用户名: 密码: 验证码:
松潘—甘孜褶皱带印支期花岗岩类和火山岩类成因及深部作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松潘-甘孜褶皱带(简称松潘带)位于青藏高原的东北缘,是中国大陆最大的构造结,覆盖面积大于200,000 km2。北部以阿尼玛卿-勉略缝合带为界,与东昆仑-西秦岭造山带相接;东部以龙门山断裂为界,与扬子块体相接;西南部以金沙江缝合带为界,与青藏高原的羌塘-昌都块体相接。松潘带内充填有巨厚层(5~15km)的三叠系复理石沉积,除东南部丹巴地区出露的震旦纪-古生界地层外,无前寒武纪基底暴露。由于古特提斯洋的封闭及其后华北块体、扬子块体及羌塘-昌都块体的汇聚作用,松潘带强烈变形。
     松潘带内广泛分布印支期花岗岩类,有少量火山岩出露。前人对松潘带东部及东南部的I型花岗岩、A型花岗岩、强过铝质S型花岗岩和埃达克质花岗岩类进行了详细的研究,这些花岗岩类主要来自于地壳物质的部分熔融。尽管软流圈地幔的上涌被用来解释地壳熔融的热机制,但是来自幔源的物质贡献报道少见。先前提出的松潘带印支期岩石圈拆沉作用模型尚缺少该区火山岩类及幔源岩浆研究的支持。本文对松潘带西部巴颜喀拉地区和中部达日地区花岗岩类、久治地区安山岩进行了岩相学、LA-ICPMS锆石U-Pb年代学、主量元素、微量元素及Sr-Nd同位素及锆石Hf同位素的综合研究,重点讨论了研究区印支期岩浆岩的成因,构造背景。结合前人研究成果,阐明松潘带印支期深部作用过程。获得的主要成果如下:
     (1)获得了松潘带西部及中部地区主要岩浆岩LA-ICPMS锆石U-Pb年代学数据,建立了松潘带印支期岩浆岩年代学格架。松潘带西部巴颜喀拉地区扎朵、巴颜喀拉岩体的年龄分别为219±2 Ma和216±5 Ma,这一年龄范围与松潘带东部埃达克质岩浆的形成年龄基本重合,说明巴颜喀拉地区花岗岩类和东部埃达克质岩浆可能在同一构造背景下形成。中部达日地区桑日麻、建设、莫坝岩体的年龄分别为208±1Ma,205±2Ma,206±2Ma;久治地区阿坝和洼赛安山岩的年龄分别为210±3 Ma,205±1 Ma。结合前人研究成果认为,松潘带印支期岩浆岩活动以中酸性侵入岩为主,主要发生在243~185 Ma,峰期出现在208 Ma,可划分为243~228 Ma,221~216 Ma,211~200 Ma三个期次,第一个期次岩浆岩活动较弱,主要分布在东南部地区;第二个期次岩浆岩主要以钙碱性壳源侵入岩为主,与加厚地壳的熔融有关;第三个期次岩浆岩出现碱性花岗岩类和火山岩类,与岩石圈的伸展减薄有关;
     (2)对松潘带中部达日地区的碱性花岗岩(桑日麻碱性正长岩)进行了研究。该岩体具有A1型花岗岩的特征。以中等的SiO2含量(56.92~61.80%),较高的全碱(K2O+Na2O=9.23~12.26%、TFeO/MgO(10.88~31.98)、Rb (254-400 ppm)、HFSE (Nb=61.23-133.74 ppm.Ta=3.87-8.18 ppm.Zr=505.9-1379.6 ppm、Hf=8.98-23.79 ppm、Y=37.08-102.29 ppm)和较低的MgO含量(0.15~0.81%)为特征;同时桑日麻岩体富集轻稀土,轻稀土分馏较重稀土更加明显,具有明显负Eu异常,呈“V”字形;该岩体ISr值为0.70723~0.70806,εNd(t)值为-0.3~0.0,εHf(t)=+4.9~+11.1。近于0的εNd(t)值和较高的εHf(t)值说明桑日麻正长岩中含有亏损地幔物质。该岩体可能由岩石圈地幔来源的岩浆经过分异结晶形成,岩浆演化过程中有亏损地幔物质的贡献,地壳物质的混染作用有限。桑日麻岩体的产出可能反映了后碰撞环境向板内伸展环境的过渡。在松潘带印支期花岗岩类中,桑日麻岩体具有最高的锆石饱和温度,此时软流圈上升达到最大高度,岩石圈伸展达到最大规模;
     (3)首次对松潘带印支期火山岩类进行了研究。松潘带中部久治地区阿坝和洼赛火山岩主要是钙碱性-高钾钙碱性安山岩。阿坝安山岩的岩浆源区主要来自下部地壳物质的部分熔融,含有地幔物质的参与,其岩浆源区位置可能在壳幔边界,而洼赛火山岩的岩浆源区应来自于岩石圈地幔物质的部分熔融。这一地幔源区受到一定程度的地幔流体交代作用;
     (4)揭示了松潘带西部基底性质。松潘带西部巴颜喀拉地区扎朵和扎牙石英闪长岩,巴颜喀拉、珍秦及岗音巴拉花岗闪长岩主要是钙碱性-高钾钙碱性I型花岗岩类。地球化学及Sr-Nd-Hf同位素结果表明它们可能是角闪石脱水熔融诱发镁铁质下地壳部分熔融形成。岩浆形成过程中可能有富集地幔的加入和中地壳物质的混染。野外地质,年代学及微量元素特征表明它们形成在后碰撞构造背景。这些花岗岩类的源区性质指示了松潘带西部具有未出露的大陆基底,该基底在地球化学组成上类似于松潘带东部,具有扬子板块的属性;
     (5)讨论了松潘带印支期深部作用过程。松潘带印支期岩浆岩包括钙碱性安山岩和多种成因类型的花岗岩类,如强过铝质S型花岗岩、I型花岗岩类、埃达克质花岗岩类、钾玄质花岗岩、A型花岗岩类,源区涉及到中地壳、下地壳、壳幔过渡带、岩石圈地幔和软流圈物质。大陆碰撞后,加厚岩石圈的拆沉模式可以较好的解释这些岩浆岩的成因,不同源区来源的岩浆岩反映了不同深度物质在上涌软流圈热作用下的部分熔融。幔源碱性花岗岩和火山岩的岩石成因为松潘带印支期岩石圈发生拆沉作用提供又一新的证据,表明松潘带印支期岩石圈拆沉作用导致残留岩石圈地幔部分熔融。
