用户名: 密码: 验证码:
高寒干旱荒漠景观区表生地球化学与勘查方法技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,高寒干旱荒漠景观区地球化学勘查采用的方法技术各异,解决干扰地球化学异常的应对措施不尽相同,所获区域地球化学异常信息被掩蔽、弱化或地球化学及其异常分布规律难以判明。以土壤、水系沉积物、风成沙为研究对象,研究其元素的表生地球化学特征,目的是查明风成沙对地球化学异常的干扰,研制适宜高寒干旱荒漠景观区的地球化学勘查方法技术。 
    研究表明,高寒干旱荒漠景观区土壤与水系沉积物大于40 目粗粒级部分主要为岩屑,影响其元素地球化学分布的主要因素为所处地质背景和元素自身地球化学性质,风成沙的干扰很小;小于80 目细粒级部分受到大量掺入的风成沙的严重干扰,对元素表生地球化学分布产生影响,导致异常消失、弱化或抬升背景,根源来自风成沙优势粒级(-80 目)所汇聚的矿物。 
    水系沉积物在流水作用下,矿物自然分选表现出重矿物向-80 目细粒级聚集的趋势,与之相对应的元素亦呈现出从粗粒向细粒级含量逐渐升高的态势,表明重矿物是元素沿水系迁移的重要载体;其中,Ag、Pb、Bi、Sb 主要赋存在无磁性重矿物中,Zn、Cu主要赋存于电磁性重矿物,Fe、Ni、Co 主要赋存在强磁性重矿物内;具有小型以上规模的矿床,其主要成矿元素在主异常水系中的迁移距离通常可达4~5 km以上,流水搬运形成的矿物分选,使部分主矿化元素异常向下游水系有较大的延伸,一定程度上影响了元素地球化学异常的空间分布。
    依据上述研究成果和地球化学勘查不同阶段的目的,研究总结提出适合高寒干旱荒漠景观区的地球化学勘查方法技术为:1/20 万区域地球化学普查阶段以水系沉积物为采样介质,基本采样密度1 点/4km2,采样粒级-10~+80 目可有效排除风成沙干扰,获取接近汇水域内基岩地球化学特征的信息;异常追踪阶段适宜开展1/5 万水系沉积物测量,基本采样密度4~8 点/km2,采样粒级-10~+80 目,可迅速缩小找矿靶区;异常查证阶段可采用土壤地球化学测量方法,面积性测量采样密度50~100 点/km2,剖面测量点距50m,至少3 条剖面,采集基岩上部风化层土壤,采样粒级-10~+80 目。
For a long time, the methods adopted in the geochemical exploration in the cold and arid deserta areas are different for their measures to discover geochemical anomalies. The regional geochemical anomalies information acquired from these methods is often concealed, weakened or difficult to be ascertained. In the paper, the hypergene geochemical anomalies of elements distributed in the soil, stream sediment and eolian sand are studied to find out the interference of eolian sand with geochemical anomalies and to develop new geochemical prospecting methods that is suitable in the cold and arid deserta areas.
    The research result shows that, in the soil and stream sediment located in the cold and arid deserta, the coarse particle grade part whose size is bigger than 40 meshes are mainly rock debris. The main factors influencing element geochemical distribution in the debris include the geological setting and geochemical character of element self and the interference of eolian sand is weak. The fine particle grade part whose size is less than 80 meshes is interfered severely by the eolian sand mixed in a great deal. The eolian sand has influence on the distribution of geochemical anomalies, which results in the disappearance and weakness of anomalies or rise of background value. It is attributed from the heavy mineral distributing in the dominant particle size (-80 meshes) of the eolian sand.
