用户名: 密码: 验证码:
东坪式金矿床碲的元素地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“东坪式”金矿系指产于华北克拉通北缘水泉沟碱性杂岩体中的一系列少硫化物、
     富Te金矿床,是我国发现的特大型金矿的新类型。
     碲在矿床中最高丰度达71 ppm,平均6.71 ppm,Te/Au平均比值0.72,Te丰度呈正
     态负偏态分布,即主要分布在富金石英型矿石。Te、Au相关性、Te/Au比值、稀土元素
     模式等在石英脉矿体和蚀变岩型矿体之间有显著区别:前者Te、Au绝对含量和Te/Au 比
     值高(平均>0.7)、稀土总量低(<10 ppm),后者贫Te、Te/Au 比值低(平均<0.5)、稀土
     总量高(>20 ppm)。碲在石英脉矿体的水平、垂直空间与金显著正相关,相关系数、Te/Au
     比值同时随矿石金品位的加富而增大,说明碲与金具有同一矿化富集中心。碲在矿石内主
     要以AU、Ag、Pb 碲化物与含Ag自然金共生,它们在局部的矿物量相近,并分布于方铅
     矿、黄铁矿、石英表面和裂隙,其中的“难溶金”与碲本身都具有回收价值。
     除上述碲化物外,碲在本矿床形成罕见的碲银矿、Au2Te和种类繁多的未名碲化物、
     碲酸盐等含氧盐,含氧盐进一步可分为含 Au、不含Au,包括 AuTeO3、Au2TeO4、AuTeO4
     等以及水硫碲铅石、Zn2Te3O8、H2Pb2Fe4[TeO4]9.7-12H2O等,后二种为待申报的新矿物。
     研究表明,这些碲含氧盐大多数为碲金矿、碲铅矿与硫化物共同氧化的产物,“难溶金”
     矿物在氧化条件下发生分解,一般释放出自然金;由于金要么以自然金形式被“捕获”于
     这些含氧盐,要么重新与碲形成Au-Te含氧盐,所以抑制了金的次生富集。
     “东坪式”金矿的内生成矿可划分为两期四阶段,其中黄铁矿-石英阶段和硫化物-石
     英阶段是跨矿物的主要形成阶段,显示其富集的阶段性与空间上的局域性。自然金-跨金
     矿、碲铅矿-方铅矿与晚阶段碲银矿-自然银共生组合分析表明,本区碲逸度处于“自然碲
     的不饱和”状态,并随成矿温度降低而减小。矿物组合、现代地热流体观察以及碲纳米化
     挥发实验与流体包裹体、同位素示踪研究表明,Te、Pb、Au和部分硫化物来源于深部地
     幔(岩浆活动)“脱气”形成的高挥发性、纳米态悬浮物流体,沿超壳断裂对区域合矿流
     体的混合、沸腾过程对早期“矿胚”改造是形成“东坪式”金矿Au-Te元素组合富矿体的
     形成机制。其地质地球化学特征介于典型“碱质类”浅成热液金矿床和大水沟独立碲矿床
     之间,但成岩、成矿时差较长。碲的来源主要是区域地幔热柱活动及其岩浆“脱气”产物。
Th Dongping-type gold deposit is named after a gold deposit in Dongping village
    was explored, with its gold ores rich in tellurium (Te in abbrev.) and short of sulfides,
    which has been proven characteristic for all other gold deposits in the Shuiquangou
    syenite batholith on the northem margin of North China craton.
    T is 71ppm in maximum and 6.71 ppm in average, respectively for the gold ores
    and tends to concentrate in high-grade ores of gold bearing quartz veins. The quartz
    vein orebody is different from auriferous metasomated syenite orebody in correlation
    coeffiency and the ratio between Te and Au, along with REE contenis: the former is
    higher in Te, Au grades, in the value of Te/Au ratio (>0.7 in average), and lower in
    REE content (<10 ppm), whereas the latter is lower in Te abundance, in the value of
    Te/Au ratio (<0.5) and higher in REE content (>20ppm). Te is in positive correlation
    with gold both at depth and in horizon profiles of the quartz vein bodies, whose
    correlation coefficiency and the ratio between Te and An increase along with the
    increase of An grade, suggesting that Te has the same concentrative center as of Au
    in the quartz vein orebody. In gold ores, Te presents as tellurides of Au, Ag, Pb in
    association with native gold, occurring in surfaces or/and fissures of galena, pyrite
    and quartz minerals. Therefore, Te and the 'refractory gold' are worth being extracted
    from these abundant tellurides.
