Kitis M, Yetis U. Formation of chlorination byproducts in waters with lowSUVA-correlations with SUVA and differential UV spectroscopy. Water Res.2007,41(18):4139-4148
    Avena M J, Koopal L K. Kinetics of humic acid adsorption at solid-water interfaces. Environ. Sci.Technol.1999,33(16):2739-2744
    Benlden J B, Maul J D, Lydy M J. Partitioning and photodegradation of ciprofloxacin in aqueoussystems in the presence of organic matter. Chemosphere2007,66(8):1390-1395
    Biber M V, Stumm W. An In-Situ ATR-FTIR study: the surface coordination of salicylic acid onaluminum and iron(III) oxides. Environ. Sci. Technol.1994,28(5):763–768
    Bond T, Goslan E H, Jefferson B, Roddick F, Fan L, Parsons S A. Chemical and biologicaloxidation of NOM surrogates and effect on HAA formation. Water Res.2009,43(10):2615-2622
    Bui T X, Choi H. Influence of ionic strength, anions, cations, and natural organic matter on theadsorption of pharmaceuticals to silica. Chemosphere2010,80(7):681-686
    Cai Z X, Kim J, Benjamin M M. NOM removal by adsorption and membrane filtration usingheated aluminum oxide particles. Environ. Sci. Technol.2008,42(2):619-623
    Cardoza L A, Knapp C W, Larive C K, Belden J B, Lydy M, Graham D W. Factors affecting thefate of ciprofloxacin in aquatic field systems. Water, Air, Soil Pollu.2005,161(1-4):383-398
    Carmosini N, Lee L S. Ciprofloxacin sorption by dissolved organic carbon from reference andbio-waste materials. Chemosphere2009,77(6):813-820
    Chen H, Zheng B. Characterizing natural dissolved organic matter in a freshly submergedcatchment (Three Gorges Dam, China) using UV absorption, fluorescence spectroscopy andPARAFAC. Water Sci. Technol.2012,65(5):962-969
    Chen H, Zheng B, Song Y, Qin Y. Correlation between molecular absorption spectral slope ratiosand fluorescence humification indices in characterizing CDOM. Aquat. Sci.2011,73(1):103-112
    Chen Y, Senesi N, Schnitzer M. Information provided on humic substances by E4/E6ratios. SoilSci. Am. J.1997,41(2):352-358
    Chi F H, Amy G L. Kinetic study on the sorption of dissolved natural organic matter onto differentaquifer materials: the effects of hydrophobicity and functional groups. J. Colloid InterfaceSci.2004,274(2):380-391
    Chin Y, Aiken G, O’Loughlin E. Molecular weight, polydispersity, and spectroscopic properties ofaquatic humic substances. Environ. Sci. Technol.1994,28(11):1853-1858
    Chin Y, Aiken G, Danielsen K M. Binding of pyrene to aquatic and commercial humic substances:the role of molecular weight and aromaticity. Environ. Sci. Technol.1997,31(6):1630–1635
    Chorover J, Amistadi M K. Reaction of forest floor organic matter at goethite, birnessite andsmectite surfaces. Geochim. Cosmochim. Acta2001,65(1):95-109
    Claret F, Sch fer T, Brevet J, Reiller P E. Fractionation of Suwannee River fulvic acid and Aldrichhumic acid on α-Al2O3: spectroscopic evidence. Environ. Sci. Technol.2008,42(23):8809-8815
    Córdova-Kreylos A L, Scow K M. Effects of ciprofloxacin on salt marsh sediment microbialcommunities. ISME J.2007,1(7):585-595
    Davis J A, Gloor R. Adsorption of dissolved organics in lake water by aluminum oxide. effect ofmolecular weight. Environ. Sci. Technol.1981,15(10):1223–1229
    De Haan H, De Boer T. Applicability of light absorbance and fluorescence as measures ofconcentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer.Water Res.1987,21(6):731-734
    Duong H A, Pham N H, Nguyen H T. Occurrence, fate and antibiotic resistance of fluoroquinoloneantibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere2008,72(6):968-973
    Evanko C R, Dzombak D A. Influence of structural features on sorption of NOM-analogueorganic acids to goethite. Environ. Sci. Technol.1998,32(19):2846-2855
    Fatta-Kassinos D, Meric S, Nikolaou A. Pharmaceutical residues in environmental waters andwastewater: current state of knowledge and future research. Anal. Bioanal. Chem.2011,399(1):251-275
    Feitosa-Felizzola J, Chiton S. Occurrence and distribution of selected antibiotics in a smallMediterranean stream (Arc River, Southern France). J. Hydrol.2009,364(1-2):50-57
    Ferro-García MA, Rivera-Utrilla J, Bautista-Toledo I, et al. Adsorption of humic substances onactivated carbon from aqueous solutions and their effect on the removal of Cr (III) ions.Langmuir1998,14(7):1880-1886
