用户名: 密码: 验证码:
含Sialon的MgO基浇注料流变性、烧结性能和高温性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作的主要研究对象是含非氧化物(矾土基β-Sialon)的MgO基浇注料,探讨了微粉、刚玉细粉和非氧化物(矾土基β-Sialon Sialon)对MgO基浇注料流变性和高温性能的影响规律,以便得出流变性和高温性能较好的MgO基浇注料配比并确定Sialon的合适加入量。
     研究工作分四个方面:(1)利用NXS-11A型粘度仪研究微粉、分散剂及Sialon等因素对MgO基浇注料基质流变性的影响;(2)利用跳桌法研究浇注料的流动值并借助浇注料流变仪(IBB Rheometcr V1.0)研究微粉、分散剂及Sialon等对浇注料流变性的影响;(3)研究了微粉、刚玉、Sialon等对热处理后浇注料常规物理性能的影响;(4)利用高温抗折强度(HMOR)、抗热震性(TSR)和抗氧化性分别研究微粉、刚玉、Sialon等对浇注料高温性能的影响。
     研究结果表明:
     1.对于MgO基无水泥浇注料而言,基质的流变类型符合宾汉姆流体类型。影响基质流变性较大的因素为微粉和分散剂。Al_2O_3微粉对于改善基质流变性的效果不如SiO_2微粉;其中SiO_2微粉加入量不宜超过3%。在本试验所考察的分散剂中三聚磷酸钠的分散效果最好,但其加入量不能超过0.35%。
     Sialon的引入对基质的流变性略有负面影响。
     2.微粉、分散剂、基质粒度组成、刚玉加入量和Sialon加入量对浇注料的流变性有一定影响。Al_2O_3微粉在加入量不超过4%时对浇注料的流变性几乎没有影响,但加入量超过4%,浇注料的流变性明显变差。增加微粉中SiO_2微粉的比例对MgO基浇注料的流变性有一定的改善,但加入过多改善不明显,综合考虑Al_2O_3/SiO_2微粉比例为50/50左右时对浇注料的流变性较好。三聚磷酸钠加入量在0.35%左右对浇注料分散效果较好。基质中200目与325目细粉的比例不宜超过1:2。刚玉的加入量不能超过15%,否则对浇注料的流变性有较大的负面影响。
     Sialon的引入对MgO基浇注料的流变性略有负面影响,但对于浇注料的施工性能影响不大。在本研究范围内,Sialon的加入量不宜超过7.5%。
     3.Al_2O_3微粉的加入能够促进浇注料烧结,但加入量应控制在6%以下。SiO_2微粉比Al_2O_3微粉更能促进试样的烧结,但是SiO_2微粉与Al_2O_3微粉的比例不宜超过50/50。
     骨料基质比在70/30~60/40的范围内变化对试样的性能影响不大。烧后试样的常
    
    温抗折和耐压强度随着基质中325目镁砂的比例的增大略有增大。刚玉的加入使试样
    产生微膨胀,试样的常温抗折和耐压强度略有提高,但加入量不宜超过巧%。
     siaion加入使材料的体积密度略有降低,气孔率略有增大,但1 600℃烧后试样的
    常温抗折和耐压强度反而随着siaion的增加而略有增大。
     4.随刚玉加入量的增加(0~15%)热震后试样的抗折强度保持率不断提高
     (45弘卜J72%)。
     随着sialon加入量的增加(小10%),热震后试样的抗折强度保持率不断增加
    (63叹卜95%),说明siaion的加入有利于提高材料的抗热震性能。
     5.本体系的MOF卜T曲线属于I类型。未加sialon的试样Tm(MOR最大值的温
    度)为600℃,A12O3/s 102微粉比在75/25~50/50左右对高温抗折强度最有利。加入
    sialon后试样的Tm为800℃,并且其强度高于未加sialon的试样,说明sialon的引入
    对高温力学性能有利。
     6.抗氧化剂的抗氧化效果:复合抗氧化剂仍4C复合siC卜siC>金属Al粉.
