用户名: 密码: 验证码:
黑龙江翠宏山铁多金属矿区重磁资料处理解释
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的飞速发展、现代化进程急速加快,对各种矿产资源的需求量也与日俱增,如何尽快找到更多更好的矿产和油气资源是一个迫在眉睫的问题。由于重力勘探和磁法勘探的物理基础是地质体与围岩具有一定的密度和磁性差异,对物理性质差异较大的地质体分辨能力较强,而铁等多金属矿产资源的密度和磁性通常与周围岩体存在明显差异,因此重力勘探和磁法勘探在寻找金属矿产和查明地质构造等方面有着广泛的应用[1]。
     重力勘探和磁法勘探作为地球物理勘探工作应用中最早的方法,在金属矿产、非金属矿产勘查的各个阶段都得到十分广泛的应用[2]。由于它们具有成本低、效率高、操作简便、工作限制条件较少的优点,因此,在金属矿藏普查、圈定矿体位置等方面效果显著[3]。
     然而,自然界的地质情况是较为繁冗复杂的,各种地质体形状不规则、物理性质参数不均一,有些地质体还存在相互穿插交叠现象。不仅如此,在野外数据获取过程中还会受各种因素干扰影响,如系统误差、偶然误差、人为误差等等,这些因素使测量结果变得更加复杂、难以解读。因此要想对实测资料进行地质解释,首先要区分不同类型的异常[4]。如何在密度或磁性差异不明显的地区排除干扰,准确推断不同地质体的边界、以及如何通过位场分离提取弱异常,已经成为地球物理工作者急待解决的问题。
     作者硕士研究生在读期间于2010至2011年有幸参加了中国地质调查局《吉黑东部矿产资源潜力综合调查与评价》项目中的《吉黑东部综合找矿方法研究(编号1212011085483)》工作项目,并参加了多个测区的重力和磁法野外数据采集工作,因此选择其中的黑龙江翠宏山铁多金属矿区为研究区,具有理论和实际意义。
     翠宏山铁多金属矿位于黑龙江省伊春市逊克县境内,矿区所处位置交通十分便利。该矿属大型复杂矽卡岩矿床,其中富铁、钼、钨及锌等矿的规模分别属大型;贫铁、硫铁矿石、铅等分别属中型;铜矿为小型;并伴生银、镉、铟、硒等[5]。该矿床资源丰富,总储量约15000万吨,其中铁矿石总储量7000万吨,其他有色金属矿8000万吨[6],钼储量10万吨,钨储量12万吨,锌储量50万吨等等,资源潜在经济价值近千亿元。铁矿石原矿品味较高,平均品位为48%,最高达到63%。该矿具有矿体规模大,连续性好,矿石品位和资源利用价值高,运输条件优越等诸多优势[7]。
     作者首先,对黑龙江翠宏山铁多金属矿区1:10000的高精度实测重、磁数据进行了各项外部改正和预处理;其次,利用相关软件进行了化极、延拓、匹配滤波分离深源和浅场、分层剩余异常、垂向导数等模型试验和实测资料处理,同时绘制了各种中间处理结果图件,并对各等值线图作了相应的分析比较;最后,对得到的结果进行了综合分析和解释,推断出研究区内地质体的边界和主要断裂,并给出了进一步找矿的建议。
As rapid economy development and accelerated modernization progress in ourcountry, the quantity demand for a variety of mineral resources is increasing. How to findmore and better mineral and oil-gas resources as soon as possible is imminent. At the sametime, as gravity and magnetic exploration has a strong ability to distinguish objects ofdifferent densities and magnetic, and the mineral resources is generally different with itssurrounding rock, so the gravity and magnetic exploration applies widely to find mineralresources and identify of geological structures[1].
     Gravity exploration and geomagnetic exploration is the earliest geophysicalapplications method, it is applied widely to every stages of metal mines, non-metallicmineral exploration[2]. As there are many advantages of these explorations, such as low cost,high efficiency, easy operation, less work restrictions, so, the effects of these explorationsare significant in mineral resource prospecting and the location delineating[3].