    B ides the tellurides mentioned above that are common in gold deposits, Te is
    also seen in such rare minerals as hessite, Au2Te and, a variety of unnamed tellurites
    and tellurates that may be subdivided into Au-bearing and Au free minerals. The
    former includes AtteO3, Au2TeO4, AuTeO4; and the latter schieffinilite, Zn2Te3O8,
    H2Pb2Fe4[TeO4]9.7-12H2O that were found by the author and are yet to be further
    studied for acceptance by IMA-CNMMN as potential new minerals. Most of these
    te1lurites and tellurates in these deposits are found to be products of coeval oxidation
    of calaverite, altaite and sufides, by Which 'refractory gold' of Au tellurides will be
    released as naive gold. Most native gold released through oxidation of tellurides,
    however, will be trapped in the telluraes or tellurites; or be combined by Te in
    
    
    
    tellurites or tellurates, which prevent gold of hyPergene from secondaxy enrichment
    under the supergene oxidation environrnenis.
    Of the fOux metallogenic stages of two periods, Te was mineralized only at both
    pyrite-qUartz stage and base metal sulfides quaftz stage, demonstrating its
    unsustainable in time and confinement to a small area. From mineral associations of
    native gold -calaverite, ga1ena -altaite in conunon, and native silver-hessite at the end
    of the sulfides quartz stage, it is concluded that Te, fugacity is in 'unstheated state
    for native Te' and will decline with the temperature of metallogeulc fluids decreased.
    It is inferred under observations on mineral paragenesis, modem geothermal fluids,
    and Te evaPoration experiments in nanometer scale particles, along with fluid
    inclusions and O,H,C,S isotope data that, Te, Pb, Au and parts of sulfides originate
    from deep under the crust during 'magtna degassing' and are transported in volatile
    fluids made of suspended nanometer scaled particles. ms high temperthee flulds
    mixed with regional auriferous groundwater in the crust-crossing faults, causing
    boiling of the fluid mixture and depositing Te, Au, Pb in the process of mixing and
    boiling. The precipitates of Te, Au, and Pb 'reworked' and added Te, Au, Pb to the
    earier stages Au concentrates, forming rich ores of Au-Te association. This
    mechwhsm is suPPorted by geological and geochemical characteristics of the
    Dongping tyPe gold deposits, which range between tyPical epithermal gold deposits
    and the Dashuigou Te deposit of the mantle-degassing origin. Te is believed to come
    from the 'magma degassing' during regional mantle plutne process in the northwest
    Hebei, China.
引文
张招崇,1996,东坪金矿床的氢氧同位素特征与成矿流体演化,黄金地质,49(2):36-41.
    张招崇和李兆鼐,1994,一个值得重视的金矿类型—碲化物型,贵金属地质,3(1):59-64.
    张招崇和李兆鼐,1997,富碲化物型金矿床形成的物理化学条件—以水泉沟金矿田为例,矿床地质,16(1):41-51.
    赵景德和谢先德著,1989,地质研究的微矿物学技术,科学出版社.
    赵振华,周玲棣,包志伟等,1993,东坪式金矿-与碱性正长岩有关的改造型金矿床,第五届全国矿床会议论文集,北京:地质出版社:312-314.
    赵振华,1996,元素地球化学,地球化学:历史、现状何发展趋势,北京:原子能出版社.
    赵振华,1997,微量元素地球化学原理,科学出版社.
    周令治,邹家炎编,1992,稀散金属手册,长沙:中南工业大学出版社.
    朱惠娟等,1989,小秦岭金矿田中的两种罕见矿物—碲铅铋矿何自然铋,矿物学报,9(1):37-41.
    Afifi A.M., et al, 1988a, Phase relations among tellurides, sulfides and oxides: Ⅰ,thermochemical data and calculated equilibria, Economic Geology, 83(2):377-394.
    Afifi A.M., et al, 1988b, Phase relations among tellurides, sulfides and oxides: Ⅱ, applications to telluride bearing ore deposits, Economic Geology, 83(2).395-404.
    Ahmad M.,et al, 1987, Mineralogical and geochemical studies of the Emperor gold telluride deposit, Fiji, Economic Geology, 82(2):345-370.
    Beaty R.D., et al, 1973, Tellurium in rocks, Chemical Geology, 12:155-159.