    Figueroa R A, Leonard A, MacKay A A. Modeling tetracycline antibiotic sorption to clays.Environ. Sci. Technol.2004,38(2):476-483
    Figueroa R A, Mackay A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils.Environ. Sci. Technol.2005,39(17):6664-6671
    Filius J. Modeling the adsorption of weak organic acids on goethite. The ligand and chargedistribution model. Ph.D. Thesis, Wageningen University. NL,2001
    Ge L, Chen J, Wei X, Zhang S, Qiao X, Cai X, Xie Q. Aquatic photochemistry of fluoroquinoloneantibiotics: kinetics, pathways, and multivariate effects of main water constituents. Environ.Sci. Technol.2010,44(7):2400-2405
    Geelhoed J S, Hiemstra T, Van Riemsdijk W H. Competitive interaction between phosphate andcitrate on goethite. Environ. Sci. Technol.1998,32(14):2119–2123
    Girardi C, Greve J, Lamsh ft M, Fetzer I, Miltner A, Sch ffer A, K stner M. Biodegradation ofciprofloxacin in water and soil and its effects on the microbial communities. J. Hazard. Mater.2011,198:22–30
    Golet E M, Alder A C, Giger W. Environmental exposure and risk assessment of fluoroquinoloneantibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland.Environ. Sci. Technol.2002,36(17):3645-3651
    Golet E M, Xifra I, Siegrist H, Alder A C, Giger, W. Environmental exposure assessment offluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol.2003,37(15):3243-3249
    González J A O, Mochón M C, de la Rosa F J B. Spectrofluorimetric determination oflevofloxacin in tablets, human urine and serum. Talanta2000,52(6):1149-1156
    Gottschall N, Topp E, Metcalfe C. Pharmaceutical and personal care products in groundwater,subsurface drainage, soil, and wheat grain, following a high single application of municipalbiosolids to a field. Chemosphere2012,87(2):194-203
    Goyne K W, Chorover J, Kubicki J D, Zimmerman A R, Brantley S L. Sorption of the antibioticofloxacin to mesoporous and nonporous alumina and silica. J. Colloid Interface Sci.2005,283(1):160-170
    Gu B, Schmltt J, Chen Z, Liang L, McCarthy J F. Adsorption and desorption of natural organicmatter on iron oxide: mechanisms and models. Environ. Sci. Technol.1994,28(1):38-48
    Gu B, Schmitt J, Chen Z, Liang L, McCarthy J F. Adsorption and desorption of different organicmatter fractions on iron oxide. Geochim. Cosmochim. Acta1995,59(2):219-229
    Gu C, Karthikeyan K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrousoxides. Environ. Sci. Technol.2005a,39(23):9166-9173
    Gu C, Karthikeyan K G. Interaction of tetracycline with aluminum and iron hydrous oxides.Environ. Sci. Technol.2005b,39(8):2660-2667
    Gu C, Karthikeyan K G, Sibley S D, Pedersen J A. Complexation of the antibiotic tetracyclinewith humic acid. Chemosphere2007,66(8):1494–1501
    Gu C, Karthikeyan K G. Sorption of the antibiotic tetracycline to humic-mineral complexes. J.Environ. Qual.2008,37(2):704–711
    Gulkowska A, Sander M, Hollender J, Krauss M. Covalent binding of sulfamethazine to naturaland synthetic humic acids: assessing laccase catalysis and covalent bond stability. Environ.Sci. Technol.2013,47(13):6916–6924
    Guo M, Chorover J. Transpotr and fractionation of dissolved organic matter in soil columns. SoilSci.2003,168(2):108-118
    Han Y, Wang Q, Mo C, Li Y, Gao P, Tai Y, Zhang Y, Ruan Z, Xu J. Determination of fourfluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ. Pollut.2010,158(7):2350-2358
    Heckman K, Vazquez-Ortega A, Gao X, Chorover J, Rasmussen C. Changes in water extractableorganic matter during incubation of forest floor material in the presence of quartz, goethiteand gibbsite surfaces. Geochim. Cosmochim. Acta2011,75(15):4295-4309
    Helms J R, Stubbins A, Ritchie J D, Minor E C, Kieber D J, Mopper K. Absorption spectral slopesand slope ratios as indicators of molecular weight, source, and photobleaching ofchromophoric dissolved organic matter. Limnol. Oceanogr.2008,53(3):955-969
    Hiemstra T, De Wit J C M, Van Riemsdijk W H. Multisite proton adsorption modeling at thesolid/solution interface of (hydr)oxides: a new approach: II. application to various important(hydr)oxides. J. Colloid Interface Sci.1989a,133(1):105-117