     (6)探讨了松潘带印支期构造演化过程。古特提斯洋封闭之后,由于华北板块、扬子板块和羌塘块体的汇聚,松潘带缩短增厚;晚三叠世早期加厚岩石圈拆沉,软流圈地幔上涌,使加厚下地壳发生熔融;晚三叠世中晚期,软流圈物质进一步上涌,松潘带进入板内伸展构造体制,岩浆作用涉及到岩石圈地幔甚至软流圈地幔的部分熔融。
The Songpan-Garze fold belt, located at the northeastern margin of the Tibetan Plateau, is the largest tectonic jounction in China. It covers a huge triangular area (>200,000 km2) confined by the North China, the Yangtze and the Qiangtang blocks. To the north, the limit is marked by the A'nimaque-Mianlue suture zone. To the east the Longmenshan thrust-nappe belt separates the belt from the Yangtze block. To the southwest, the Songpan-Garze fold belt is bounded by the Jinshajiang suture zone, which is considered as a Late Paleozoic Paleo-Tethys oceanic subduction zone dipping either to the west or the east. The belt is mainly filled by the Triassic flysch sediments with a thickenss of 5-15 km, which had experienced strong folding deformation during the Indosinian compressional tectonism due to closure of the Paleo-Tethys ocean and subsequent convergence between the North China, the Yangtze and the Qiangtang continental blocks. No pre-Cambrian basement is exposed within the Songpan-Garze fold belt, except for the Sinian crystallization basement exposed in Danba area, southeastern part of the belt.
     Within the Songpan-Garze fold belt, granitoids are widespread and volcanic rocks are rare, both can provide important information on geodynamics. Previous studies demonstrated that those granitoids from eastern and southeastern belt have variety genetic types, such as adakitic, A-type, I-type and strongly peraluminous granitoids, and mainly derived form ancient continental crust. It is infered that the crust partial melting process was triggered by the flux of heat coming from the rising asthenospheric material. However, the magma directly from mantle (including lithospheric mantle and asthenospheric mantle) has been reported rarely in the belt. In the Songpan-Garze fold belt, an Indosinian lithospheric delamination model has been proposed based on previous investigation on widespread granitoids. This model lacks information from volcanic magmatism and mantle-derived magmas. During the Indosinian delamination in the Songpan-Garze fold belt, whether partial melting of lithospheric mantle taken place is noteworthy.
