用户名: 密码: 验证码:
秦岭造山带东部花岗岩成因及其与造山带构造演化的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭造山带经历了多期、多阶段长期而复杂的构造地质演化,同时伴随着相应的花岗质岩浆活动。各期花岗岩的成因及其物源研究涉及秦岭造山带的形成,特别是各期次岩浆活动的地球动力学过程与演化。本文选择秦岭东部地区沿商丹带两侧分布的9个具有代表意义的花岗质岩体进行了系统的岩石地球化学、锆石年代学和Hf同位素地球化学研究,划分了花岗质岩浆活动的期次,阐述了各期次花岗岩的成岩物质来源、岩石成因及其形成的地球动力学背景。
     在前人工作的基础上,利用锆石LA-ICP-MS U-Pb法测定了研究区内9个花岗岩体的年龄,并结合区域地质背景将其划分为三期四个阶段:第一阶段O1,板山坪岩体(石英闪长岩样品486±6.8Ma),属加里东期;第二阶段O2-S1,四棵树岩体(似斑状黑云母花岗岩464.1±4.6Ma和石英闪长岩468.5±4.1Ma)、冢岗庙水库岩体(似斑状花岗岩460.3±3.9Ma)、灰池子岩体南西侧(肉红色花岗岩450.2±2.6Ma)和北西侧(二长花岗岩445.6±6.1Ma)、灰池子岩体东侧(花岗岩432.1±3.8Ma)、漂池岩体(灰白色花岗岩436.2±6.7Ma),属加里东期;第三阶段T2-T3,东江口岩体(花岗闪长岩242.3±2.5Ma)、柞水岩体(似斑状花岗岩230.6±2.7Ma)、沙河湾岩体(环斑花岗岩228.4±1.4Ma),属印支期;第四阶段J3,蟒岭岩体(似斑状花岗岩152.6±1.4Ma),属燕山期。
     岩石地球化学研究表明,加里东期第一阶段板山坪岩体具有Ⅰ型花岗岩的特点,形成于洋壳俯冲背景下;同期第二阶段岩体既有S型花岗岩(如漂池岩体),又有兼具Ⅰ型特点的S型花岗岩(其他岩体),形成于陆壳俯冲到陆陆碰撞背景下,兼具两种成因类型岩体的出现暗示了源区物质成分不单
     锆石Hf同位素研究表明,加里东期第一阶段板山坪岩体(Ⅰ型,锆石εHf(t)>0)源岩为新元古代形成的幔源物质;同期第二阶段岩体中漂池岩体(S型,锆石εHf(t)<0)源岩为中元古代陆壳沉积岩,其他岩体(Ⅰ型,锆石εHf(t)不均一)源岩均为壳幔混合型;印支期岩体中东江口岩体(Ⅰ型,锆石εHf(t)<0)源岩为中元古代古老陆壳火成物质,柞水岩体和沙河湾岩体(Ⅰ型,锆石εHf(t)不均一)源岩为新元古代增生的地壳物质(幔源)和少量中元古代地壳的火成物质(壳源);燕山期蟒岭岩体(Ⅰ型,锆石εHf(t)<0)源岩为元古代古老的陆壳火成物质。
     在上述研究的基础上,探讨了各阶段花岗质岩浆活动的地球动力学意义。得出3点认识:(1)加里东期秦岭洋的闭合模式可能为由东向西的不规则“S”型或似“剪刀”型俯冲,洋壳最早闭合的时间大约为中奥陶世-早志留世,首先发生在秦岭的东部地区;(2)秦岭东部地区,印支期勉略洋壳最早向北发生斜向俯冲的时间应早于245Ma-242Ma,并且最早在242-228Ma左右洋壳已经闭合,进入陆-陆俯冲阶段;(3)燕山期岩体空间上主要沿主断裂或次级断裂分布,这可能是由于晚侏罗世,中国东南部地区受到西太平洋板块俯冲作用的影响,使秦岭造山带上近东西向的深大断裂再次活动的缘故。
Qinling orogenic belt experienced a multi-phase, multi-stage, long time and complex tectonic evolution, accompanied by the corresponding activities of granitic magma. The granitoid studies on petrogenesis including source rock research for various-stage granites involved the formation of the Qinling orogenic belt, in particular the geodynamic processes and evolution of each stage magmatic activity. Nine granite bodies in east part of the North Qinling area were selected to be studied in the thesis. These plutons were distributed on both sides of the Shangdan suture. Using the methods of systematic geochemical, zircon geochronology and Hf isotope geochemistry, we divided stages of magmatic activity, and futher clarified the material source and petrogenesis of granites and geodynamic significance.