     根据以上结果可知,A120岁51伍微粉比例和分散剂对M夕基浇注料的流变性影响
    较大.对于本体系而言,最佳的川20岁si伍微粉比为50150,分散剂采用三聚磷酸钠加
    入t 0.35%左右;刚玉加入量不宜超过15%,当sialon加入量不超过7.5%时对浇注
    料的流变性影响较小。
     加入刚玉(成巧o/o)在Mgo基浇注料中形成了镁铝尖晶石提高了材料的高温性能。
    适量siaion的引入(毛7.50/0)能够在MgO基浇注料中形成编织结构从而提高了材料的高
    温性能。对于本体系而言,最适合的抗氧化剂为复合抗氧化剂—B4C复合siC。
     综上可知,由于sialon的引入改善了材料的结构,从而提高了材料的性能特别是
    高温性能。
In this work, the influences of ultra fine powders, alumina and bauxite-based ?-Sialon fines on the rheological behaviour and high temperature properties of magnesia-based castables have been studied. The purpose of this work is to find the optimum composition ratio of the castable and appropriate content of Sialon addition.
    The work can be divided into four parts: (1) The influences of ultra fine powders, dispersants and Sialon fines etc. on rheological behaviour of the castable matrix have been studied by using viscometer of model NXS-11A. (2) The influences of ultra fine powders, dispersants, and Sialon fines etc. on castable rheological behaviour have been studied by using flowing table and IBB Rheometer Vl.O. (3) The influences of ultra fine powders, alumina fines and Sialon fines on the properties at room temperature (such as porosity, bulk density, MOR and CCS etc.) of castables after drying at 110? X 24h and firing at 1100? X 3h and 1600? X3h have been studied. (4) The influences of ultra fine powders, alumina fines and Sialon fines on high temperature properties (such as HMOR, TSR and Oxidation resistance) of castables have been studied.
    The results show that:
    1) The rheological behavior of the matrix belongs to Bingham model. Ultra fine powders and dispersants are the principal factors influencing the theology of matrix. Microsilica can improve the matrix rheology more remarkably than ultra fine alumina and the content of microsilica is from 0 to 3%. The dispersant trimeric sodium phosphate can work best among the system and its addition is 0.35% or so.
    Sialon fines have slightly negative effect on the matrix rheology, which can be offset by using the effective dispersant.
    2) Ultra fine powders, disperants, the ratio of 200mesh/325mess magnisa fines, alumina fines and Sialon fines can influence the rheological behaviour of the MgO-based castables. Ultra fine alumina has little negative effect on the rheological behaviour of the castable and the content addition is 0-4%. Increasing the ratio of microsilica among the micropowders can improve the rheology of the castable to some degree and the better rheological behavior of the castable can be gained when the ratio of ultra fine alumina to microsilica is about 50:50. Sodium tripolyphosphate can work best with about 0.35% additon.
    The rheological behavior of the castable can be unproved when the ratio of fine magnesia of 200 mesh to 325 mesh is below 1:2. The addition of fine alumina can contribute to the rheological behavior of the castable with no more than 15% addition.
    Sialon fines have slightly negative effect on the rheological behaviour of the castable. As to the system studied, the content of Sialon is from 0 to 7.5%.
    
    
    
    The rheology of the castables can be gently decreased with Sialon addition from 0-7.5%, which has little effect on the applying of the castable.
    3) Ultra fine alumina can improve the properties of sintering with less than 4% addition. The micro silica is better than ultra fine alumina for the improvement of the properties of sintering, but the ratio of micro silica to ultra fine alumina should not be more than 50/50.
    It has slightly effect on the properties of sintering when the ratio of the aggregate to the matrix is between 70/30 and 60/40. With the fine magnesia 325 mesh increase, the MOR and CCS increase after heat-treating. The linear changes of the specimens become gently expansive, and the MOR and CCS are gently increased with alumina fines increase from 0 to 15%.
    The bulk density of the specimens decreases and the porosity increases with the Sialon addition the MOR and CCS of the specimens are increased with Sialon addition after fired in!600? for3h.
    4) With the increase of alumina fines( 0-15%), the TSR of the specimens is increased (45%-72%).
    The TSR of the specimens increases (63%-95%) with Sialon addition (0-10%), indicating that Sialon additon can improve the TSR.
    5) The MOR-T curves of this system belong to the type I.