    For the effect of water flow, the minerals in the stream sediment show the trend that heavy minerals is enriched in fine particle grade with a grade size of –80 meshes, and therefore, the content of relevant elements increases from the coarse particle grade to fine particle grade gradually. It indicated that the heavy minerals are important media for the migration of elements along the water system. Among these elements, silver, lead, bismuth and antimony are mainly distributed in the heavy minerals without magnetism; zinc and copper are mainly distributed in the heavy minerals with electromagnetic property; iron, nickel and cobalt are mainly distributed in the heavy minerals with strong magnetism. The main ore-forming elements in the deposit with a small size scale or above could often migrate over 4~5 km in the water system with main anomalies. The minerals separation formed in the transportation of flowing water makes part of main mineralized elements anomalies extending along the lower reaches of water system much and has influences on the spatial distribution of elements geochemical anomalies in some degree.
    On the basis of the study results above and according to the purposes in the different geochemical prospecting stages, the geochemical prospecting methods and technologies, which are suitable for the cold and arid deserta, are put forward as following: in the 1/200000 scale of regional geochemical general exploration, the stream sediment should serve as sampling medium with a sampling density of 1 sampling site per 4 km2 and sample particle grade of -10~+80 meshes. By the method, the interference of eolian sand could be eliminated effectively and the geochemical information about base rock adjacent to the water catchments regions could also be acquired; in the tracing stage of anomalies, 1/50000 scale of stream sediment survey is suitable to be carried out with a sampling density of 4~8 sampling sites per km2 and sample particle grade of -10~+80 meshes, which could reduce the mine prospecting target area rapidly; in the verification stage of anomalies, soil geochemical methods could be adopted with a sampling density of 50~100 sampling sites per km2 in the case of area survey and a point distance of 50m in section survey. At least, three sections should be sampled and the samples should come from the soil located in aerated layer at the top of base rock with a sampling particle size of -10~+80 meshes.
引文
[1] B.B.波利卡尔波奇金(苏). 次生分散晕和分散流(吴传璧,邱郁文译). 北京:地质出版社,1981
    [2] H.D.福斯. 土壤科学原理(唐耀先等译). 北京:农业出版社,1984
    [3] H.E.霍克斯,J.S.韦布. 矿产勘查的地球化学. 地科院物化探所印(内刊),1974
    [4] 程裕淇. 中国区域地质概论. 北京:地质出版社,1994
    [5] 杜恒俭,等. 地貌学及第四纪地质学. 北京:地质出版社,1980