     This paper reports petrography, U-Pb zircon LA-ICP-MS ages, geochemical and Sr-Nd isotopic and zircon Hf isotopic compositions of the granitoids from the Bayankala area of the western belt and Dari area of the central belt, as well as volcanic rocks from Jiuzhi area of the central belt. We use these data to discuss their magma source and petrogenesis. Our study provides constraints on Late Triassic deep geologic process of the belt. The main research results are as follows:
     (1) The precise chronology data by LA-ICPMS zircon U-Pb method for the magmatic rocks from the western and central Songpan-Garze fold belt are obtained. Results show that the Zhaduo and Bayankala plutons from the Bayankala area in the western belt have magmatic crystallization ages of 219±2 Ma and 216±5 Ma, respectively. They are consistent with each other within error, and imply that these plutons were likely product of a common magma event. The magmatism of western belt mainly occurred during 216-219 Ma, synchronous with the massive emplacement of adakitic granitic plutons from eastern belt, implying that they have had the same geodynamic setting. The Sangrima, Jianshe and Moba plutons from Dari area have magmatic crystallization ages of 208±1Ma,205±2 Ma and 206±2 Ma, respectively. And the Aba and Waisai andesites have magmatic crystallization ages of 210±3 Ma and 205±1 Ma, respectively.Combined with previous geochronology results, it is indicated that the Indosinian magmatism in the Songpan-Garze fold belt mainly occurred during 243-185 Ma, with a highest peak at~208 Ma. And the magmatisms are divided into three stages:the first one is the 243-228 Ma weak magma activity; the second one is the 221-216 Ma thickened crust-derived calc-alkaline intrusives; the third one is 211-200 Ma magmas characterized by presence of mantle derived alkaline rocks, corresponding to lithosphere extension.
     (2) The Sangrima pluton is mainly alkline syenite, belonging to A1-type granitoid. They have intermediate SiO2 (56.92-61.80%), high K2O+Na2O (9.23-12.26%), TFeO/MgO (10.88-31.98), Rb (254-400 ppm), HFSE (Nb=61.23-133.74 ppm, Ta=3.87-8.18 ppm, Zr= 505.9-1379.6 ppm, Hf=8.98-23.79 ppm, Y=37.08-102.29 ppm) and low MgO (0.15-0.81%) contents. The REE compositions show moderately fractionated patterns with (La/Yb)N=7.1-8.8 and Eu/Eu*= 0.28-0.53. Sr-Nd-Hf isotopic data for the syenite show ISr=0.70723-0.70806,εNd(t) =-0.3-0.0,εHf(t)=+4.9-+11.1. The near-zeroεNd (t) and highεHf(t) values indicate involvement of a depleted mantle source. The syenites were formed by crystallization fractionation of lithospheric mantle-derived melt with involvement of depleted mantle and limited crustal assimilation. The occurrence of the Sangrima A1-type granitoid is probably related to environment transfer from post-collisional to intraplate extension. The syenites have highest zircon saturation temperatures among the Songpan-Garze granitoids, probably corresponding to maximum asthenospheric material and maximum continental extension.
     (3) Obtain the first detail geochemical report on volcanic rocks of Songpan-Garze fold belt. The Aba and Wasai volcanic rocks from Jiuzhi area are calc-alkaline andesites. Geochemical and Sr-Nd-Hf isotopic compositions indicate that the magma of the Aba andesites was dominantly originated from a crustal source, with minor mantle-derived component. The magma generation location is likely at the boundary between crust and mantle. The magma of the Wasai andesites resulted from partial melting of lithosphere mantle, which was probably metasomatized by amphibole-bearing fluid.
引文
[1]. Liegeois J P, Navez J, Hertogen J, et al., Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos,1998.45(1-4):1-28.
    [2]. Liegeois J P, Preface-Some words on the post-collisional magmatism. Lithos,1998. 45:Xv-Xvii.
    [3]. Bird P, Initiation of intracontinental subduction in the Himalaya. J. Geophys. Res.,1978. 83(B10):4975.
    [4]. Bird P, Continental delamination and the Colorado Plateau. J. Geophys. Res.,1979. 84(B10):7561-7571.
    [5]. Voshage H, Hofmann A W, Mazzucchelli M, et al., Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature,1990.347(6295):731-736.
    [6]. Davies J H,von Blanckenburg F, Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters,1995.129(1-4):85-102.
    [7]. Kay R W,Mahlburg Kay S, Delamination and delamination magmatism. Tectonophysics, 1993.219(1-3):177-189.
    [8]. Jung S, Mezger K,Hoernes S, Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites-a major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. Lithos,1998.45(1-4):147-175.
    [9]. Xu J F, Shinjo R, Defant M J, et al., Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:partial melting of delaminated lower continental crust? Geology,2002.30(12):1111-1114.
    [10]. Wu F Y, Sun D Y, Li H M, et al., A-type granites in northeastern China:age and geochemical constraints on their petrogenesis. Chemical Geology,2002.187(1-2):143-173.
    [11]. Wu F Y, Lin J Q, Wilde S A, et al., Nature and significance of the Early Cretaceous giant igneous event in eastern China Earth and Planetary Science Letters,2005. 233(1-2):103-119.
    [12]. Chung S L, Liu D Y, Ji J Q, et al., Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet. Geology,2003.31(11):1021-1024.