    The appropriate ratio of ultra fine alumina to micro silica is 75/25 - 50/50 or so, whic
引文
[1] 钟香崇.展望90年代我国耐火材料的发展.耐火材料,1993,27(2):63~68.
    [2] Zhong Xiangchong. Some Progress in Basic Research of Refractories in China. China's Refractories, 1992, 1(1):1-11.
    [3] 韩行禄编著.不定形耐火材料.冶金工业出版社,1994.
    [4] LI Zaigeng, ZHOU Ningsheng. Technological Advancement in Preparation and Application of Monolithic Refractories. China's Refiactodes, Vol.10, No.1, 2001.
    [5] Li Zalgeng, Zhou Ningsheng. Technological Advancement in Preparation and Application of Monolithic Refractories. China's Refractories, 2001,10(1): 3~10.
    [6] Studart, A.R.Zhong, W. Pileggi, R.G. Pandolfelli, V.C.. Processing of zero-cement self-flow alumina castables. American Ceramic Society Bulletin, v77, n12, Dec, 1998.
    [7] Schulle, W.Ulbdcht, J. Altun, A. Investigations in the development of self-flowing basic castables. CFI Ceramic Forum International, v 78, n 5, May, 2001.
    [8] Lee W.E., Vieira W., Zhang S. Castable refractory concretes. International Materials Reviews, v46, n3, 2001.
    [9] Pileggi, R.G. Pandolfelli, V.C. Rheology and particle-size distribution of pumpable refractory castables. American Ceramic Society Bulletin, v 80, n 10, October, 2001.
    [10] Zhong Xiangchong. Refractories Development for Iron and Steel Making in China. China's Refractories, 1996, 5(1): 3-11.
    [11] 扈罗全.ZrO_2陶瓷粉体的制备及其应用现状.江苏陶瓷,1999年3月第32卷第1期.
    [12] 钱之荣,范之举.耐火材料实用手册,北京冶金工业出版社,1992.
    [13] 涂军波,张文杰,魏军从.氧化镁—锆英石钢包浇注料的研制.耐火材料,2001,35(6)345~347.
    [14] 徐国涛,杜鹤桂等.镁锆莫来石复合材料中氧化锶添加剂对微观结构的影响分析.陶瓷工程,1999年6月,第33卷第3期,总第333期。
    [15] Chan, C.E Ko, Yung-Chau. Study of commercial magnesia-alumina spinels for alumina-spinel castables. InterCeram: International Ceramic Review, v 47, n 6, Nov, 1998, p 374-378.
    [16] 毕振勇,周宁生,钟香崇,张三华.氧化镁.尖晶石浇注料的组成与性能的关系.耐火材料1999,33(1)12~15.
    [17] 丰文祥,张三华等.基质组成对MgO—尖晶石浇注料抗渣性能的影响.耐火材料,1999,33(4)185~188.
    [18] 张三华,毕振勇等.钢包渣线用MgO—尖晶石—Cr_2O_3浇注料的研制与应用,耐火材料,1999,33(3)150~153.
    [19] 孙杰璟,刘永杰,季 娟.矾土高铝—MA浇注料的研究.山东建材学院学报,第11卷第2期,1997年6月.
    [20] M. Rigaud, S. Palco and N. Wang. Spinel Formation in the MgO-Al_2O_3 System Relevant to Basic Castables. Proceedings of UNITECR'95, Nov. 19~22, 1995, Kyoto, Japan: 387~394.
    [21] 马军强,孙庚辰,石干.富铝尖晶石对镁质耐火材料抗侵蚀性的影响.耐火材料,2001,35(1)16~18.
    [22] 江上煌.国外耐火材料,5(1988),10.
    [23] 本乡靖郎等.国外耐火材料,5(1990),8.
    [24] B.克拉沃德等.国外耐火材料,11(1985),1.
    [25] Gerotto, M.V.Studart, A.R. Pileggi, R.G. Pandolfelli, V.C. Zero-cement, high-alumina castables. American Ceramic Society Bulletin, v 79, n 9, Sep, 2000.
    [26] 冶金研究总院编.耐火混凝土.冶金工业出版社,1980.
    [27] B. Clavaud et al. Advance in Ceramics, Vol 13(1956), 274.