    [6] 李天杰,等. 土壤地理学. 北京:高等教育出版社,1984
    [7] 龚子同. 中国土壤系统分类. 北京:科学出版社,1999
    [8] 中科院南京土壤所. 北京:中国土壤.科学出版社,1980
    [9] 地图出版社编. 中华人民共和国地图集. 北京:地图出版社,1979
    [10] 地图出版社编. 中华人民共和国分省地图册. 北京:地图出版社,1979
    [11] 王越,等. 中国市县手册. 浙江:浙江教育出版社,1987
    [12] 中国地质科学院成都地矿所. 青藏高原及邻区地质图. 北京:地质出版社,1988
    [13] 青海地矿局. 青海省区域地质志. 北京:地质出版社,1991
    [14] 甘肃地矿局. 甘肃省区域地质志. 北京:地质出版社,1991
    [15] 西藏地矿局. 西藏区域地质志. 北京:地质出版社,1992
    [16] 张小曳. 青藏高原远源西风粉尘与黄土堆积. 中国科学,1996,26(2):147~153
    [17] 谢学锦. 区域化探. 北京:地质出版社,1979
    [18] 任天祥,等. 区域化探异常筛选与查证的方法技术. 北京:地质出版社,1998
    [19] 国土资源部信息中心. 国外重要成矿区带典型找矿案例和勘查技术应用.(内部资料),1999
    [20] 刘英俊. 元素地球化学. 北京:科学出版社,1984
    [21] 任天祥,李明喜,等. 高寒山区表生作用地球化学及区域化探方法的初步研究. 地质论评,1983,29(5):428~436
    [22] 任天祥,孙忠军,向运川. 念青唐古拉—雅鲁藏布江中段区域地球化学特征及成矿环境. 矿物岩石地球化学通报,2002,21(2):185~186
    [23] 张文秦. 青海省东昆仑1:50 万区化扫面项目中的化探异常查证方法介绍. 青海地质,1995,第2 期
    [24] 李明喜,张文秦. 青藏高原水系沉积物地球化学衰减模式与区域地球化学勘查对策. 青海地质,1996,5(1):53~70
    [25] 李明喜. 青海高寒山区干旱荒漠残山区区域化探方法技术应用总结. 会议资料,1989
    [26] 张农一. 青海半干旱荒漠化草原景观区区域地球化学方法技术初步总结. 会议资料,1989
    [27] 汪彩芳,张文秦. 青海省区域地球化学勘查回顾. 青海地质,2000,9(2)
    [28] 于兆云,等. 二道沟铜矿的发现与区域勘查方法问题. 青海地质,1999,8(1):49~57
    [29] 于兆云,等. 青海可可西里高寒荒漠化草原区区域化探扫面方法研究报告.(内部报告),1992
    [30] 杨万志. 新疆西昆仑山1:50 万甚低密度化探扫面方法技术研究报告.(内部报告),1992
    [31] 郭海龙. 阿尔金山1:50 万甚低密度化探扫面方法技术研究报告.(内部报告),1993
    [32] 新疆第一区调三分队. 新疆东昆仑地区1:50 万化探扫面补充方法技术试验成果报告.(内部报告),1996
    [33] 李韵珠. 土壤溶质运移. 北京:科学出版社,1998
    [34] 李天杰,等. 土壤地理学. 北京:高等教育出版社,1983
    [35] 孙东怀,等. 中国黄土粒度的双峰分布及其古气候意义. 沉积学报,2000,18(4):359~371
    [36] 马民涛,关广岳. 表生地球化学研究若干方面现状. 辽宁地质,1994,12(2):70~76
    [37] 王学求,迟清华. 荒漠戈壁区超低密度地球化学调查与评价—以东天山为例. 新疆地质,2001,19(3):200~206
    [38] 王瑞廷,欧阳建平. 表生地球化学研究现状及进展. 矿产与地质,2002.,16(1):418~423
    [39] 仪垂祥. 非线性科学及其在地学中的应用. 北京:气象出版社,1995
    [40] 冯治汉,刘元平,叶得金,等. 甘肃省景观地球化学特征初探. 地质地球化学,2002,30(3):263~270
    [41] 冯治汉,徐家乐. 甘肃省景观地球化学特征及区域化探工作方法研究. 地质与勘探,2003,39(6):2~5
    [42] 刘金海,蒋敬业. 甘南高寒草甸景观区金的表生地球化学特征. 地质找矿论丛,1999,14(4):56~61
    [43] 孙忠军,刘华忠,于兆云,等. 青海高寒湖沼景观区风成沙对成矿元素迁移的扰动机制的研究. 物探与化探,2003,27(3):167~170
    [44] 庄道泽,刘拓,胡建卫,等. 新疆区域地球化学勘查的回顾与展望. 物探与化探,2003,27(6):425~427
    [45] 朱华平,张德全. 区域化探异常的地球化学勘查评价方法技术进展综述. 地质与勘探,,2003,39(2):35~38
    [46] 朱有光,蒋敬业,李泽九,等. 试论中国重要景观区区域地球化学异常系统评价的 量化模型. 物探与化探,2002,26(1):17~22
    [47] 何进中. 试论甘肃省特殊景观区区域化探. 物探与化探,2002,28(2):102~105
    [48] 岑况,叶荣,沈镛立,等. 北山戈壁荒漠地区1:5 万植物地球化学测量效果. 地质与勘探,2003,39(6):86~89
    [49] 张华,刘应汉,杨少平,等. 青藏高原西北部干旱荒漠区表生地球化学研究. 地质与勘探,2002,38(增刊):180~184
    [50] 张华,刘拓,孔牧,等. 新疆东天山地区地球化学勘查方法技术研究. 地质与勘探, 2003,39(6):99~102
    [51] 张华,杨少平,刘应汉,等. 新疆西昆仑地区干旱荒漠景观区域化探方法技术初步研究. 新疆地质,2001,19(3):221~227
    [52] 张克尧,张义光. 雅鲁藏布江两岸风成沙覆盖区地球化学找矿方法及效果. 福建地质,2003,(2):62~68
    [53] 张虎才. 元素表生地球化学特征及理论基础. 兰州:兰州大学出版社,1997
    [54] 李永昭. 青藏高原第四纪冰期序列及意义. 成都理工学院学报,1998,25(2):303~310