     Based on previous work, in this thesis we obtained ages of nine granites by the method of LA-ICP-MS Zircon U-Pb. Combined with regional geological setting the granitoid magmatism can be divided into three periods based on zircon U-Pb ages of granites, which include four stages:the first stage is early Ordovician(O1), Banshanping granite(quartz diorite 486±6.8Ma), equivalent to Caledonian; the second stage is middle Ordovician-early Silurian(O2-S1), Sikeshu granite(porphyritic biotite granite 464.1±4.6Ma, quartz diorite 468.5±4.1Ma), Zhonggangmiao reservoir granite(porphyritic granite 460.3±3.9Ma), southwest of Huichizi granite(red granite 450.2±2.6Ma), the northwest(monzogranite 445.6±6.1Ma), the east(granite 432.1±3.8Ma), Piaochi granite(gray granite 436.2±6.7Ma), equivalent to Caledonian; the third stage is middle Triassic-late Triassic(T2-T3), Dongjiankou granite(granodiorite 242.3±2.5Ma), Zhashui granite(porphyritic granite 230.6±2.7Ma), Shahewan granite(rapakivi granite 228.4±1.4Ma), equivalent to Indosiniari; the fourth stage is late Jurassic, Mangling granite(porphyritic granite 152.6±1.4Ma), equivalent to Yanshanian.
     Geochemical studies show that each stage granite has a different genetic type of rock and tectonic setting. The first stage of Caledonian Banshanping withⅠ-type granite characteristecs formed in the subduction of oceanic crust background. The second phase granites include both S-type(for example Piaochi granite) and S-I type granite, which formed in the background of continental crust subduction. Both the emergence of two genetic types of rock at the same stage implies that these granites were not a single resource and there may be contain some mantle components. Both the Indosinian and Yanshanian granite are I-type rock.
     By the study of Hf isotopes, we got some results about material source of various stages of granite. The first stage of the Caledonian Banshanping granite is the product of Neoproterozoic mantle material(I-type, zirconεHf(t)>0); In the second stage, the soruce rock of S-type Piaochi granites is sedimentary of Mesoproterozoic crust(zirconεHf(t)<0). Other rocks were derived from the product of crust-mantle mixing(I-type, the heterogeneous range of zirconεHf(t))-In the Indosinian granites Dongjiangkou granite came from partial melting of Mesoproterozoic ancient crust(I-type, zirconεHf(t)<0). Zhashui and Shahewan granites from partial melting of the proliferation of Neoproterozoic crust(mantle) with a small amount of Mesoproterozoic igneous crust material(crust) (Ⅰ-type, positive and negative zirconεHf(t) values). In Yanshanian the source rock of Mangling granite was igneous material of Proterozoic ancient crust(I-type, ancient crust(I-type, zirconεHf(t)<0).
     Based on above studies, we discussed the geodynamic significance of different stages of granitic magmatism, and obtained three conclusions as follows:(1) In the early Paleozoic, closure pattern of the Qinling Ocean may be irregular"S-shape"or "scissors-like shape". The earliest closing time of oceaneic crust is about middle Ordovician-early Silurian, and began in the eastern part of Qinling. (2) In the early Mesozoic, the subduction time of Mian-Lue oceanic crust should be earlier than 245Ma-242Ma and from east to west in Qinling area. And the ocean closed around 242-228Ma and entered the continental collision stage. (3) In Yanshanian, several of granites mainly distributed along the main faults or secondary faults in Qinling orogen, which may be that the south-east of China including Qinling area was affected by the plate subduction from Western Pacific in late Jurassic time.