    [28] Stewart, W. Trends in monolithics. British Ceramic Transactions, v 93, n 6, 1994.
    [29] Juhasz A Z, Opoczdy L. Mechanical Activation of Minerals by Grinding. Pulvering and Morphology of Particles. Ellis Horwood Timited Published. 1989.
    [30] 李晓明,吴清顺,蔡飞虎.特种不定形耐火材料及不烧耐火砖.冶金工业出版社,1992年9月.
    [31] 李晓明等.耐火材料,4(1989),25.
    
    
    [32] Ko, Yung-Chao. Effect of microsilica addition on the properties of alumina- spinel castables. InterCeram: International Ceramic Review, v51, n6, November, 2002.
    [33] Studart, A.R. Zhong, W. Pileggi, R.G. Bonadia, P. Pandolfelli, V.C. Dispersion of microsilicacontaining zero-cement high-alumina castables. American Ceramic Society Bulletin, v79, n2, Feb, 2000.
    [34] Li Nan, Wei Yaowu, et al. Properties of MgO-SiO_2 castable and effect of reactions in microsilica-MgO bond system. Proceedings of UNITECR'99, Berlin, Cermany, 1999:97-101.
    [35] Sandberg B, Mosberg T. Use of microsilica in binder system for ultra low cement castable and basic "cement-free" tastable. Ceramic Transactions, 1989, 4: 245-258.
    [36] Li, N. Li, H.L.Wei, Y.W. Effect of microsilica in MgO based castables on oxygen content of interstitial free steel. British Ceramic Transactions, v 102, n 4, August, 2003, p 175-179.
    [37] 魏耀武,李楠,杨熹文.SiO_2微粉结合MgO基浇注料的基质组成与抗渣性能.耐火材料,2001,35(2)69-71.
    [38] 李晓明等.Al_2O_3结合剂的热力学研究.硅酸盐通报,4(1987),30.
    [39] 本乡靖郎等.耐火物.(1979),No.12,647.
    [40] 本乡靖郎等.特许公报.昭57—7590.
    [41] D. R. Glasson. Appl. Chem. Vol 113(1963), 119.
    [42] B. MATICOVIC atc. J. Amer, Cera. Soc. Vol 60(1977), No 11-12, 504.
    [43] B.N.巴布什金.硅酸盐热力学.中国建筑工业出版社,1982.
    [44] 李晓明等.耐火材料,(1989),24.
    [45] 林传仙等.矿物及有关化合物热力学数据手册.
    [46] Kazushige Yokoyama, Shigetaka Wada. Solid-gas reaction during sintering of Si3N4 ceramics. Journal of the Ceramic Society of Japan, 2000, 108(3):230~235.
    [47] Oyama Y. and Kamigaito. K. Solid solubility of some oxides in Si_3N_4. Jpn. J. Appl. Phys, 1971,10: 1637-1642.
    [48] Jack, K. H. and Wilson,W.I.. Ceramics based on the Si-Al-O-N and related systems. NaRLre Phys, Sci.(London), 1972, 238:28-29.
    [49] M. B. Trigg, et al. J. Mater. Sci., 23,1981,481.
    [50] Anatoly Rosenflanz, I-weiChen. Phase relationships and stability of a'-Sialon. J Am CeramSoc, 1999,82(4):1025~1036.
    [51] 仲维斌,李文超,钟香崇.o'-Sialon-ZrO_2复合材料的显微结构与力学性能的研究.耐火材料,199630(1):5-10.
    [52] XU Y., HUANG C. M., KRIVEN W. M. et al. Residual a -Si3N4 in O'-Crystals in CeO_2-Doped O'+β'-Sialon Ceramics. J Am Ceram soc, 1994 77(8).
    [53] 仲维斌,李文超,王俭.塞隆陶瓷的发展概况.耐火材料,1994,28(4):233-236.
    [54] Jack,K.H.,Sialons and related nitrogen ceramics,J.Mater.Sci.1976(11):1135-1158.
    [55] 陈祖熊.材料导报,1993,71(1):29.
    [56] 都兴红,张广荣,隋智通.中国陶瓷,1998,34(2):42-44.
    [57] 茹红强等.东北大学学报(自然科学版),1997,18:186.