    Belzile Nelson, Chen Yu-Wei and Xu Rongrong, 2000, Early diagenetic behaviour of selenium in freshwater sediments, Applied Geochemistry, 15: 1439-1454.
    Bowell R.J., 1992, Supergene gold mineralogy at Ashanti, Ghana: implications for the supergene behaviour of gold, Mineralogical Magazine, 56: 545-560.
    Bowell R J., Baumann M., Gingrich M., et al, 1999, The occurrence of gold at the Getchell mine, Nevada, Journal of Geochemical Exploration, 67:127-143.
    Cabri L J., 1965, Phase relations in the Au-Ag-Te system and their mineralogical significance, Economic Geology, 60(8) 1564-1606.
    Chil-Sup So, et al, 1995, Te-and Se-bearing epithermal Au-Ag mineralization, Prasolovskiye, Kunashir island, Kunl Island Arc, Economic Geology, 90(1): 105-117.
    Chowdari B.V. R. and Kumari P.P., 1998, Raman spectroscopic study of ternary silver tellurite glasses, Material Research Bulletin, 34(2): 327-342.
    Cohen B.L, 1984, Anomalous behaviour of tellurium abundances, Geochimica.et. Cosmochimica. Acta, 48:203-205.
    Cox P.A.,1989,The elements, their origin, abundance and distribution, Oxford Sci. Publications.
    De Laeter J.R., 1994, S-process abundances for 122,123,124 tellurium, The Astrophysical Journal, 434(2):695-697.
    De Laeter J.R., 1996, Tellurium, a mass spectrometrist's delight, Atomic Energy Can. Ltd. (report unpublished).
    Eaton P. C., et al, 1993, The relationship between epithermal and porphyry hydrothermal systems within the Tavua Caldera, Fiji, Economic Geology, 88(5): 1053-1083.
    Fulignati P. & Sbrana A., 1998, Presence of native gold and tellurium in the active high-sulfidation hydrothermal system of the La Fossa volcano (Vulcano, Italy). Journal of Volcanology and Geothermal Research, 86:187-198.
    Gamyanin G.N., et al, 1982, Bismuth tellurides—Bi_2Te and BiTe—in deposits of Northeast USSR, International Geological Review, 24(4):451-456.
    Glatz, A C. 1967, The Bi_2Te_3-Bi_2S_3 system and the synthesis of the mineral tetradymite, American Mineralogist, 52(1-2)161-170.
    Grauti G., et al, 1986, Mineralogy of Melonite Group and other tellurides from the Ivrea-Verbano basic complex, Western Italian Alps, Economic Geology, 81:1213-1217.
    Greffi Catherine, Benedetti Marc F., Parron Claude, et al., 1996, Gold and iron oxide associations under supergene conditions, an experimental approach, Geochimica et Cosmochimica Acta, 60(9): 1531-1542
    Harris D C, Sinclair W.D. and Thorpe R.I., 1983, Tellunde minerals from the Ashley deposit, Bannockburn Township,Ontario,The Canadian Mineralogist,21:137-143.
    Hidehiko Shimaki, et al, 1978, Tsumone, BiTe, a new mineral from the Tsumo mine, Japan,American Mineralogist, 63:1162-1165
    Honea R M, 1964, Empressite and stuetzite redefined, American Mineralogist, 49: 324-338.
    Jennings Stuart R., Dollhopf Douglas J., Inskeep William P., 2000, Acid production from sulfide minerals using hydrogen peroxide weathering, Applied Geochemistry, 15: 235-243.
    Kamei Gento & Ohmato Hiroshi, 2000. The kinetics of reactions between pyrite and O2-bearing water revealed from in situ momtoring of DO, Eh and pH in a closed system, Geochimica et Cosmochimica Acta, 64(15):2585-2601.
    
    
    Karpov I.K., Kravtsova R.G., Chudnenko K.V. a al.. 2000, A physicochemical model for the volcanic hydrothermal ore-forming system of epi thermal gold-silver deposits, Northerastem Russia, Journal of Geochemical Exploration, 69-70: 323-325.
    Kawakita Y,et al, 1996, Static and dynamic snuaures of liquid tellurium containing alkalis, J. Non-Crystal Solids, 1:447-450.
    Kosuge T., Benino Y., Dimitrov V et al, 1998, Thermal stability and heat capacity changes at the glass transition in K_2O-WO_3-TeO_2, glasses, Journal of Non-Crystalline Solids, 242: 154-164.