引文
Allen C M.1991. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast Califonia:Mineral, chemical, and isotopic evidence [J]. American mineralogist,76:574-588
    Amelin Y, Lee DC and Halliday AN.2000. Early-middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochemica et Cosmochimica Acta,64:4205-4225
    Anderson T.2002. Correction of common lead in U-Pb analyses that do not report 204Pb.Chemical Geology,192(1-2):59-79
    Barbarin B.1999. A review of the relationships between granitoid types, their origins and their geodynamic environments.Lithos,46:605-626
    Beloisova B A, Griffin W L and O'Reilly S Y.2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling:Examples from Eastern Australian granitoids. Journal of Petrology,47:329-353
    Bergantz G W.1989. Underplating and Partial Melting:Implications for Melt Generation and Extraction.Science,245(4922):1093-1095
    Blundy J D and Sparks R S J.1992. Petrogenesis of Mafic Inclusions in Granitoids of the Adamello Massif, Italy. Journal of Petrology,33(5):1039-1104
    Bolhar R, Weaver S D, Whitehouse M J, Palin J M, Woodhead J D and Cole J W.2008. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet Science Letters,268:312-324
    Castro A and Femandez C.1999.Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis, Contrib.Mineral.Petrol.No.3
    Castro A., De la Rosa J D and Moreno-Ventas.1995.Unstable flow, magma mixing and magma rock dedormation in a deep-seated conduit. The Gi-Mquez complex, Southwest Spain. Geologische Rundschau,84:359-374
    Castro A.1991.H-type (Hybrid) granitoids:a proposed revision of the granite type classification and nomenclature. Earth Scicence Review,31:237-253
    Chappell B W and White A J R.1974.Two contrasting granite types. Pac Geol,8:173-174
    Chappell B W, White A J R, Williams I S, et al.2004.Low and high-temperatur granites.Trans Roy Soc Edinb-Earth Sci.95:125-140
    Chappell B W, White A J R.2001.Two contrasting granite types:25 years later. Australian Journal of Earth Sciences,48(4):489-499
    Chappell B W,Bryant C J, Wybon D,White A R J and Williams I S.1998.Hign and low temperature I type granites.Resource Geology,48:225-236
    Chappell B W.1996.Magma mixing and the production of compositional variation within granite suites: evidence from the granites of southeaster Australia. J.Petrology,37:449-470
    Chappell BW and White AJR.1992. I-and S-type granites in the Lachlan Fold Belt. Trans. Royal Soc. Edinburgh:Earth Sci.,83:1-26
    Cherniak D J, Watson E B.2000. Pb diffusion in zircon. Chem Geol,172:5-24
    Collins W J and Richards S W.2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology,36:559-562
    Collins W J.1996. S and I type granitoids of eastern Lachlan fold belt:Products of three-component mixing. Transations of the Royal Society of Edinburgh, Earth Sciences,88:171-179
    Collins W J.1998.Evolution of petrogenetic models for Lachlan Fold Belt granitoids:implications for crustal architecture and tectonic models. Australian Journal of Earth Science,45:483-500
    Cong B L.1996. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China.Beijing: Science Press, pp 224