    Hiemstra T, Van Riemsdijk W H, Bolt G H. Multisite Proton adsorption modeling at thesolid-solution interface of (hydr)oxides: a new approach: I. Model description and evaluationof intrinsic reaction constants. J. Colloid Interface Sci.1989b,133(1):91–104
    Hiemstra T, Van Riemsdijk W H. A surface structural approach to ion adsorption: The chargedistribution (CD) model. J. Colloid Interface Sci.1996,179(2):488–508
    Hiemstra T, Van Riemsdijk W H. On the relationship between charge distribution, surfacehydration, and the structure of the interface of metal hydroxides. J. Colloid Interface Sci.2006,301(1):1–18
    Hiemstra T, Antelo J, Rahnemaie R, Van Riemsdijk W H. Nanoparticles in natural systems I: Theeffective surface area of the natural oxide fraction in field samples. Geochim. Cosmochim.Acta2010,74:41–58
    Hiemstra, T, Mia S, Duhaut P B, Molleman B. Natural and pyrogenic humic acids at goethite andnatural oxide surfaces interacting with phosphate. Environ. Sci. Technol.2013,47(16):9182–9189
    Hingston F J. A review on anion adsorption.(in): Anderson M A, Rubin J R,(eds.) Adsorption ofinorganics at solid-liquid interfaces (刘莲生,张正斌,刘国盛译). Ann Arbor SciencePublishers, Inc.,1981.175-178
    Hsieh P C, Brimblecombe P, Lee C L, Hsu S H. The role of the characteristics of humic substancesin binding with benzo[h]quinoline. Environ. Toxicol. Chem.2012,31(2):246–252
    Hu X., Zhou Q, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure,soil, vegetables and groundwater from organic vegetable bases, northern China. Environ.Pollut.2010,158(9):2992-2998
    Hua G H, Reckhow D A. Comparison of disinfection byproduct formation from chlorine andalternative disinfectants. Water Res.2007,41(8):1667-1678
    Huang C P. The surface acidity of hydrous solid.(in): Anderson M A, Rubin J R,(eds.) Adsorptionof inorganics at solid-liquid interfaces (刘莲生,张正斌,刘国盛译). Ann Arbor SciencePublishers, Inc.,1981.175-178
    Hur J, Schlautman M A. Molecular weight fractionation of humic substances by adsorption ontominerals. J. Colloid Interface Sci.2003,264(2):313-321
    Hur J, Schlautman M A. Using selected operational descriptors to examine the heterogeneitywithin a bulk humic substance. Environ. Sci. Technol.2003,37(5):880-887
    Janot N, Reiller P E, Zheng X, Croué J P, Benedetti M F. Characterization of humic acid reactivitymodifications due to adsorption onto α-Al2O3. Water Res.2012,46(3):731-740
    Jia A, Wan Y, Xiao Y, Hu J. Occurrence and fate of quinolone and fluoroquinolone antibiotics in amunicipal sewage treatment plant. Water Res.2012,46(2):387-394
    Johnson W P, Bao G, John W W. Specific UV absorbance of Aldrich humic acid: changes duringtransport in aquifer sediment. Environ. Sci. Technol.2002,36(4):608-616
    Joo J C, Shackelford C D, Reardon K F. Association of humic acid with metal (hydr)oxide-coatedsands at solid–water interfaces. J. Colloid Interface Sci.2008,317(2):424-433
    Kaiser K. Sorption of natural organic matter fractions to goethite (α-FeOOH): effect of chemicalcomposition as revealed by liquid-state13C NMR and wet-chemical analysis. Org. Geochem.2003,34(11):1569-1579
    Kang S, Xing B. Phenanthrene Sorption to sequentially extracted soil humic acids and humins.Environ. Sci. Technol.2005,39(1):134–140
    Kang S, Xing B. Humic acid fractionation upon sequential adsorption onto goethite. Langmuir2008,24(6):2525-2531
    Kay P, Blackwell P A, Boxall B A. Fate of veterinary antibiotics in a macroporous tile drained claysoil. Environ.Toxicol.Chem.2004,23(5):1136-1144
    Keizer M G, Van Riemsdijk W H. ECOSAT: Equilibrium calculation of speciation and transport,Technical report of the Soil Quality Department, Wageningen University: Wageningen.1998.
    Khraisheh M, Al-Ghouti M A, Stanford C A. The application of iron coated activated alumina,ferric oxihydroxide and granular activated carbon in removing humic substances from waterand wastewater: column studies. Chem. Eng. J.2010,161:114-121
    Kim H, Park S, Lee C, Han Y, Park J, Kim S. Humic acid removal from water by iron-coated sand:a column experiment. Environ. Eng. Res.2009,14(1):41-47
    Kim J I, Buckau G, Li G H, Duschner H, Psarros N. Characterization of humic and fulvic acidsfrom Gorleben groundwater. Fresenius J. Anal. Chem.1990,338(3):245–252.
    Kinniburgh D G. Fit: technical report WD/93/23. British Geological Survey. Keyworth,1993.