    [13]. Chung S L, Chu M F, Zhang Y Q, et al., Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews,2005. 68(3-4):173-196.
    [14]. Ilbeyli N, Pearce J A, Thirlwall M F, et al., Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos,2004.72(3-4):163-182.
    [15]. 许志琴,侯立炜,王宗秀,中国松潘带的造山过程.1992,北京:地质出版社.
    [16]. Mattauer M, Malavieille J, Calassou S, et al., La chaine triasique de Songpan-Garze (Quest Sechuan et Est Tibet):une chaine de plissement-decollement sur marge passive. C. R. Acad. Sci., Paris,1992.314(6):619-626.
    [17]. Sengor A M C,Natalin B A, Paleotectonics of Asia:fragment of a synthesis, in The Tectonics of Asia, Yin A,Harrison T M, Editors.1996, Cambridge University Press:New York. p. 486-640.
    [18]. Bruguier O, Lancelot J R,Malavieille J, U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China):provenance and tectonic correlations. Earth and Planetary Science Letters,1997.152(1-4):217-231.
    [19]. 张国伟,郭安林,姚安平,中国大陆构造中的西秦岭-松潘大陆构造结.地学前缘,2004.11(3):23-32.
    [20]. Enkin R J, Zhenyu Y, Yan C, et al., Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present J. Geophys. Res.,1992. 97(B10):13953-13989.
    [21]. Roger F, Malavieille J, Leloup P H, et al., Timing of granite emplacement and cooling in the Songpan-Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences,2004.22(5):465-481.
    [22]. 胡健民,孟庆任,石玉若等.,松潘-甘孜地体内花岗岩锆石SHRIMP定年及其构造意义.岩石学报,2005.21(3):867-880.
    [23]. Reid A J, Wilson C J L,Liu S, Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. Journal of Structural Geology,2005. 27(1):119-137.
    [24]. Harrowfield M J,Wilson C J L, Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau. Journal of Structural Geology,2005.27(1):101-117.
    [25]. Zhang H F, Zhang L, Harris N, et al., U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze Fold Belt, eastern Tibet Plateau:constraints on petrogenesis, nature of basement and tectonic evolution. Contrib. Mineral. Petrol.,2006. 152(1):75-88.
    [26]. Zhang H F, Parrish R, Zhang L, et al., A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:Implication for lithospheric delamination. Lithos,2007.97(3-4):323-335.
    [27]. Xiao L, Zhang H F, Clemens J D, et al., Late Triassic granitoids of the eastern margin of the Tibetan Plateau:Geochronology, petrogenesis and implications for tectonic evolution. Lithos, 2007.96(3-4):436-452.
    [28]. Weislogel A L, Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China Tectonophysics, 2008.451(1-4):331-345.
    [29]. Calassou S, Etude tectonique d'une chaine de decollement: A) tectonique Triasique et Tertiaire de la chaine de Songpan-Garze. B) geometrie et cinematique des deformations dans les prismes d'accretion sedimentaire:modelisation analogique[D]. France:University Montpellier-2,1994.
    [30]. 高锐,王海燕,马永生等,松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系—深地震反射剖面探测成果.地球学报,2006.27(5):411-418.
    [31]. Weislogel A L, Graham S A, Chang E Z, et al., Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex:Sedimentary record of collision of the North and South China blocks. Geology,2006.34(2):97-100.
    [32]. 郭亮,张宏飞,徐旺春等,黄河源头区碎屑锆石U-Pb年龄及其地质意义.自然科学进展,2008.18(12):1398-1408.
    [33]. She Z, Ma C Q, Mason R, et al., Provenance of the Triassic Songpan-Ganzi flysch, west China. Chemical Geology,2006.231(1-2):159-175.
    [34]. Huang M H, Buick I S,Hou L W, Tectonometamorphic Evolution of the Eastern Tibet Plateau:Evidence from the Central Songpan-Garze Orogenic Belt, Western China. Journal of Petrology,2003.44(2):255-278.
    [35]. Yan D, Zhou M, Wei G, et al., Collapse of Songpan-Garze orogenic belt resulted from Mesozoic Middle-crustal ductile channel flow:Evidences from deformation and metamorphism within Sinian-Paleozoic strata in Hinterland of Longmenshan Foreland Thrust Belt Earth Science Frontiers,2008.15(3):186-198.
    [36]. Roger F,Calassou S, Geochronologie U-Pb sur zircons et geochimie (Pb, Sr et Nd) du socle de la chaine de Songpan-Garze (Chine). C R Acad Sci Paris, Ser Ⅱa,1997.324(10):819-826.
    [37]. Reid A, Wilson C J L, Shun L, et al., Mesozoic plutons of the Yidun Arc, SW China:U/Pb geochronology and Hf isotopic signature. Ore Geology Reviews,2007.31(1-4):88-106.