    Defant M J and Drummond M S.1993.Mount St Helens:potential example of the partial melting of subducted lithosphere in a volcanic arc.Geology,21:547-550
    Defant M J. Drummond M S.1990.Derivation of some modern is magmas by melting of young subduction lithosphere. Nature,347:662-665
    Elhlou S, Belousova E, Griffin W L, Pearson N J, O'Reilly S Y.2006.Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta, suppl, A158
    Foster DA, Schafer C and fanning CM.2001. Relationshiops between cruster partial melting, plutonism, orogeny, and exhumation:Idaho-Bitterroot batholith.Tectonophysics,342:313-350
    Fei Wang, Xin-Xiang Lu, Ching-Hua Lo et al.2007. Post-collisional, potassic monzonite-minette complex (Shahewan) in the Qinling Mountains (central China):40Ar/39Ar thermochronology, petrogenesis, and implications for the dynamic setting of the Qinling orogen[J]. Jour. Of Asian Earth Sciences,31: 153-166.
    Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM.2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,61:237-269
    Griffin WL, Belousova EA and Shee SR.2004. Crustal evolution in the northern Yilarm Craton:U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research,131(3-4):231-282
    Harris N B W., et al.1986.Geochemical characteristics of collision-zone magmatim. Collision Tectonics. Geol Soc Lond Spec Publ,19:67-81
    Harrison T M and Watson E B.1984.The behavior of apatite during crustal anatexis:Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta,48(7):1467-1477
    Hirajima T and Nakamura D.2003. The Dabie Shan-Sulu orogen. In:D.A. Carswell and R. Compagnoni (Editors), Ultrahigh Pressure Metamorphism. EMU Notes in Minealogy, pp.105-144
    HOLDEN P, HALL DAYA N, STEPHESW E.1987.Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid roduction[J].Nature,330:53-56
    Hollanda MHBM, Pimentel MM, Oliveira DC and Jardim EF.2006. Lithosphere-asthenosphere interaction and the origin of Cretaceous tholeiitic magmatism in Northeastern Brazil:Sr-Nd-Pb isotopic evidence.Lithos,86(1-2):34-49
    Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X.2004.Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet,220:139-155
    Huppert E,Stephen R and Sparks J.1988. The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust.29 (3):599-624
    Jiang YH, Jin GD, Liao SY, Zhou Q, Zhao P.2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central Chian:Implications for a continental arc to continent-continent collision. Lithos,117:183-197
    Keay S, Collins W J and McCulloch M T.1997.A three-component mixing model for granitoid genesis: Lachlan Fold Belt, eastern Australia.Geology,25:307-310
    Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D,Hergt J M, Gray CM and Whitehouse MJ.2007. Magmatic and crustal differentiation history of granitic rocks from Hf-0 isotopes in zircon. Science,315:980-983
    Lesher C E.1990. Decoupling of chemical and isotopic exchange during magma mixing [J]. Nature, 344:235-237
    Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J and Qi C S.2007a. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China:A major igneous event in response to foundering of a subducted flat-slab? Lithos,96:186-204