    Korshin G V, Li C, Benjamin M M. Monitoring the properties of natural organic matter throughspectroscopy: a consistent theory. Water Res.1997,31(7):1787-1795
    Kulikova N A, Perminova I V. Binding of atrazine to humic substances from soil, peat, and coalrelated to their structure. Environ. Sci. Technol.2002,36(17):3720–3724
    Kulshrestha P, Giese R F Jr, Aga D S. Investigating the molecular interactions of oxytetracyclinein clay and organic matter: insights on factors affecting its mobility in soil. Environ. Sci.Technol.2004,38(15):4097-4105
    Kumpulainen S, von der Kammer F, Hofmann T. Humic acid adsorption and surface charge effectson schwertmannite and goethite in acid sulphate waters. Water Res.2008,42(8-9):2051-2060
    Lai C H, Chen C Y, Wei B L, et al. Cadmium adsorption on goethite-coated sand in the presenceof humic acid. Water Res.2002,36(20):4943-4950
    Lam M W, Mabury S A. Photodegradation of the pharmaceuticals atorvastatin, carbamazepine,levofloxacin, and sulfamethoxazole in natural waters. Aquat. Sci.2005,67(2):177-188.
    Lahti M, Oikari A. Pharmaceuticals in settleable particulate material in urban and non-urbanwaters. Chemosphere2011,85(5):826-831
    Leenheer J A, Croué J P. Characterizing dissolved aquatic organic matter. Environ. Sci. Technol.2003,37(1):18A-26A
    Lenhart J J, Honeyman B D. Uranium(VI) sorption to hematite in the presence of humic acid.Geochim. Cosmochim. Acta1999,63(19-20):2891-2901
    Lglesias A, López R, Gondar D, Antelo J, Fiol S, Arce F. Adsorption of MCPA on goethite andhumic acid-coated goethite. Chemosphere2010,78(11):1403-1408
    Li C W, Benjamin M M, Korshin G V. Use of UV spectroscopy to characterize the reactionbetween NOM and free chlorine. Environ. Sci. Technol.2000,34(12):2570-2575
    Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activated sludge process.Environ. Sci. Technol.2010,44(9):3648-3473
    Li Z, Hong H, Liao L, Ackley C J, Schulz L A, MacDonald R A, Mihelich A L, Emard S M. Amechanistic study of ciprofloxacin removal by kaolinite. Colloids surf. B2011a,88(1):339-344
    Li Y, Wu X, Mo C, Tai Y, Huang X, Xaing L. Investigation of sulfonamide, tetracycline, andquinolone antibiotics in vegetable farmland soil in the Pearl River delta area, Southern China.J. Agric. Food Chem.2011b,59(13):7268-7276
    Li C, Berns A E, Sch ffer A, Séquaris J M, Vereecken H, Ji R, Klumpp E. Effect of structuralcomposition of humic acids on the sorption of a branched nonylphenol isomer. Chemosphere2011c,84(4):409–414
    Lin C E, Deng Y J, Liao W S, Sun S W, Lin W Y, Chen C C. Electrophoretic behavior and pKadetermination of quinolones with a piperazinyl substituent by capillary zone electrophoresis.J. Chromatogr. A.2004,1051(1–2):283–290
    Liu T, Rao P, Mak M S H, Wang P, Lo I M. Removal of co-present chromate and arsenate byzero-valent iron in groundwater with humic acid and bicarbonate. Water Res.2009,43(9):2540-2548
    Macasek F, Shaban I S, Matel L. Cesium, strontium, europium (III) and plutonium (IV) complexeswith humic acid in solution and on montmorillonite surface. J. Radioanal. Nucl. Chem.1999,241(3):627-636
    MacKay A A, Seremet D E. Probe compounds to quantify cation exchange and complexationinteractions of ciprofloxacin with soils. Environ. Sci. Technol.2008,42(22):8270-8276
    Mao J, Tremblay L, Gagné J. Structural changes of humic acids from sinking organic matter andsurface sediments investigated by advanced solid-state NMR: Insights into sources,preservation and molecularly uncharacterized components. Geochim. Cosmochim. Acta2011,75(24):7864-7880
    McCarthy J F, Gu B, Liang L, Mas-Pla J, Williams T M, Yeh T C J. Field tracer tests on themobility of natural organic matter in a sandy aquifer. Water Resour. Res.1996,32(5):1223-1238
    Meier M, Namjesnik-Dejanovic K, Maurice P A, Chin Y, Aiken G R. Fractionation of aquaticnatural organic matter upon sorption to goethite and kaolinite. Chem. Geol.1999,157(3-4):275-284
    Miller M P. The influence of reservoirs, climate, land use and hydrologic conditions on loads andchemical quality of dissolved organic carbon in the Colorado River. Water Resour. Res.2012,48(9):1223-1238