     However, the geological conditions of nature are intricate and complex, and manygeological bodies are irregular, and many parameters of physical property areinhomogenous, even some geological body overlaps others. What’s more, data collected inthe fields is affected by many interference of various factors, such as system error, randomerror, artificial error and so on. These factors make the measurement results become morecomplex and difficult to interpret. Therefore, in order to carry out the geologicalinterpretation from measured data, we need to distinguish abnormal information betweendifferent types at first[4]. How to eliminate the interference in the region of density ormagnetic with weak abnormal information to conclude the boundaries of differentgeological bodies accurately and how to extract weak abnormal information from potentialfield separation, it has become an urgent problem that geophysical workers needed toresolve immediately.
     I’m very fortunate participating in the project “The Combined Method ofGeophysical and Geochemical Exploration for minerals in Eastern Jilin and Heilongjiang(No.1212011085483)” of the China Geological Survey project “Mineral ResourcePotential Survey and Assessment in Eastern Jilin and Heilongjiang” during my MasterDegree from2010to2011. I have participated in gravity and magnetic field data collectionin many survey areas, so I selected one of the iron mine of Cuihong Mountain,Heilongjiang Province as the study area which has a theoretical and practical significance.
     The iron-polymetallic of Cuihongshan located in Xunke County, Yichun City,Heilongjiang Province, the local transportation is very convenient. It is a large andcomplex skarn deposit, The scale of iron-rich, molybdenum, tungsten, zinc and so on islarge; The scale of iron-poor, pyrite mine, lead and so on is medium; The scale of coppermine is minority; And silver, cadmium, indium, selenium are accompanying[5]. This depositis rich in resources, the total reserves of about150million tons, this include70milliontons of iron ore,80million tons of other non-ferrous metal mine[6],100,000tons ofmolybdenum reserves,120,000tons of tungsten reserves of,500,000tons of zinc reservesand so on. The potential value of the resources is nearly1000billion. Higher iron minetaste, with an average grade of48%, up to63%. The iron mine is of high grade, averagegrade of48%, up to63%. There are many advantage of this mine, such as, mine body oflarge-scale, good continuity, excellent transportation conditions, and both mine grades andresource utilization value are high[7].
     First, I have measured gravity and geomagnetic in iron mine of in a proportionally1:10000Cuihong Mountain, Heilongjiang Province and proofread and preprocessed thedata. Then I have processed the data by model testing and laboratory general processingusing software, like reduction to pole, continuation, matching filter separation of deep andshallow field, layered residual anomaly and so on. Finally, I have analysed and interpretedthe results synthetically and inferred the boundaries and major faults of geological body,and given the corresponding recommendation for mine prospecting.
引文
[1]刘光鼎.论综合地球物理解释—原则与实例[A].见:八十年代地球物理学进展[C].北京:学术书刊出版社,1989,231-242.
    [2]郝沪军,张向涛.重磁资料在潮汕坳陷中生界油气勘探中的应用[J].中国海上油气(地质),2003,17(2):128-132.
    [3]祁光,吴燕冈,严加永.磁法勘探在寻找金属非爆炸物中的应用[J].吉林大学学报(地球科学版),2008-11,38:30-32.
    [4]韩兆红,吴燕冈,徐兵,等.基于李雅普诺夫指数的矿产资源评价模型的建立[J].物探化探计算技术,2010-3.32(2).179-182.
    [5]赵德伟,陈琪,蔡更新,等.翠宏山铁多金属资源高效开采方案初步研究[J].采矿技术,2010-03-15:94-96.
    [6]刘志宏.黑龙江省翠宏山钨钼锌多金属矿床地质特征及成因[D].吉林:吉林大学,2009.
    [7]彭丽,刘明.黑龙江省逊克县翠宏山铁多金属矿成矿背景分析[J].黑龙江科技信息,2011-04-25:66,118.
    [8]何财,李少云,高贺祥,等.黑龙江省翠宏山矽卡岩型铁多金属矿床的成矿地质条件[J].吉林地质,2010,29(3):56-58.
    [9]范美宁.欧拉反褶积方法的研究及应用[D].吉林:吉林大学,2006.05.01
    [10]穆石敏,申宁华,孙运生.区域地球物理数据处理方法及其应用[M].吉林:吉林科学技术出版社,1990.
    [11]《地面磁测资料解释推断手册》编写组.地面磁测资料解释推断手册[M].地质出版社,1979.2:972-1023.