    Liu F L, Xu Z Q.2004.Fluid inclusions hidden in coesite-bearing zircons in ultrahigh-pressure metamorphic rocks in eastern China. Chinese Sci.Bull,49:396-404
    Loiselle M C and Wones D R.1979.Characteristics and origin of anorogenic granites, Geol. Soc. Am., Abstr. Prog.11(7), p.468
    Ludwig K R.2003. Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA
    Maniar P D, Piccoli P M.1989.Tectonic discrimination of granitoids.Bull Geol Soc Amer,101:635-643
    Mattauer M, Matte PH, Malavieille J, Tapponnier P, Maluski H, Xu Z Q, Lu Y L, Tang Y Q.1985. Tectonics of the Qinling belt:build-up and evolution of eastern Asia. Nature,317:496-500
    Meng Q R, Zhang G W.2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics.323:183-196
    Muri M A., et al.1995.Geochemistry of the Cretaceous Separation Plint batholiths,New Zealand:granitoid magmas formed by melting of mafic lithosphere.Geological Society Journal,152:689-701
    Pearce J A, N B W Harris, A G Tindle,1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Petrology,54(4):956-983
    Petford N, Cruden A R, McCaffrey K J W and Vigneresse J L.2000.Granite magma formation, transport and emplacement in the Earth's crust.Nature,408:669-673
    Pidgeon R T.,Nemchin A A., Hitchen G J.,1998. Internal structures of zircons from Archaean granites from the Darling Range batholith:Implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology,132:288-299
    Pitcher W S and Bussell M A.1977. Structural control of batholithic emplacement in Peru:a review.Journal of the Geological Society,133(3):249-255
    Pitcher W S.1983.Granite type and tectonic environment. In:Hsu K(ed) Mountain Building Process, London, pp 19-40
    Rapp R P.1995.The history of Granulite-Facies Metamorphism and Crustal Growth from single Zircon U-Pb Geochronology:Namaqualand, South Africa, Journal of Petrology,40(12):1747-1770
    Sparks R S J and Marshall L A.1986.Thermal and mechanical constraints on mixing between mafic and silicic magmas. J.Volcanol. Geotherm. Res.,29:99-124
    Sun W D, Li S G, Chen Y D.2002. Timing of synorogenic granotoids in the south Qinling central China Constraints on the evolution of the Qinling-Dabie Orogenic Belt. Geology,110:457-468
    Taylor S R, Mclennan S M.1985.The Continental Crust:its Composition and Evolution. Blackwell, Oxford, pp312
    Wang F,Lu X X,Lo C H.2007. Post-collisional, potassic monzonite-minette complex (Shahewan) in the Qinling Mountains (central China):40Ar/39Ar thermochronology, petrogenesis, and implications for the dynamic setting of the Qinling orogen [J]. Jour. Of Asian Earth Sciences,31:153-166
    Wang X X, Wang T, Haapala I.2008. P-T conditions of crystallization and origin of plagioclase-mantled field sparmegacrysts in the Mesozoic granitoids in the Qinling orogen (China)[J]. Lithos,103:289-308
    Watson E B and Harrison T M.1983.Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types. Earth and Planetary Sicience Letters,64(2):295-304
    Watson E B, Harrison T M.2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science,308:841-844