    Murphy E M, Zachara J M. The role of sorbed humic substances on the distribution of organic andinorganic contaminants in groundwater. Geoderma1995,67(1-2):103-124
    Nasuhoglu D, Rodayan A, Berk D, Yargeau V. Removal of the antibiotic levofloxacin (LEVO) inwater by ozonation and TiO2photocatalysis. Chem. Eng. J.2012,189-190:41-48
    Negreanu Y, Pasternak Z, Jurkevitch E, Cytryn E. Impact of treated wastewater irrigation onantibiotic resistance in agricultural soils. Environ. Sci. Technol.2012,46(9):4800-4808
    Nowara A, Burhenne J, Spiteller M. Binding of fluoroquinolone carboxylic acid derivatives toclay minerals. J. Agric. Food Chem.1997,45(4):1459-1463
    Orsetti S, Andrade E M., Molina F V. Modeling of ion bingding to humic substances: elasticpolyelectrolyte network model. Langmuir2010,26(5):3134-3144
    Pan B, Liu Y, Xiao D, Wu F C, Wu M, Zhang D, Xing B. Quantitative identification of dynamicand static quenching of ofloxacin by dissolved organic matter using temperature-dependentkinetic approach. Environ. Pollut.2012,161:192–198
    Pan B, Zhang D, Li H, Wu M, Wang Z, Xing B. Increased adsorption of sulfamethoxazole onsuspended carbon nanotubes by dissolved humic acid. Environ. Sci. Technol.2013,47(14):7722–7728
    Paradelo M, Pérez-Rodríguez P, Fernández-Calvi o D, Arias-Estévez M, López-Periago J E.Coupled transport of humic acids and copper through saturated porous media. Eur. J. Soil Sci.2012,63(5):708-716
    Park S J, Yoon T I. Effects of iron species and inert minerals on coagulation and direct filtrationfor humic acid removal. Desalination2009,239(1-3):146-158
    Paul T, Machesky M L, Strathmann T J. Surface complexation of the zwitterionic fluoroquinoloneantibiotic ofloxacin to nano-anatase TiO2photocatalyst surfaces. Environ. Sci. Technol.2012,46(21):11896–11904
    Peng H, Feng S, Zhang X, Li Y, Zhang X. Adsorption of norfloxacin onto titanium oxide: effect ofdrug carrier and dissolved humic acid. Sci. total Environ.2012,438:66–71
    Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humicsubstances. Anal. Chim. Acta1997,337(2):133–149
    Pérez M A P, Moreira-Turcq P, Gallard H, Allard T, Benedetti M F. Dissolved organic matterdynamic in the Amazon basin: sorption by mineral surfaces. Chem. Geol.2011,286(3-4):158-168
    Picó Y., Andreu V. Fluoroquinolones in soil-risks and challenges. Anal. Bioanal. Chem.2007,387(4):1287-1299
    Pifer A D, Fairey J L. Improving on SUVA254using fluorescence-PARAFAC analysis andasymmetric flow-field flow fractionation for assessing disinfection byproduct formation andcontrol. Water Res.2012,46(9):2927-2936
    Qin X, Liu F, Wang G, Weng L. Simultaneous analysis of small organic acids and humic acidsusing high performance size exclusion chromatography. J. Sep. Sci.2012a,35(24):3455-3460
    Qin X, Liu F, Wang G. Fractionation and kinetic processes of humic acid upon adsorption oncolloidal hematite in aqueous solution with phosphate. Chem. Eng. J.2012b,209:458-463
    Qin X, Liu F, Wang G, Weng L. Li L. Adsorption of levofloxacin onto goethite: effects of pH,calcium and phosphate. Colloids Surf. B2014a,116:591-596
    Qin X, Liu F, Wang G, Li L, Wang Y, Weng L. Modeling of levofloxacin adsorption to goethiteand the competition with phosphate. Chemosphere2014b,111:283-290
    Rahnemaie R, Hiemstra T, Van Riemsdijk W H. Geometry, charge distribution, and surfacespeciation of phosphate on goethite. Langmuir2007a,23(7):3680–3689
    Rahnemaie R, Hiemstra T, Van Riemsdijk W H. Carbonate adsorption on goethite in competitionwith phosphate. J. Colloid Interface Sci.2007b,315(2):415–425
    Rakshit S, Sarkar D, Elzinga E J, Punamiya P, Datta R. Mechanisms of ciprofloxacin removal bynano-sized magnetite. J. Hazard. Mater.2013,246-247:221–226
    Rietra R P J J, Hiemstra T, Van Riemsdijk W H. Interaction between calcium and phosphateadsorption on goethite. Environ. Sci. Technol.2001,35(16):3369-3374
    Riley C M, Ross D L, Velde D V, Takusagawa F. Characterization of the complexation offluoroquinolone antimicrobials with metal ions by nuclear magnetic resonance spectroscopy.J Pharm. Biomed. Anal.1993,11(1):49-59