    [55] 杨少平. 国外表生地球化学研究的新进展. 国外地质勘探技术,1994,(3):18~24
    [56] 杨少平,孔牧,赵传冬. 高寒草甸区东部地表疏松层中金、砷、锑的存在形式. 物探与化探,2004,28(6):132~236
    [57] 汪立今,查仁荣. 新疆沙尔布尔一萨吾尔山地区区域化探岩屑地球化学异常Ⅲ级检查的试验研究. 地质地球化学,1997,(3)7~13
    [58] 陆景岗. 土壤地质学. 北京:地质出版社,1997
    [59] 周幼吾. 中国冻土. 北京:科学出版社,2000
    [60] 於崇文. 固体地球系统的复杂性与自组织临界性. 地学前缘,1998,5(3~4):159~182,347~368
    [61] 徐宁,李月臣. 阿尔泰中高山区域化探金异常成因探讨. 新疆地质,2001,19(3):166~173
    [62] 顾娇杨,滕家欣,冯治汉. 甘肃地球化学景观特征及区域地球化学方法技术评价. 西北地质,2003,36(3):111~114
    [63] 黄文杰,汤懋苍. 青藏高原隆升和夷平过程的数值研究. 中国科学D 辑,1997,27(1):65~69
    [64] 程力军,杜光伟. 西藏高原区域化探工作进展及主要成果. 中国地质,2001,28(1):46~48
    [65] 蒋敬业,朱有光,赵伦山,等. 西天山高寒草甸区寻找隐伏矿方法研究. 物探与化探,2004,28(6):189~192
    [66] 腾吉文,张中杰. 青藏高原的降升与环境变化. 地学前缘,1997,4(2):247~254
    [67] 廖士范. 关于风化作用涵义的探讨. 贵州地质,1997,14(1):64~70
    [68] 蔡分良,姚铁. 西昆仑叶尔羌河上游地区地球化学成矿规律及找矿标志. 陕西地质,2004,22(2):53~69
    [69] 潘根兴. 地球表层系统土壤学. 北京:地质出版社,2000
    [70] 蔡强国,陆兆熊,王贵平. 黄土丘陵沟壑区典型小流域侵蚀产沙过程模型. 地球学报,1996,51(2):108~115
    [71] 薛水根. 区域化探在伊朗干旱地区的应用效果. 江西地质,1998,12(2):133~139
    [72] Anderson S P, Driver J I, Humphrey N F. Chemical weathering in glacial environments. Geology, 1997, 25(5):399~402
    [73] Adri C.T. van Duin, Steve R. Larter Molecular dynamics investigation into the adsorption of organic compounds on kaolinite surfaces. Organic Geochemistry, 2001, 32: 143~150
    [74] Berner R A. Weathering plants and the long-term carbon cycle. Geochimica et Cosmochimica Acta, 1992, 56: 3225-3231
    [75] Blaxland A B. Geochemistry and geochronology of chemical weathering, Buthler Hill Granite, Missouri. Geochim Cosmochim Acta, 1974, 38(6):843~852
    [76] Blum J D. The effect of Late Genozoic Glaciation and tectonic uplift on silicate weathering rates and the marine 87Sr/86Sr record [A]. In: Tectonic Uplift and Climate Change[C]. New York, London: Plenum Press, 1997, 259-288
    [77] Chesworth W, Dejou J, Larroque P. The weathering of basalt and relative mobilities of the major elements at Belbex, France. Geochim Cosmochim Acta, 1981, 45(7):1235~1243
    [78] Drever J I, Zobrist J. Chemical weathering of silicate rocks ad a function of elevation in the southern Swess Alps. Beochimica et Cosmochimica Acta, 1992, 56(3):209~216
    [79] Fritz S J, Mohr D W. Chemical alteration in the micro weathering environment within spheroidally-weathered anorthosite boulder. Geochim Cosmochim Acta, 1984, 48(12):2527~2535
    [80] Gislason S E, Arnorsson S, Armannsson H. Chemical weathering of basalt in Southwest Iceland: effects of runoff age of rocks and vegetative/glacial cover. American Journal of Science, 1996, 296: 837~907
    [81] Ю.Ф.Погребняк. ПовышениеэффективностигеохимическихметодовпоисковвзонеБАМ. НовосибирскНаука, 1981, 49~54