    [58] 李文超,文洪杰,杜雪研.新型耐火材料理论基础——近代陶瓷复合材料的物理化学设计.地质出版社,2001.
    [59] McCauley J.W. and Corbin N. D. Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel. Amer Ceram Soc, 1979, 62(9/10): 476-479.
    [60] Corbin N D. Aluminum oxynitride spinel: A Review [J]. J Eur. Ceram. Soc., 1989, 5: 143-154.
    [61] 王习东,李文超.ALON的合成工艺.中国有色金属学报,2001,11(1):59-62.
    [62] 吴义权,张玉峰,郭景坤,李亚伟.Si-Al-O-N系中的新型耐火材料.耐火材料,2001,35(1):40-42.
    [63] Li Yawei, Li Nan, Yuan Runzhang. The Formation of γ-AlON Spinel in the Reaction of Al_2O_3-AIN-MgO System. China's Refractories, 1997, 6(2), 3-7.
    [64] 李亚伟,李楠,袁润章等.氧氮化铝(Alon)结合刚玉耐火材料形成,烧结及显微结构研究.现代技术陶瓷增刊,1996,5,435-439.
    [65] 苏新禄.Alon及Sialon加入物对MgO-Al_2O_3质钢包浇注枓性能的影响.洛耐院硕士学位论文,2001,6.
    
    
    [66] 胡书禾.添加非氧化物Alon,Sialon和SiC对Al_2O_3-MgO钢包浇注料性能影响的研究.洛耐院硕士学位论文,2002,5.
    [67] LI Nan, LI Yawei and WANG Jun. High Tech. Ceramics and Refractories in Si-Al-O-N and Al-O-N System. Proceedings of UNTECR'95, Nov. 19-22, 1995, Kyoto, Japan:1811~1818.
    [68] Denis Beaupre. Rheology of High performance Shotcrete. PhD.Thesis of The University of British Columibia.(1994).
    [69] Zhou Xianxin, M. Rigaud, et al. The Design of Bauxite-based Low-cement Self-flowing Pumpable Castable: A Rheologicai Approach. Proceedings of The 4th ntern. Symp. on Refr., 2003, Dalian, China:366~373.
    [70] K. Watanabe, M. Ishikawa, M. Wakamastu. Rheology of Castable Refractories. Taikabutsu Overseas, Vol.9(1), 1989: 41~53.
    [71] H. N. Stein. Rheological Behavior of Suspensions. pp 3~47 in Slurry Flow Technology. Encyclopedia of Fluid Mechanics, Vol.(5). Edited by N. P. Cheremisinoff. Gulf Publishing, 1986.
    [72] 宋元伟,李再耕.刚玉—尖晶石—铝酸钙悬浮液流变特性的研究.耐火材科,1998,32[2]80~83,91.
    [73] Studart, A.R. Zhong, W. Pileggi, R.G. Bonadia, P. Pandolfelli, V.C., Dispersion of microsilica-containing zero-cement high-alumina castables. American Ceramic Society Bulletin, v 79, n 2, Feb, 2000.
    [74] Studart, A.R. Pandoifelli, V.C. Gallo, J. Dispersants for high-alumina castables. American Ceramic Society Bulletin, v 81, n 4, April, 2002.
    [75] Ciocea, N.C. Bertalan, V.Mihalache, F1. Barbaresso, C-tin R. Mullite refractory castables with low and ultra-low cement content. Key Engineering Materials, v 132-136, n Pt3, 1997.
    [76] 刘新红.含非氧化物(SiC、Sialon)的矾土基浇注料流变性和高温性能的研究.郑州大学硕士学位论文,郑州:2003.
    [77] Funk J E, Dinger D R. Predictive Process Control of Crowded Particulate Suspensions Applied to Ceramic Manufacturing. Kluwer Academic Publishers. Boston, 1993: 231~251.
    [78] 侯万国,孙德军,张春光编著.应用胶体化学.北京:科学出版社,1998年:34~53.
    [79] Claussen N, Steeb J, Pabst R F.Amer Ceram Soc Bull, 56(6), 1977, 559.
    [80] 尹汝珊,钟香崇.高铝砖的高温力学性能.耐火材料,1983[6],1~8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700