    Ritchie J D, Perdue E M. Proton-binding study of standard and reference fulvic acids, humic acids,and natural organic matter. Geochim. Cosmochim. Acta2003,67(1):85-96
    Roccaro P, Vagliasindi F G, Korshin G V. Changes in NOM fluorescence caused by chlorinationand their associations with disinfection by-products formation. Environ. Sci. Technol.2009,43(3):724-729
    Ross D L, Riley C M. Physicochemical properties of the fluoroquinolone antimicrobials. III.Complexation of lomefloxacin with various metal ions and the effect of metal ioncomplexation on aqueous solubility. Int. J. Pharm.1992,87(1-3):203-213
    Rusu A, Tòth G, Sz cs L, K k si J, Kraszni M, Gyéresi á, Noszál. Triprotic site-specificacid–base equilibria and related properties of fluoroquinolone antibacterials. J. Pharm.Biomed. Anal.2012,66:50–57
    Saito T, Koopal L K, van Riemsdijk W H, Nagasaki S, Tanakat S. Adsorption of humic acid ongoethite: isotherms, charge adjustments, and potential profiles. Langmuir2004,20(3):689-700
    Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways,occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere2006,65(5):725-759
    Scheidegger A, Borkovec M, Sticher H. Coating of silica sand with goethite: preparation andanalytical identification. Geoderma1993,58(1-2):43-65
    Schmitt-Kopplin P, Burhenne J, Freitag D, Spiteller M, Kettrup A. Development of capillaryelectrophoresis methods for the analysis of fluoroquinolones and application to the study ofthe influence of humic substances on their photodegradation in aqueous phase. J. Chromatogr.A1999,837(1–2):253–265
    Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental organic chemistry.2rd ed.John Wiley and Sons Inc.: New York,2003
    Senta I, Terzic S, Ahel M. Occurrence and fate of dissolved and particulate antimicrobials inmunicipal wastewater treatment. Water Res.2013,47(2):705-714
    Shaker A M, Komy Z R, Heggy S E M, El-Sayed M E A. Kinetic Study for adsorption humic acidon soil minerals. J. Phys. Chem. A.2012,116(45):10889-10896
    Shin H S, Monsallier J M, Choppin G R. Spectroscopic and chemical characterizations ofmolecular size fractionated humic acid. Talanta1999,50(3):641-647
    Sousa I, Claro V, Pereira J L, Amaral A L, Cunha-Silva L, de Castro B, Feio M J, Pereira E,Gameiro P. Synthesis, characterization and antibacterial studies of a copper(II) levofloxacinternary complex. J. Inorg. Biochem.2012,110:64-71
    Sparks D L. Environmental soil chemistry. Academic Press: London,2003. P183
    Stevenson F J. Humus chemistry.2rd ed. John Wiley and Sons Inc.: New York,1994
    Stumm W, Morgan J J. Aquatic chemistry: an introduction emphasizing chemical equilibria innatural waters.2rd ed (汤鸿霄等译). John Wiley and Sons Inc.: New York,1981
    Sun W L, Xia J, Li S, Sun F. Effect of natural organic matter (NOM) on Cu(II) adsorption bymulti-walled carbon nanotubes: relationship with NOM properties. Chem. Eng. J.2012,200-202:627–636
    S H U, Postma D, Jakobsen R, Larsen F. Competitive adsorption of arsenate and phosphate ontocalcite; experimental results and modeling with CCM and CD-MUSIC. Geochim.Cosmochim. Acta2012,93:1–13
    Tamtam F, Mercier F, Le Bot B, Eurin J, Tuc Dinh Q, Clément M, Chevreuil M. Occurrence andfate of antibiotics in the Seine River in various hydrological conditions. Sci. Total Environ.2008,393(1):84-95
    Tanis E, Hanna K, Emmanuel E. Experimental and modeling studies of sorption of tetracyclineonto iron oxides-coated quartz. Colloids Surf. A2008,327(1-3):57-63
    Tejedor-Tejedor M I, Anderson M A. Protonation of phosphate on the surface of goethite asstudied by CIR-FTIR and electrophoretic mobility. Langmuir1990,6(3):602–611
    Tombácz E, Libor Z, Illés E, Majzik A, Klumpp E. The role of reactive surface sites andcomplexation by humic acid in the interaction of clay mineral and iron oxide particles. Org.Geochem.2004,35(3):257-267
    Tolls J. Sorption of veterinary pharmaceuticals in soils: a review. Environ. Sci. Technol.2001,35(17):3397-3406
    Tong C., Zhuo X., Guo Y. Occurrence and risk assessment of four typical fluoroquinoloneantibiotics in raw and treated sewage and in receiving waters in Hangzhou, China. J. Agric.Food Chem.2011,59(13):7303-7309