    Kracek F.C., et al, 1966, Phase relations in the silver-tellurium system, American Mineralogist, 51(1-2) : 14-28.
    Leyboume M.I., Goodfellow W.D., Boyle D.R., et al. 2000, Form and distribution of gold mobilized into surface waters and sediments from a gossan tailings pile, Murray Brook massive sulfide deposit, New Brunswick, Canada, Applied Geochemistry, 15:629-646.
    Lipovetskiy, A.G.et al, 1976, New lead-bismurh tellurides of the Alekeseyev ore show, International Geology Review, 19(10) :1230-1233.
    Liu Huifang,et al,1995,The extent of solid soluroo m Pb-Bi chalcogenides, The Canadian Mineralogist, 33(1) : 115-128.
    Machesky Michael L., Ahdrade Wilson O. andRose Arthur W., 1991, Adsorption of gold (III)-chloride and gold(I)-thiosulfate anions by goethite, Ceochimica et Cosmochimica Acta, 55: 769-776.
    Markham N.L., 1960, Synthetic and natural phases in the system Au-Ag-Te, Economic Geology, 55:1148-1178.
    McPhail D.C., 1995. Thermodynamic properoes of aqueous tellurium species between 25 and 350℃. Geochimica et Cosmochimica Acta,S9(5) .851-866.
    Murphy Pamela A., Stevens Gary and LaGrang Mandy S., 2000, The eflect of temperature and pressure on gold-chloride speciation in hydrothermal fluids: a Raman spectroscope study, Geochimica et Cosmochimica Acta, 64(3) : 479-494.
    Nie Feng-Jun, 1998, North China gold-a produor of multiple orogens, Newsletter of SEG, 33: 1-12.
    Pauling, L. 1975, The formula, structure, and chonical bonding of tetradymite Bi_(14) Te)_(13) S(8) , and Bi_(14) Te_(15) S_(6) , American Mineralogist, 60:994-997.
    Perm R.Lee and Banfield Jillian F., 1999, Morpbology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from trania, Geochimica et Cosmochimica Acta, 63(10) : 1549-1557.
    Richards J.P.et al, 1993, The Porgera gold mine, Paoua New Guinea: Magmatic hydrothermal to epithermal evolution of an alkalic type precious metal deposit, Economic Geology, 88(5) :1017-1052.
    Roberts, A.C. et al, 1996, Jesenite, Cu_3Te~(6-)O_6, a new mineral species from the Centennial Eureka mine, Tintic District, Juab, Utah, The Canadian Mineralogist, 34(1) :49-54.
    Ronachor E., Richards J.P. and Johnston M.D.2000, Evidence for fluid phase separation in high-grade ore zones at the Porgera gold deposit, Papua New Guinea, Mineralium Depcaila, 35(7) : 683-688.
    Rose Seth and Elliott W. Crawford, 2000, The effscts of pH regulation upon the relaease of sulfate from ferric precipitates formed in acid mine draininge, Applied Geochemistry, 15: 27-34.
    Salinas S.Aguayo, Romero M.A.Encinas, and Gonzalez I., 1998, Electrochemical dissolution of calaverite (AuTej) in thiourea acidic solutions, Journal of Applied Elecirochemstry, 28:417-422.
    Sarkar S.C., et al, 1969, Tetradymite and wehrire from Singhbhum Copper-Belt, India, Mineralogical Magazine, 37(287) .
    Sekiya T., Mochida N., and Ohtsuka A., 1994, Raman spectra of MO-TeO_2(M=Mg, Sr, Ba and Zn) glasses, Journal of Non-Crystalline Solids, 168:106-114.
    Simmons Stuart F. and Browne Patrick R.L., 2000. Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments, Economic Geology, 95(5) : 971-1000.
    Simon G. & Essene E.J., 1996. Phase relations among selendes, sulfides, tellurides, and oxidess: I. Thermodynamic properties and calculated equilibra. Economic Geology. 91 1183-1208.
    Smith C L. and De Laeter J R.,1986, The isoropic composition of tellurium in the Abee meteorite, Meteorite, 21(1) :133-139.
    Smith C.L., et al, 1977, Mass spectrometric isocope oilution analyses of tellurium in meteorites and standard rocks, Geochim. et. Cosmochim. Acta, 41:676-681.