    [38]. Zhang H F, Parrish R, Zhang L, et al., Reply to the comment by Zhang et al. on:"First finding of A-type and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:Implication for lithospheric delamination". Lithos,2008.103(3-4):565-568.
    [39]. 赵永久,松潘—甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义[D].广州:中国科学院研究生院(广州地球化学研究所),2007.
    [40]. 时章亮,张宏飞,蔡宏明,松潘造山带马尔康强过铝质花岗岩的成因及其构造意义.地球科学——中国地质大学学报,2009.34(4):569-584.
    [41]. Yuan C, Zhou M F, Sun M, et al., Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China:Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters,2010.290(3-4):481-492.
    [42]. Roger F, Jolivet M,Malavieille J, Tectonic evolution of the Triassic fold belts of Tibet Comptes Rendus Geosciences,2008.340(2-3):180-189.
    [43]. 赵永久,袁超,周美夫等,川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘-甘孜地体基底性质的制约.岩石学报,2007.23(5):995-1006.
    [44]. Cai H M, Zhang H f,Xu W C, U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic compositions of granitoids in western Songpan-Garze fold belt:Petrogenesis and implication for tectonic evolution. Earth Science -Journal of China University of Geosciences,2009. 20(4):681-698.
    [45]. Zhang C Z, Li B, Cai J X, et al., A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau:Implication for lithospheric delamination: Comment Lithos,2008.103(3-4):562-564.
    [46]. Collins W J, Upper- and middle-crustal response to delamination; an example from the Lachlan fold belt, eastern Australia Geology,1994.22(2):143-146
    [47]. Wu F Y, Yang J H, Wilde S A, et al., Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China Chemical Geology,2005. 221(1-2):127-156.
    [48]. Wang Q, Wyman D A, Xu J F, et al., Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust Geochimica et Cosmochimica Acta,2007.71(10):2609-2636.
    [49]. Sengor A M C, Tectonic Subdivisions and Evolution of Asia. Bull. Technical Univ. Istanbul, 1987.46:355-435.
    [50]. Hsue K J, Pan G, Sengor A M C, et al., Tectonic evolution of the Tibetan Plateau; a working hypothesis based on the archipelago model of orogenesis. International Geology Review, 1995.37(6):473-508.
    [51]. Burchfiel B C, Chen Z, Liu Y, et al., Tectonics of the Longmen Shan and adjacent regions, Central China International Geology Review,1995.37(8):661-735.
    [52]. 徐世进,王汝成,沈渭洲等,松潘-甘孜造山带中晋宁期花岗岩的U-Pb和Rb-Sr同位素定年及其大地构造意义.中国科学(D辑),1996.26(1):52-58.
    [53]. 青海省地质矿产局,青海省区域地质志.北京:地质出版社,1991.
    [54]. 潘桂堂,丁俊,青藏高原及邻区地质图.成都:地图出版社,2004.
    [55]. Huang M, Maas R, Buick I S, et al., Crustal response to continental collisions between the Tibet, Indian, South China and North China blocks; geochronological constraints from the Songpan-Garze orogenic belt, western China Journal of Metamorphic Geology,2003. 21(3):223-240.
    [56]. 四川省地质矿产局,四川省区域地质志.北京:地质出版社,1991.
    [57]. 青海省地质矿产局,1:20万下红科乡幅、班玛县幅区域地质调查报告.1989.
    [58]. 游振东,程素华,赖兴运,四川丹巴穹状变质地体.地学前缘,2006.13(4):148-159.
    [59]. 赖兴运,程素华,陈军元,中、低压变质作用与大陆造山——兼论四川丹巴的变质带.地学前缘,2003.10(4):327-339.
    [60]. 任纪舜,肖黎巍,1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报,2004.23(1):1-11.
    [61]. Chang E, Geology and Tectonics of the Songpan-Ganzi Fold Belt, Southwestern China International Geology Review,2000.42(9):813-831.
    [62]. Sengor A M C, The Cimmeride orogenic system and the tectonics of Eurasia,. Geol. Soc. Am. Spec. Pap.,1984.195:1-82.
    [63]. Zhang H, Gao S, Zhong Z, et al., Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology,2002. 186(3-4):281-299.
    [64]. Liu Y S, Zong K Q, Kelemen P B, et al., Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology,2008. 247(1-2):133-153.
    [65]. 吴元保,郑永飞,锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004.49(16):1859-1604.
    [66]. 宋彪,张玉海,刘敦一,微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学.质谱学报,2002.23(1):58-62.
    [67]. Liu Y S, Hu Z C, Zong K Q, et al., Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin,2010:in press.
    [68]. Liu Y S, Gao S, Hu Z C, et al., Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology,2010. 51(1-2):537-571.
    [69]. Andersen T, Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology,2002.192(1-2):59-79.