    [82] А.Г.Глухов,А.А.Волох. Применение  атмогеохической   съемки  при  поисках  перекрытых  эолорудных  объектах. Отечетвенная  геология, 1995, No12: 28~33
    [83] Н.А.Китаев.ГеохимическиеметодыпоисковрудныхместорожденийЧасть2. НовосибирскНаука, 1983, 58~67
    [84] Kevin Telmer , Heidi E. Pass, Stephen Cook Combining dissolved, suspended and bed load stream geochemistry to explore for volcanic massive sulfide deposits:Big Salmon Complex, northern British Columbia. Journal of Geochemical Exploration, 2002, 75:107~121
    [85] Ludwig W, Probst J L. River sediment discharge to the ocean: Present-day controls and global budgets. Americal Journal of Science, 1998, 298: 265~295
    [86] Laurel G. Woodruff , John W. Attig, William F. Cannon Geochemistry of glacial sediments in the area of the Bend massive sulfide deposit, north-central Wisconsin. Journal of Geochemical Exploration, 2004, 82: 97~109
    [87] Meybeck M. Total mineral dissolved transport by world major rivers. Hydrological –Sciences-Bulletin-des. Sciences Hydrologiques, 1976, 126: 265~282
    [88] Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim Cosmochim Acta, 1980, 44(11): 1659~1666
    [89] Nesbitt H W, Yong G M. Formation and diagenesis of weathering profiles. J Geol, 1989, 97: 129~147
    [90] Nesbitt H W, Wilson R E. Recent chemical weathering of basalts. Am J Sci, 1992, 292:740~777
    [91] Oliva P, Viers J, DupreéB, etal. The effect of organic matter on Chemical weathering: Study of a small tropical watershed: Nsimi-Zoetélésite, Cameron.Geochim Cosmochim Acta, 1999, 63(23-24): 4013~4035
    [92] Sarin M M, Krishnaswami S, Dilli K, et al. Major ion chemistry of the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochemica et Cosmochemica Acta,, 1989, 53: 997~1009
    [93] Schwartzman D W, Volk T. Biotic enhancement of weathering and the habitability of Earth. Nature,, 1989, 340: 457~459
    [94] Sharma A, Rajamani V. Weathering of gneissic rocks in the upper reaches of Cauvery river, south India: Implications to neotectonics of the region. Chem Geol, 2000, 166(3-4): 203~223
    [95] Summerfield M A, Hulton N J. Natural controls of fluvial denudation rates in major world drainage basins. Journal of Geophsical Research,, 1994, 99(B7): 13 871~883
    [96] Taylor G, Eggleton R A, Holzhauer C C, etal. Cool climate lateritic and Bauxitic weathering. J Geol, 1992, 100: 669~677
    [97] Teutsch N, Erel Y, Halicz L, etal. The influence of rainfall on metal concentration and behavior in the soil. Geochim Cosmochim Acta, 1999, 63(21): 3499~3511
    [98] White A F, Blum A E. Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta, 1995, 59(9): 1729~1747

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700