    Smith C.L., et al, 1978, The isotopic composirion of uellurium, International Journal of Mass Spectrum & Ion Physics, 28:7-17.
    Smith D.M., Roof L.C., Ansari M.A., et al, 1996. Inorganic Chemistry,35:4999-5006.
    Spry P.G & Thieben S.E., 2000, The Distriburon and. Recovery of gold in the Golden Sunlight gold-silver telluride deposit, Montana, U.S.A., Mineralogical Magazine, 64(1 ).31-42.
    Spry Paul G , et al, 1996, Two new occurrence of benieonardite, a rare silver-tellurium sulphosalt, and a possible new occurrence of cervelleite, Mineralogical Magarou. 50(6) 871-876.
    Tesfaye G, 1992, Ore-microscopic and geocinrmical characteristics of gold-tellurides-sulfide mineralization in the Macassa gold mine, Abitibi Belt, Canada, Mineral. Deposua, 27(1) 66-71.
    Thompson R.M., Peacock M. A., Rowiand J F. et al. 1951. Empressite and "stuetzite", American Mineralogist, 36: 458-470.
    
    
    Uchino T. andYoko T., 1997, Ab initio cluster model calculations on the vibrational frequencies of TeO2 glass, Journal of Non-Crystalline Solids. 204:243-252.
    Uchino T., Kim S.H., Yoko T et al, 1997, Medium-range structure of TeO2 glass from Molecular Orbital Calculations, Journal of the Ceramic Society of Japan, 105(3) 201-205.
    Voicu G., Bardoux M. and Jebrak M., 1999. Tellurides from the Paleoproterozoic Omai gold deposit,Guiana shield. The Canadian Mineralogist, 37:559-573.
    Williams Peter A., 1990, Oxide Zone Geochemistry, Ellis Horwood Series in Inorganic Chemistry: 44-46.
    Williams Sidney A., 1980, Schieffelinite, a new lead tellurate-sulphate from Tombstone, Arizona, Mineralogical Magazine, 43:771-773.
    Williams Sidney A., 1982, Cuzticite and eztlite, two new tellurium minerals from Moctezuma, Mexico, Mineralogical Magazine, 46: 257-259.
    Woodward P.M., Sleight A.W., Du L.S. et al, 1999, Structural studies and order-disorder phenomenon in a series of new quaternary tellurates of the type A~(2+)M~(4+)Te~(6+)O_6 and A_2~(1+)M~(4+)Te~(6+)O_6, Journal of Solid State Chemistry, 147:99-116.
    Wulff L., Muller-Buschbaum Hk., 1998, Zur Kristallchemie der Kupfer(II)-Zinktellurate Cu_5 Zn_4 Te_3 O_(12) und Cu_(1. 5) Zn_(1. 5) TeO_6, mit einer Notiz uber Cu_(1. 5) Co_(1. 5) TeO_6, Z. Nalurforsch, 53:53-57.
    Wulff L., Wedel B., Muller-Buschbaum Hk., 1998, Zur Kristallchemie von telluraten mit Mn_(2+) im kationischen und aniomschen Teil der Kristallstruktur (Mn_(2. 4) Cu(0. 6) TeO_6, Ba_2MnTeO_6, und Pb (Mn(0. 5) .Te(0. 5) O_3 Z.Naturorsch, 53: 49-52.
    Ye.N.Zav' yalov and V.D.Begizov, 1977, Rucklidgeite, (Bi,Pb),Te_4,a new mineral from the Zod and Kochkar gold-oredeposits, International Geology Review,19(12) :1451-1456.
    Ye.N.Zav' yalovand V.D.Begizov, 1982. Sulphototsumoite.B1_2Te_2S-a new bismuth mineral, International Geology Review,24(3) :854-858.
    Zhang X.M., et al, 1994a, Petrological, mineralogical, fluid inclusion, and stable isotope studies of the Gies gold-silver telluride deposit, Judith Mountain, Montana, Economic Geology, 89(3) :602-627.
    Zhang Z.C. and Mao J.W., 1995, Geology and geochemistry of the Dongping gold telluride deposit, Hebei province, north China, International Geology Review, 37: 1094-1108.
    Zhang, X.M. et al, 1994b, Calculated stability of aqueous tellurium species, calaverite, and hessite at elevated temperatures, Economic Geology, 89(5) :1152-1166.
    Zhou Y Z., 1993, Geology and geochemistry of Hetai gold field, southern China, Guangzhou: South China University of Technology press: 202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700