    Watson E B, Wark D A, Thomas J B.2006. Crystallization thermometers for zircon and rutile. Contrib. Mineral Petrol.,151:413-433
    Wang XX, Wang T, Jahn BM, Hu NG and Chen W.2007. Tectonic significance of Late Triassic Post-collisional lamprophyre dykes from the Qinling Mountains (China). Geological Magazine, 144(5):837-848
    Xie Z, Zheng YF and Zhao ZF.2006. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chemical Geology, 231:214-235
    Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH and Liu XM.2007. Tracing magma mixing in granite genesis:in situ U-Pb dating and Hf isotope analysis of zircons. Contributions to Mineralogy and Petrology 153,177-190
    Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Liu YS and Wu FY.2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology,268,298-312
    陈丹玲,孙勇,刘良,等.2004.北秦岭松树沟高压基性麻粒岩锆石的LA-ICP-MS U-Pb定年及地质意义.科学通报,49(18):1901-1908
    陈隽璐,徐学义,王洪亮等.2008.北秦岭西段早古生代埃达克岩地球化学特征及岩石成因.地质学报,82(4):475-484
    崔建堂,王炬川,边小卫,等.2007.西昆仑康西北侧蒙古包-普守一带早古生代花岗岩锆石SHRIMPU-Pb测年.地质通报,26(6):710-719
    高山,张本仁,金振民,Kern H.1999.秦岭-大别造山带下地壳拆沉作用.中国科学D辑,29(6):532-540
    葛小月,李献华,陈志刚,等.2002.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报,47(6):474-480
    韩宝福.2007.后碰撞花岗岩类的多样性及其构造环境判别的复杂性.地学前缘,14(3):64-72
    洪大卫.1994.花岗岩研究的最新进展及发展趋势.地学前缘,1(1-2):79-85
    侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10):2595-2604
    侯增谦,高永丰,孟祥金,曲晓明,黄卫.2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20(2):239-247
    胡能高,赵东林,徐柏青,等.1994.东秦岭商南松树沟高压基性麻粒岩的发现及初步研究.科学通报,39(21):2013
    姜春发.2002.中央造山带几个重要地质问题及其研究进展(代序).地质通报,21(8-9):453-455
    金维浚,张旗,何登发,贾秀勤.2005.西秦岭埃达克岩的SHRIMP定年及其构造意义.岩石学报,21(3):959-966
    赖绍聪,张国伟,裴先治,等.2003.南秦岭康县-琵琶寺-南坪构造混杂带蛇绿岩与洋岛火山岩地球化学及其大地构造意义.中国科学D辑,33(1):10-19
    赖绍聪,张国伟,董云鹏,裴先治,陈亮.2003.秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布.中国科学D辑,33(12):1174-1182
    李超,陈衍景.2002.东秦岭—大别地区中生代岩石圈拆沉的岩石学证据评述.38(3):431-439
    李淼,张成立,苑克增,晏云翔.2004.南秦岭迷坝岩体的地球化学特征及其地质意义. 西北大学学报(自然科学版),34(3):325-330
    李曙光,Hart S R,郑双根等.1989.中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据.中国科学(B辑),3:312-319
    李曙光,陈移之,张国伟,张宗清.1991.一个距今10亿年侵位的阿尔卑斯型橄榄岩体—北秦岭晚元古代板块构造体制的证据.地质论评,37(3):235-241
    李曙光,黄方,周红英,李惠民.2001.大别山双河超高压变质岩及北部片麻岩的U-Pb同位素组成.中国科学D辑,31(12):977-984
    李曙光,孙卫东.1996.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学—古生代洋盆及其闭合时代的证据.中国科学D辑,26(3):223-230
    李曙光,张国伟,董云鹏,裴先治,陈亮.2003.秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布.中国科学D辑,33(12):1174-1183
    李曙光.1998.大陆俯冲化学地球动力学.地学前缘,5(4):211-229
    李廷栋,肖序常.1996.青藏高原地体构造分析.青藏高原岩石圈结构构造和形成演化,北京:地质出版社,6-20
    李王晔,李曙光,裴先治,张国伟.2007.西秦岭关子镇蛇绿混杂岩的地球化学和锆石SHRIMP U-Pb年龄.岩石学报,23(11):2836-2844
    李伍平,王涛,王晓霞.2001.北秦岭灰池子花岗质复式岩体的源岩讨论—元素-同位素地球化学制约. 地球科学(中国地质大学学报),26(03):269-278
    李献华,李武显,李正祥.2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报,52(9):981-991
    凌文黎,张本仁,张宏飞,骆庭川.1996.杨子克拉通北缘中、新元古代洋壳俯冲及壳幔再循环作用的 同位素地球化学证据.地球科学,21(3):332-336
    刘良,周鼎武.1994.北秦岭含柯石英榴辉岩的发现及其意义.科学通报,39(17):1599-1601
    刘育燕,杨巍然,等.1993.华北陆块、秦岭陆块和杨子陆块构造演化的古地磁证据.地质科学简报,12:17-21
    刘振宏,张良,杨长秀,武太安,崔宵峰,任建德,杨长青.2004.河南鲁山鸡冢岩体岩浆混合特征及其意义.地质调查与研究,27(2):75-81