    [70]. Ludwig K R, User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel. Berkeley Geochronlogical Center Special Publication,2003(4):25-32.
    [71]. Wu F Y, Yang Y H, Xie L W, et al., Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology,2006.234(1-2):105-126.
    [72]. DeBievre P,Taylor P D P, Table of the isotopic composition of the elements. Int J Mass Spectrom,1993.123(2):149-166.
    [73]. Chu M F, Chung S L, Song B, et al., Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology,2006.34(9):745-748.
    [74]. Scherer E, MuenkerK C,Mezger K, Calibration of the lutetium-hafnium clock. Science,2001. 293(5530):683-687.
    [75]. Blichert-Toft J,Albarde F, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,1997.148(1-2):243-258.
    [76]. Vervoort J D,Blichert-Toft J, Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta,1999.63(3-4):533-556.
    [77]. Griffin W L, Wang X, Jackson S E, et al., Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,2002. 61(3-4):237-269.
    [78]. Sun S S,McDonough W F, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process, in Magmatism in the Ocean Basin, Sunders A D,Norry M J, Editors.1989, Geological Society Special Publication:London. p.313-345.
    [79]. Taylor S R,McLennan S M, The continental crust:its composition and evolution.1985, London:Blackwell Oxford.
    [80]. Whalen J B, Currie K L,Chappell B W, A-type granites; geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol.,1987.95(4):407-419.
    [81]. Wilson M, Igneous Petrogenesis.1989, London:Unwin Hyman.466.
    [82]. Miyashiro A, Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology,1978.66(1):91-104.
    [83]. Peccerillo A,Taylor S R, Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology,1976. 58(1):63-81.
    [84]. Le Bas M J, Le Maitre R W, Streckeisen A, et al., A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology,1986.27(3):745-750.
    [85]. Collins W J, Beams S D, White A J R, et al., Nature and origin of A-type granites with particular reference to southeastern Australia Contrib. Mineral. Petrol.,1982.80(2):189-200.
    [86]. Whalen J B, Jenner G A, Longstaffe F J, et al., Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology 1996.37(6):1463-1489.
    [87]. Eby G N, Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,1992.20(7):641-644.
    [88]. Barbarin B, A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos,1999.46(3):605-626.
    [89]. Roger F, Arnaud N, Gilder S, et al., Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics,2003.22.
    [90]. Qiu Y M, Gao S, McNaughton N J, et al., First evidence of>3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology,2000.28(1):11-14.
    [91]. Sisson T W, Ratajeski K, Hankins W B, et al., Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology,2005.148(6):635-661.
    [92]. Johannes W,Holtz F, Petrogenesis and Experiment Petrology of Granitic Rocks.1996, Berlin: Springer.1-254.
    [93]. Rapp R P, Watson E B, Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology,1995.36(4):891-931.
    [94]. Beard J S,Lofgren G E, Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1,3, and 6.9 kb. Journal of Petrology,1991. 32(2):365-401.
    [95]. Patino Douce A E,Harris N, Experimental Constraints on Himalayan Anatexis. Journal of Petrology,1998.39(4):689-710.
    [96]. Patino-Douce A E,McCarthy T C, Melting of crustal rocks during continental collision and subduction. When Continents Collide:'Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks, ed. Hacker B R,Liou J G.1998, Dordrecht:Kluwer Academic Publishers.27-55.
    [97]. Rushmer T, Partial melting of two amphibolites:contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology,1991.107(1):41-59.
    [98]. Tepper J H, Nelson B K, Bergantz G W, et al., Petrology of the Chilliwack batholith, North Cascades, Washington:generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology,1993. 113(3):333-351.
    [99]. Helz R T, Phase Relations of Basalts in Their Melting Ranges at PH2O=5 kar, part Ⅱ:melt compositions. Journal of Petrology,1976.17:139-193.
    [100]. Petford N,Atherton M, Na-Rich Partial Melts from Newly Underplated Basaltic Crust:the Cordillera Blanca Batholith, Peru Journal of Petrology 1996.37:1491-1521
    [101]. McCulloch M T,Chappell B W, Nd isotopic characteristics of S- and I-type granites. Earth and Planetary Science Letters,1982.58(l):51-64.
    [102]. DePaolo D J, Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature,1981.291(5812):193-196.
    [103]. Pearce J A, Harris N B W,Tindle A G, Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology,1984.25(4):956-983.
    [104]. Pearce J A, Sources and settings of granitic rocks. Episodes,1996.19:120-125.
    [105]. Bian Q T, Li D H, Pospelov I, et al., Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China Journal of Asian Earth Sciences,2004. 23(4):577-596.
    [106]. Xu J F, Castillo P R, Li X H, et al., MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China:implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth and Planetary Science Letters,2002.198(3-4):323-337.