    [12]郝天珧,刘伊克,徐万哲.黄海和邻区重磁场区域构造特征[J].地球物理学进展,1998,13(1).
    [13]孙运生,李庆宣,许惠平,等.地球物理位场数据转换图像处理及编程[M].吉林科学技术出版社,1995.7
    [14]许家姝.漠河盆地重磁场特征与沉积构造研究[D].吉林:吉林大学,2006
    [15]陈海云,林春明,阎汉杰,等.重力资料在济阳坳陷石油勘探中的应用[J].石油学报,2005,26(6):46-51.
    [16]肖锋.重力数据处理方法的研究及其在钾盐矿勘探中的应用[D].吉林:吉林大学,2009
    [17]张宝林,吴燕冈,苏捷,等.内蒙古镶黄旗道郎和都格矿区钨多金属成矿地质背景与综合定位预测方法[C].中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(下),2011.11,41(6):1959-1967.
    [18]罗孝宽,郭绍雍.应用地球物理教程-重力磁法[M].北京:地质出版社,1991
    [19]徐宝慈,李春华.位场数据处理理论与问题[M].吉林:吉林大学出版社,1995
    [20]唐小兵.磁异常处理解释系统的设计与开发[D].四川:成都理工大学,2008.
    [21]侯艳辉,张福平,刘忠诚.基于MapInfo和Surfer的等值线绘制方法[J].金属矿山,2008.9-增刊:281-283.
    [22]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988.4-10.
    [23]王海燕.浅覆盖区区域地质调查中重、磁方法技术的应用研究[C].中国地球物理学会年刊2002-中国地球物理学会第十八届年会论文集,2002-10-1:137.
    [24] Reid A B,A llsoP,JM,Granser H, et al.1990, Magnetic interpretation in threedimensions using eular deconvolution [J]. Geophysics,55:80-91.
    [25]焦新华,吴燕冈.重力与磁法勘探[M].地质出版社2009.8.
    [26] PETERS L J. The direct approach to magnetic interpretation and its practicalapplication [J]. Geophysics,1949,14(3):290-320.
    [27] HENDERSON R G ZIETZ I, The computation of second vertical derivatives ofgeomagnetic fields [J]. Geophysics,1949,14(4):508-516.
    [28] ROBISON E S.Upward continuation of total intensity magnetic fields [J].Geophysics1970,35(5):920-926.
    [29] HANSEN R. O.,MIYAZKI Y. Continuation of potential fields between arbitrarysurface [J].Geophysics1984,49(6):787-795.
    [30] KONTIS A. Aeromagnetic field test of total intensity upward continuation [J].Geophysics1971,36(2):418-425.
    [31]曾华霖.重磁资料数据处理某些方法效果的讨论[[J].物探与化探,1982,6(5):257-264.
    [32]曾华霖,许德树.最佳向上延拓高度的估计[J].地学前沿,2002,9(2):499-503.
    [33]毛小平,吴蓉元,曲赞.频率域位场下延的振荡机制及消除方法[J].石油地球物理勘探,1998,33(2):230-237.
    [34] WANG B.2D and3D potential-field upward continuation using splines [J].Geophysics,2006,54(2):199-209.
    [35]肖锋.重磁数据处理系统的开发及其在新疆地壳构造研究中的应用[D].吉林:吉林大学,2004-05-01.
    [36]程方道,刘东甲,姚汝信.划分重力区域场与局部场的研究[J].物探化探计算技术,1987,9(l):l-9
    [37] Selecting the optimum location of the corner using gravity gradient method,[J].Applied Geophysics,2011,4:241-248.
    [38]郑伟军. Till导数方法研究及其在重磁数据处理中的应用[D].北京:中国地质大学(北京),2010-05-01.
    [39]张凤旭,孟令顺,张凤琴,等.重力位谱分析及重力异常导数换算新方法--余弦变换[J].地球物理学报,2006,49(1):244-248.
    [40]孙鹏飞,吴燕冈.重力梯度法中台阶倾角的确定与实际应用[J].金属矿山,2011,11:116-119.
    [41]吴燕冈,杜晓娟.应用地球物理教学实习指导[M].地质出版社.2010.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700