    龙晓平,金巍,葛文春,等.2006.昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义.地球化学,35(4):368-376
    卢书炜.1994.南召县板山坪花岗岩带地质特征与成因探讨.河南地质,12(3):189-196
    卢欣祥,董有,常秋岭.1996.秦岭印支期沙河湾奥长环斑花岗岩及其动力学意义.中国科学(D辑),26(3):244-248
    卢欣祥,尉向东,肖庆辉,李荣社,杨永成.1998.西秦岭发现奥长环斑花岗岩.地质论评,14(5):535-542
    卢欣祥,尉向东,肖庆辉,张宗清,李惠民,王卫.1999.秦岭环斑花岗岩的年代学研究及意义.高校地质学报,15(4):373-377
    卢欣祥,肖庆辉,董有,等.2000.秦岭造山带花岗岩类大地构造图.西安:西安地图出版社
    卢欣祥.1998.秦岭花岗岩揭示的秦岭构造演化过程—秦岭花岗岩研究进展.地球科学进展,13(2):213-214
    路凤香,王春阳,胡宝群,吴其反,郑建平.2003.南秦岭下地壳组成及岩石圈的拆离俯冲作用.中国地质,30(2):113-118
    路凤香,郑建平,邵济安,张瑞生,陈美华,余淳海,等.2006.华北东部中生代晚期—新生代软流圈上涌与岩石圈减薄.地学前缘,13(2):86-92
    陆松年,李怀坤,李惠民,宋彪,王世炎,周红英,陈志宏.2003.华北克拉通南缘龙王(石+童)碱性花岗岩U-Pb年龄及其地质意义.地质通报,22(12):762-768
    马昌前,明厚利,杨坤光.2004.大别山北麓的奥陶纪岩浆弧:侵入岩年代学和地球化学证据.岩石学报,20(3):399-402
    马昌前,杨坤光,明厚利,林广春.2003.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学(D辑),33(9):817-827
    马昌前,杨坤光,唐仲华,等.1994.花岗岩类岩浆动力学:理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社
    莫宣学,罗照华, 肖庆辉.2002.花岗岩类岩石中岩浆混合作用的识别与研究方法.见:肖庆辉,邓晋福,马大铨等著.花岗岩研究思维与方法.北京:地质出版社:53-70
    裴先治,刘会彬,丁仨平,李佐臣,胡波,孙仁奇,侯育红.2005.西秦岭天水地区李子园群变质火山岩的地球化学特征及其地质意义.大地构造与成矿学,30(2):1 93-202
    裴先治,王涛,丁仨平,李勇,胡波.2003.东秦岭尚丹带北侧新元古代埃达克质花岗岩及其地质意义.中国地质,30(4):372-381
    曲晓明,王鹤年.1997.郭家岭岩体壳幔岩浆混合作用与侵位机制的动力学研究.地质科学,32(4):445-453
    秦江锋,赖绍聪,李永飞.2007.南秦岭勉县-略阳缝合带印支期光头山埃达克质花岗岩的成因及其地质意义.地质通报,第26卷,第4期:466471.
    任纪舜,牛宝贵,和政军,等.1998.中国东部的构造格局和动力学演化.见:曹佑功主编.全球构造带超大陆的形成与裂解.北京:地质出版社,1-12
    尚瑞均,严阵等.1988.秦巴花岗岩.武汉:中国地质大学出版社
    孙卫东,李曙光,Yadong Chen,李育敬.2000.南秦岭花岗岩锆石U-Pb定年及其地质意义.地球化学,29(3):209-216
    孙勇,卢欣祥,韩松,等.1996.北秦岭早古生代二郎坪蛇绿岩片的组成和地球化学.中国科学D辑:地球科学,26(增刊):56-63
    王德滋,董良树.2007.花岗岩构造岩浆组合.高校地质学报,13(3):362-370
    王德滋,任启江,邱检生,等.1998.中国东部与中生代陆相火山作用及其有关金成矿的地质学和地球化学.中国东部金矿地质学及地球化学.北京:科学出版社,267-338
    王德滋,周金诚.1999.我国花岗岩的研究与展望.岩石学报,15(2):161-169
    王德滋,周新民,徐夕生,姚玉鹏.1992.微粒花岗岩类包体的成因.桂林冶金地质学院学报,12(3):235-241
    王强,许继锋,赵振华.2001.一种新的火成岩—埃达克岩的研究综述.地球科学进展,第16卷第2期:201-208
    王清晨,孙枢,李继亮,等.1989.秦岭的大地构造演化.地质科学,2:129-142
    王涛,胡能高,裴先治,等.1997.秦岭造山带核部变质杂岩的组成、构造格局及演化.地球学报,18(4):345-351
    王涛,王晓霞,田伟,张成立,李伍平,李舢.2009.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示.中国科学D辑,39(7):949-971
    王涛.1998.秦岭造山带核部花岗岩体形成、改造作用及构造动力学.西安:西北大学
    王涛.2000.花岗岩混合成因研究及大陆动力学意义.岩石学报,16(2):161-168
    王晓霞,王涛,Ilmari H,卢欣祥.2005.秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义——元素和Nd、Sr同位素地球化学证据.岩石学报,21(3):935-946
    王晓霞,卢欣祥.2003.北秦岭沙河湾环斑结构花岗岩的矿物学特征及其岩石学意义[J].矿物学报,23(1):57-62
    王晓霞,王涛,卢欣祥,肖庆辉.2003a.北秦岭老君山和秦岭梁环斑结构花岗岩及构造环境——一种可能的造山带型环斑花岗岩.岩石学报,19(4):650-660
    王元龙,王焰,张旗,贾秀琴,韩松.2004.铜陵地区中生代中酸性侵入岩的地球化学特征及其成矿-地球动力学意义.岩石学报,20(2):325-337
    王婧,张宏飞,徐旺春,蔡宏明.2008.西秦岭党川地区花岗岩的成因及其构造意义.地球科学,第33卷,第4期:474-486
    魏春景,王式光,张立飞,陈晶.1998.安徽省大别山东段江岭地区榴辉岩及其围岩的变质作用研究.高校地质学报,4(3):262-270
    吴才来,郜源红,吴锁平,等.2008.柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征.中国科学(D辑),38(3):930-949
    吴才来,杨经绥,许志琴,等.2004.柴达木盆地北缘古生代超高压带中花岗质岩浆作用[J],地质学报,78(5):658-674
    吴福元,李献华,郑永飞,等.2007.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23(2):185-220
    吴汉宁,常承法,刘椿,等.1990.依据古地磁资料探讨华北和华南板块运动及其对秦岭造山带构造演化的影响.地质科学,3:312-319
    夏林圻,夏祖春,徐学义.1996.南秦岭中-晚元古代火山岩性质与前寒武纪大陆裂解[J].中国科学(D辑),26:237-243
    夏林圻,夏祖春.1991.秦岭祁连山系海相火山岩.武汉:中国地质大学出版社
    肖庆辉,邓晋福,马大铨等.2003.花岗岩研究思维与方法.北京:地质出版社:159-171