    [107]. Li S G, Sun W D, Zhang G W, et al., Chronology and geochemistry of metavolcanic rocks from Heigouxia Valley in Mianlue tectonic arc, South Qinling:observation for a Paleozoic oceanic basin and its close time. Science in China (Series D) 1996.39:300-310.
    [108]. Wang X, Metcalfe I, Jian P, et al., The Jinshajiang-Ailaoshan suture zone, China: tectonostratigraphy, age and evolution. Journal of Asian Earth Sciences,2000. 18(6):675-690.
    [109]. Kapp P, Yin A, Manning C E, et al., Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology,2000.28(1):19-22.
    [110]. Kapp P,Yin A, Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt,Central Tibet Tectonics,2003.22(4):1043.
    [111]. Pullen A, Kapp P, Gehrels G E, et al., Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology,2008.36(5):351-354.
    [112]. Martin H, Adakitic magmas:modern analogues of Archaean granitoids. Lithos,1999. 46(3):411-429.
    [113]. Poitrasson F, Duthou J-L,Pin C, The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis; example of the Corsican Province (SE France). Journal of Petrology,1995.36(5):1251-1274.
    [114]. Yang J-H, Wu F-Y, Wilde S A, et al., Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology,2007.242(1-2):155-175.
    [115]. Belousova E A, Griffin W L,O'Reilly S Y, Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling:Examples From Eastern Australian Granitoids. Journal of Petrology,2006.47(2):329-353.
    [116]. Cho D L, Lee S R, Armstrong R, Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea:Occurrence of ca.220 Ma post-orogenic alkali granites and their tectonic implications. Lithos,2008.105(3-4):191-200.
    [117]. Zheng Y-F, Wu R-X, Wu Y-B, et al., Rift melting of juvenile arc-derived crust:Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China Precambrian Research,2008.163(3-4):351-383.
    [118]. Qin J, Lai S, Grapes R, et al., Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China). Lithos,2009.112(3-4):259-276.
    [119]. Li X H, Li Z X, Li W X, et al., U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China:A major igneous event in response to foundering of a subducted flat-slab? Lithos,2007. 96(1-2):186-204.
    [120]. Hong D W, Wang S G, Han B F, et al., Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of Southeast Asian Earth Sciences,1996.13(1):13-27.
    [121]. Turner S, Sandiford M,Foden J, Some geodynamic and compositional constraints on "postorogenic" magmatism. Geology,1992.20(10):931-934.
    [122]. Miller C F, McDowell S M,Mapes R W, Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology,2003.31(6):529-532.
    [123]. Turner S, Arnaud N, Liu J, et al., Post-collision, Shoshonitic Volcanism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology,1996.37(1):45-71.
    [124]. Morrison G W, Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1980.13(1):97-108.
    [125]. Bitencourt M F,Nardi L V S, The role of xenoliths and flow segregation in the genesis and evolution of the Paleoproterozoic Itapema Granite, a crustally derived magma of shoshonitic affinity from southern Brazil. Lithos,2004.73(1-2):1-19.
    [126]. 李献华,周汉文,刘颖等,桂东南钾玄质侵入岩带及其岩石学和地球化学特征.科学通报,1999.44(18):1992-1998.
    [127]. Conticelli S, Marchionni S, Rosa D, et al., Shoshonite and sub-alkaline magmas from an ultrapotassic volcano:Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy. Contributions to Mineralogy and Petrology,2009. 157(1):41-63.
    [128]. Eklund O, Konopelko D, Rutanen H, et al.,1.8 Ga Svecofennian post-collisional shoshonitic magmatism in the Fennoscandian shield. Lithos,1998.45(1-4):87-108.
    [129]. Feldstein S N,Lange R A, Pliocene Potassic Magmas from the Kings River Region, Sierra Nevada, California:Evidence for Melting of a Subduction-Modified Mantle. Journal of Petrology,1999.40(8):1301-1320.
    [130]. Aghazadeh M, Castro A, Omran N R, et al., The gabbro (shoshonitic)-monzonite-granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran. Journal of Asian Earth Sciences. In Press, Corrected Proof.
    [131]. Eklund O,Shebanov A, Prolonged postcollisional shoshonitic magmatism in the southern Svecofennian domain-a case study of the Ava granite-lamprophyre ring complex. Lithos, 2005.80(1-4):229-247.
    [132]. Lopez-Moro F J,L6pez-Plaza M, Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone):petrogenetic evolution from monzogabbro to granite magmas. Lithos,2004. 72(1-2):19-44.
    [133]. 谢才富,朱金初,丁式江等,琼中海西期钾玄质侵入岩的厘定及其构造意义.科学通报,2006.51(16):1944-1954.