    Traina S J, Novak J, Smeck N E. An ultraviolet absorbance method of estimating the percentaromatic carbon content of humic acids. J. Environ Qual.1990,19(1):151-153
    Trivedi P, Vasudevan D. Spectroscopic investigation of ciprofloxacin speciation at thegoethite-water interface. Environ. Sci. Technol.2007,41(9):3153-3158
    Urbaniak B, Kokot Z J. Analysis of the factors that significantly influence the stability offluoroquinolone–metal complexes. Anal. Chim. Acta2009,647(1):54-59
    Van de Weerd H, Van Riemsdijk W H, Leijnse A. Modeling the dynamic adsorption/desorption ofa NOM mixture: effects of physical and chemical heterogeneity. Environ. Sci. Technol.1999,33(10):1675-1681
    Vecchio R D, Blough N V. On the origin of the optical properties of humic sunstances. Environ.Sci. Technol.2004,38(14):3885-3891
    Venema P, Hiemstra T, Van Riemsdijk W H. Interaction of cadmium with phosphate on goethite. J.Colloid Interface Sci.1997,192(1):94–103
    Vergnoux A, Rocco R D, Domeizel M, Guiliano M, Doumenq P, Théraulaz F. Effects of forestfires on water extractable organic matter and humic substances from Mediterranean soils:UV–vis and fluorescence spectroscopy approaches. Geoderma2011,160(3-4):434-443
    Vermeer A W P, Koopal L K. Adsorption of humic acids to mineral particles.2. polydispersityeffects with polyelectrolyte adsorption. Langmuir1998,14(15):4210-4216
    Vreysen S, Maes A. Adsorption mechanism of humic and fulvic acid onto Mg/Al layered doublehydroxides. Appl. Clay Sci.2008,38(3-4):237-249
    Wang C J, Li Z, Jiang W T. Adsorption of ciprofloxacin on2:1dioctahedral clay minerals. Appl.Clay Sci.2011,53(4):723-728
    Wang K, Xing B. Structural and sorption characteristics of adsorbed humic acid on clay minerals.J. Environ. Qual.2005,34(1):342-349
    Wang X, Guo X, Yang Y, Tao S, Xing B. Sorption mechanisms of phenanthrene, lindane, andatrazine with various humic acid fractions from a single soil sample. Environ. Sci. Technol.2011,45(6):2124–2130
    Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advancedwastewater treatment:Implications for environmental discharge and wastewater recycling.Water Res.2007,41(18):4164-4176
    Wei R, Ge F, Huang S, Chen M, Wang R. Occurrence of veterinary antibiotics in animalwastewater and surface water around farms in Jiangsu Province, China. Chemosphere2011,82(10):1408-1414
    Wei X, Shao M, Horton R, Han X. Humic acid transport in water-saturated porous media. Environ.Model Assess2010,15(1):53-63
    Weishaar J L, Aiken G R, Bergamaschi B A, Fujii R, Mopper K. Evaluation of specific ultravioletabsorbance as an indicator of the chemical composition and reactivity of dissolved organiccarbon. Environ. Sci. Technol.2003,37(20):4702-4708
    Weng L P, Koopal L K, Hiemstra T, Meeussen J C L, Van Riemsdijk W H. Interactions of calciumand fulvic acid at the goethite-water interface. Geochim. Cosmochim. Acta2005,69(2):325-339
    Weng L P, Van Riemsdijk W H, Koopal L K, Hiemstra T. Adsorption of humic substances ongoethite: comparison between humic acids and fulvic acids. Environ. Sci. Technol.2006,40(24):7494-7500
    Weng L P, Van Riemsdijk W H, Hiemstra T. Adsorption of humic acids onto goethite: effects ofmolar mass, pH and ionic strength. J. Colloid Interface Sci.2007,314(1):107-118
    Weng L P, Van Riemsdijk W H, Hiemstra T. Humic nanoparticles at the oxide-water interface:interactions with phosphate ion adsorption. Environ. Sci. Technol.2008,42(23):8747-8752
    Weng L P, Van Riemsdijk W H, Hiemstra T. Effects of fulvic and humic acids on arsenateadsorption to goethite: experiments and modeling. Environ. Sci. Technol.2009,43(19):7198-7204
    Weng L P, Van Riemsdijk W H, Hiemstra T. Factors controlling phosphate interaction with ironoxides. J. Environ. Qual.2012,41(3):628–635
    Wu F C, Evans R D, Dillon P J. Separation and characterization of NOM by high-performanceliquid chromatography and on-Line three-dimensional excitation emission matrixfluorescence detection. Environ. Sci. Technol.2003,37(16):3687-3693
    Wu Q, Li Z, Hong H, Yin K, Tie L. Adsorption and intercalation of ciprofloxacin onmontmorillonite. Appl. Clay Sci.2010,50(2):204-211