    肖庆辉,邱瑞照,邢作云,张昱,童劲松,伍光英.2007.花岗岩成因研究前沿认识.地质论评,53:17-26
    徐克勤,胡受奚,孙明志,叶俊.1983.论花岗岩的成因系列—以华南中生代花岗岩为例.地质学报,2:107-118
    徐学义,何世平,王洪亮,陈隽璐,张二朋,冯益民等.2008.中国西北部地质概论—秦岭、祁连、天山地区.北京:科学出版社.
    许志琴,卢一伦,汤耀庆.1988.东秦岭复合山链的形成—变形、演化及板块动力学.北京:中国环境科学出版社
    闫全人,王宗起,闫臻,向忠金,陈隽璐,王涛.2007.秦岭勉略构造混杂带康县—勉略段蛇绿岩块—镁铁质岩块的SHRIMP年代及其意义.地质评论,53(6):755-763
    杨经绥,刘福来,吴才来,等.2003.中央碰撞造山带中两期超高压变质作用来自含柯石英锆石的定年证据.地质学报,77(4):463-477
    杨经绥,许志琴,裴先治,史仁灯,吴才来,张建新,李海兵,孟繁聪,戎合.2002.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别.地质学报,76(4):484-495
    杨经绥,许志琴,宋述光,吴才来,史仁灯,张建新,万渝生,李海兵,金小赤,Marc Jolivet.2000.青海都兰榴辉岩的发现及对中国中央造山带内高压-超高压变质带研究的意义. 地质学报,74(2):156-168
    游振东,索书田.1991.造山带核部杂岩变质过程与构造解析—以秦岭为例.武汉:中国地质大学出版社
    袁学诚,徐明才,唐文榜,王庆海,等.1994.东秦岭陆壳反射地震剖面.地球物理学报,37(6):748-758
    张本仁,高山,张宏飞,韩吟文等.2002.秦岭造山带地球化学.北京:科学出版社,1-187
    张本仁,韩吟文,许继锋,欧阳建平.1998.北秦岭新元古代前属于杨子板块的地球化学证据.高校地质学报,4(4):369-380
    张本仁,骆庭川,高山,等.1994.秦巴岩石圈构造及成矿规律地球化学研究.武汉:中国地质大学出版社
    张成立,刘良,张国伟,王涛,陈丹玲,袁洪林,柳小明,晏云翔.2004.北秦岭新元古代后碰撞花岗岩的确定及其构造意义.地学前缘,11(3):33-42
    张成立,罗静兰,李淼,王煜.2002.东秦岭西坝花岗岩体及其脉岩的地球化学特征.西北大学学报(自然科学版),32(4):384-388
    张成立,王晓霞,王涛,戴梦宁.2009.东秦岭沙河湾岩体成因—来自锆石U-Pb定年及其Hf同位素的证据.西北大学学报(自然科学版),39(3):453-465
    张成立,张国伟,晏云翔,王煜.2005.南秦岭勉略带北光头山花岗岩体群的成因及其构造意义[J]. 岩石学报,21(3):711-720
    张国伟,张宗清,董云鹏.1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报,11(2):101-114
    张国伟,董云鹏,姚安平.2002.关于中国大陆动力学与造山带研究的几点思考.中国地质,29(1):7-13
    张国伟,梅志超,周鼎武等.1988.秦岭造山带的形成及其演化.西安:西北大学出版社
    张国伟,孟庆仁,于在平,孙勇,周鼎武,郭安林.1996.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),26(3):193-200
    张国伟,张本仁,袁学诚,肖庆辉.2001.秦岭造山带与大陆动力学.北京:科学出版社
    张国伟.1991.试论秦岭造山带岩石圈构造演化基本特征.西北大学学报,21(2):77-88
    张国伟,孟庆仁,赖绍聪.1995.秦岭造山带的结构构造.中国科学B辑,25(9):994-1003
    张宏飞,高山,张利,钟增球,张本仁.2000.桐柏北部二朗坪蛇绿岩片中花岗岩:地球化学、成因及对地壳深部物质的指示.地质科学,35(1):27-39
    张宏飞,靳兰兰,张利,Nigel Harris,周炼,胡圣虹,张本仁.2005.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制.中国科学D辑 地球学报,35(10):914-926
    张宏飞,张本仁,凌文黎,高山,欧阳建平,等.1997.南秦岭新元古代地壳增生事件:花刚质岩石钕同位素示踪.地球化学,26(5):16-24
    张静,陈衍景,舒桂明,张复新,李超.2002.陕西西南部秦岭梁花岗岩体的矿物成分和相关问题讨论. 中国科学(D辑),32(2):113-119
    张旗,潘国强,李承东,金惟俊,贾秀勤.2007.花岗岩混合问题:与玄武岩对比的启示—关于花岗岩研究的思考之一.岩石学报,23(5):1141-1152
    张旗,王焰,刘红涛,王元龙,李之彤.2003.中国埃达克岩的时空分布及其形成背景. 地学前缘,10(4):385-400
    张旗,王焰,钱青,杨进辉,王元龙,赵太平,郭光军.2001.中国东部燕山期埃达克岩的特征及其构造:成矿意义.岩石学报,17(2):236-224
    张旗,王元龙,金惟俊,贾秀勤,李承东.2008.造山前、造山和造山后花岗岩的识别.地质通报,27(1):1-18
    张宗清,刘敦,付国民.1994.北秦岭变质地层同位素年代研究.北京:地质出版社
    张宗清,刘敦一,宋彪,张寿广,张维吉,杨永成,等.2005.秦岭造山带中部存在太古宙岩块--陕西 商南县湘河地区楼房沟斜长角闪岩-浅粒岩锆石SHRIMP U-Pb年龄及其意义.中国地质,32(4):579-587
    张宗清,唐索寒,宋彪,张国伟.1997.秦岭造山带晋宁期强烈地质事件及其构造背景.地球学报,18:43-45
    张宗清,张国伟,付国民,唐索寒,宋彪.1996.秦岭变质地层年龄及其构造意义.中国科学D辑,26(3):216-222
    张宗清,张国伟,唐索寒,许继峰,杨永成,王进军,等.2002.秦岭勉略带中安子山麻粒岩的年龄.科学通报,47(22):1751-1755
    张宗清,张国伟,唐索寒.2002.南秦岭变质地层同位素年代学.北京:地质出版社,89-123
    张宗清,张国伟,刘敦一,王宗起,唐索寒,王进辉.2006.秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学.北京:地质出版社
    周文戈,宋绵新,张本仁,赵志丹,谢鸿森.1999.秦岭造山带碰撞后侵入岩地球化学特征.地质地球科学,27(1):27-32
    周珣若,吴克隆.1994.漳州I-A型花岗岩.北京:科学出版社
    朱弟成,莫宣学,王立全,赵志丹,牛耀龄,周长勇,杨岳衡.2009.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学D辑,39(7):833-848
    朱茂旭,张庭川,张宏飞.1997.南秦岭东江口岩体闪长质包体地球化学特征及成因探讨.矿物岩石,17(2):28-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700