    [134]. Da Silva Filho A F, Guimaraes I P,Thompson R N, Shoshonitic and ultrapotassic Proterozoic intrusive suites in the Cachoeirinha-Salgueiro belt, NE Brazil:a transition from collisional to post-collisional magmatism. Precambrian Research,1993.62(3):323-342.
    [135]. Duchesne J-C, Berza T, Liegeois J-P, et al., Shoshonitic liquid line of descent from diorite to granite:the Late Precambrian post-collisional Tismana pluton (South Carpathians, Romania). Lithos,1998.45(1-4):281-303.
    [136]. Kuster D,Harms U, Post-collisional potassic granitoids from the southern and northwestern parts of the Late Neoproterozoic East African Orogen:a review. Lithos,1998. 45(1-4):177-195.
    [137]. Jolly W T, Schellekens J H,Dickin A P, High-Mg andesites and related lavas from southwest Puerto Rico (Greater Antilles Island Arc):Petrogenetic links with emplacement of the Late Cretaceous Caribbean mantle plume. Lithos,2007.98(1-4):1-26.
    [138]. Mashima H, The basalt-high magnesium andesite association formed by multi-stage partial melting of a heterogeneous source mantle:Evidence from Hirado-Seto, Northwest Kyushu, Southwest Japan. Lithos,2009.112(3-4):351-366.
    [139]. Tatsumi Y, Takahashi T, Hirahara Y, et al., New insights into andesite genesis:the role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath Zao Volcano, NE Japan. Journal of Petrology,2008.49(11):1971-2008.
    [140]. Annen C, Blundy J D,Sparks R S J, The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology,2006.47(3):505-539.
    [141]. Atherton M P,Petford N, Generation of sodium-rich magmas from newly underplated basaltic crust. Nature,1993.362 (6416):144-146.
    [142]. Rudnick R L,Gao S, Composition of the continental crust, in Treatise on Geochemistry, Rudnick R L, Editor.2003, Elsevier:Amsterdam, p.1-64.
    [143]. Yang J H, Chung S L, Zhai M G, et al., Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China:evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos,2004.73(3-4):145-160.
    [144]. Lopez R,Cameron K L, High Mg andesites from the Gila Bend Mountains, southwestern Arizona:evidence for hydrous melting of lithosphere during Miocene extension. Geological Society of America Bulletin,1997.109(7):900-914.
    [145]. Hawkesworth C, S., Turner K, Gallagher A, et al., Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research-Solid Earth 1995.100(B6):10271-10286.
    [146]. Hooper P R, Bailey D G,Holder G A M, Tertiary calc-alkaline magmatism associated with lithospheric extension in the Pacific Northwest. Journal of Geophysical Research-Solid Earth, 1995.100(B6):10303-10319.
    [147]. Han B-f, Wang S-g, Jahn B-m, et al., Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology,1997.138(3-4):135-159.
    [148]. Litvinovsky B A, Jahn B-m, Zanvilevich A N, et al., Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia):implications for the origin of A-type granitoid magmas. Chemical Geology,2002.189(1-2):105-133.
    [149]. Zhou D, Graham, S.A., Songpan-Garze Triassic complex as a remnant ocean basin along diachronous collision orogen, central China. Geol. Soc. Am. Spec. Pap.,1993.25:A118.
    [150]. Yin A,Nie S, An indentation model for the North and South China collision and the development of Tanlu and Honam fault systems, eastern Asia Tectonics,1993. 12(4):801-803.
    [151]. Zheng Y F, Zhang S B, Zhao Z F, et al., Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust. Lithos,2007.96(1-2):127-150.
    [152]. Molnar P,England P, Temperature, heat flux and frictional stress near major thrust faults. Journal of Geophysical Research 1990.95:4833-4856.
    [153]. Defant M J,Drummond M S, Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,1990.347(6294):662-665.
    [154]. Molnar P, England P,Martinod J, Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys.,1993.31(4):357-396.
    [155]. Duggen S, Hoernle K, Van Den Bogaard P, et al., Post-Collisional Transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean:Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology,2005. 46(6):1155-1201.
    [156]. Maheo G, Guillot S, Blichert-Toft J, et al., A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet Earth and Planetary Science Letters,2002. 195(1-2):45-58.
    [157]. Houseman G A, McKenzie D P,Molnar P, Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res.,1981.86(B7):6115-6132.
    [158]. Turner S P, Platt J P, George R M M, et al., Magmatism Associated with Orogenic Collapse of the Betic-Alboran Domain, SE Spain. Journal of Petrology,1999.40(6):1011-1036.
    [159]. McKenzie D, Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters,1989.95(1-2):53-72.
    [160]. Boztug D,Arehart G B, Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the post-collisional granitoids in central Anatolia, Turkey. Journal of Asian Earth Sciences,2007.30(2):403-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700