    Xu L, Dai J, Pan J, Li X, Huo P, Yan Y. Performance of rattle-type magnetic mesoporous silicaspheres in the adsorption of single and binary antibiotics. Chem. Eng. J.2011,174(1):221-230
    Xu W, Zhang G, Li X. Occurrence and elimination of antibiotics at four sewage treatment plants inthe Pearl River Delta (PRD), South China. Water Res.2007,41(19):4526-4534
    Xue Z, Sendamangalam V R, Gruden C L, Seo Y. Multiple roles of extracellular polymericsubstances on resistance of biofilm and detached clusters. Environ. Sci. Technol.2012,46(24):13212-13219
    Yan W, Hu S, Jing C. Enrofloxacin sorption on smectite clays: effects of pH, cations, and humicacid. J. Colloid Interface Sci.2012,372(1):141-147
    Yang W, Lu Y, Zheng F, Xue X, Li N, Liu D. Adsorption behavior and mechanisms of norfloxacinonto porous resins and carbon nanotube. Chem. Eng. J.2012,179:112-118
    Yang X, Flowers R C, Weinberg H S, Singer P C. Occurrence and removal of pharmaceuticals andpersonal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res.2011,45(16):5218-5228
    Yost E C, Tejedor-Tejedor M I, Anderson M A. In situ CIR-FTIR characterization of salicylatecomplexes at the goethite/aqueous solution interface. Environ. Sci. Technol.1990,24(6):822–828
    Zhang H, Huang C. Adsorption and oxidation of fluoroquinolone antibacterial agents andstructurally related amines with goethite. Chemosphere2007,66(8):1502-1512
    Zhang J, Dong Y. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin intypical variable charge soils of China. J. Hazard. Mater.2008,151(2-3):833-839
    Zhang Z, Cissoko N, Wo J J, Xu X. Factors influencing the dechlorination of2,4-dichlorophenolby Ni–Fe nanoparticles in the presence of humic acid. J. Hazard. Mater.2009,165(1-3):78-86
    Zhang D, Niu H, Zhang X, Meng Z, Cai Y. Strong adsorption of chlorotetracycline on magnetitenanoparticles. J. Hazard. Mater.2011,192(3):1088–1093
    Zhang G, Wu T, Li Y, Huang X, Wang Y, Wang G. Sorption of humic acid to organo layered doublehydroxides in aqueous solution. Chem. Eng. J.2012a,191:306-313
    Zhang Y, Cai X, Lang X, Qiao X, Li X, Chen J. Insights into aquatic toxicities of the antibioticsoxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture.Environ. Pollut.2012b,166:48-56
    Zhang Q, Zhao L, Dong Y, Huang G. Sorption of norfloxacin onto humic acid extracted fromweathered coal. J. Environ. Manage.2012c,102:165–172
    Zhao Y, Geng J, Wang X, Gu X, Gao S. Adsorption of tetracycline onto goethite in the presence ofmetal cations and humic substances. J. Colloid Interface Sci.2011,361(1):247-251
    Zhou L, Ying G, Zhao J, Yang J, Wang L, Yang B, Liu S. Trends in the occurrence of human andveterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River innorthern China. Environ. Pollut.2011,159(7):1877-1885
    Zhou Q., Cabaniss S.E., Maurice P.A. Considerations in the use of high-pressure size exclusionchromatography (HPSEC) for determining molecular weights of aquatic humic substances.Water Res.2000,34(14):3505–3514
    Zhou Q, Maurice P A, Cabaniss S E. Size fractionation upon adsorption of fulvic acid on goethite:Equilibrium and kinetic studies. Geochim. Cosmochim. Acta2001,65(5):803-812
    陈俊辉.抗生素类污染物在土壤含水氧化物中吸附行为的研究:[硕士学位论文].兰州:西北师范大学,2010
    成绍鑫编.腐殖酸类物质概论.北京:化学工业出版社,2007
    戴树桂主编.环境化学.北京:高等教育出版社,2006.209-210
    顾维.诺氟沙星在针铁矿和赤铁矿表面的吸附行为研究:[硕士学位论文].南京:南京信息工程大学,2011
    李丽,冉勇,傅家谟,等.超滤分级研究腐殖酸的结构组成.地球化学,2004,33(4):387-394
    李璐.针铁矿表面环丙沙星与氟甲喹的竞争吸附研究:[硕士学位论文].北京:中国地质大学(北京),2013
    李志军,李荔.2008—2010年北京同仁医院氟喹诺酮类药应用分析.中国医院用药评价与分析,2011,11(11):987-990
    刘伟,王慧,陈小军,等.抗生素在环境中降解的研究进展.动物医学进展,2009,30(3):89~94
    刘叶.可溶性有机质对土霉素在土壤中吸附能力的影响:[硕士学位论文].大连:大连理工大学,2011
    马丽丽,郭昌胜,胡伟,等.固相萃取-高效液相色谱-串联质谱法同时测定土壤中氟喹诺酮、四环素和磺胺类抗生素.分析化学研究报告,2010,38(1):21-26
    王春红,梁巍,薛爱芳,等.兽药抗生素在土壤中行为的研究进展.华中农业大学学报,2010,29(2):245-250
    武庭暄.抗生素在土壤中吸附行为的研究:[硕士学位论文].兰州:西北师范大学,2009
    徐维海.典型抗生素类药物在珠江三角洲水环境中的分布、行为与归宿:[博士学位论文].广州:中国科学院研究生院,2007
    张璐,闫海丽,韩晓凯,等.柠檬酸对三种人工合成氧化铁磷吸附特性的影响.土壤通报,2008,39(4):801-803
    张琴,黄冠燚,赵玲,等. pH值和离子对诺氟沙星在胡敏酸上吸附特征的影响.中国环境科学,2011,31(1):78-83
    张学政,李帷,李艳霞,等.抗生素环境行为及特征研究进展.持久性有机污染物论坛暨第三届持久性有机污染物全国学术研讨会论文集,2008:107-109
    中国地质大学(北京)水资源与环境学院内部资料.地下水环境工程.24-25
    周密.腐殖酸对零价铁去除水体中六价铬的影响:[博士学位论文].浙江:浙江大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700