用户名: 密码: 验证码:
阻尼脉动干扰床分选机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤炭开采机械程度的提高及地质条件的变化,原煤中细粒含量越来越多,细粒分选成为关注的焦点。综合比较当前细粒煤分选技术,流化床分选以其独特优点被广泛采用,但却存在分选粒度范围窄、可控可调参数少等缺陷。针对其存在的缺陷,设计研发一种阻尼脉动细粒煤干扰床分选技术及装备,以适应煤质的多变。
     干扰沉降理论是设备研发的理论基础。在颗粒受力分析及沉降末速计算基础上,首先选取了沉降速度模型,进而对脉动干扰沉降理论做了初步探讨。分析了沉降速度与其影响因素之间的关系及干扰沉降末速经验式中的n值。分析发现:沉降速度均随颗粒粒度(密度)的增大而增大,随入料浓度的增大而减小;n值随颗粒密度、粒度的增大都呈减小的趋势,n值随颗粒密度增大的变化较为平缓,随粒度增大其变化较为剧烈且呈指数衰减趋势。
     在此基础之上,提出了新的设计思路,即:增设脉动水流以强化分选过程中的密度效应,在分选腔内布置阻尼块来改善流场,采取单边入料来延长颗粒分选时间。通过Pro/E软件建模、FLUENT流场模拟优化了分选机结构,制作了实验室样机并构建了实验系统。采取不同矿区煤样,分别作了对比试验、影响因素的正交试验。实验结果表明:阻尼脉动干扰床分选效果优于传统干扰床分选机;正交试验找出了影响分选效率的显著因素,并得到了试验回归方程。
With the change in the mechanical mining and geological conditions, more and more fine coal exist in the raw coal, and its separation has become a focus of attention. By comprehensive comparison of various fine coal separation technology, Fluidized bed separation was widely used for its unique advantages, But there were less controllable parameters, narrow grained separation etc, defects. According to the problems, the Damping pulse jamming-bed separation technology was designed, in order to accommodate frequency change of coal quality.
     Designing of equipment was based on the hindered settling theory. With analysis of forces on particle and calculation of terminal velocities, terminal velocity models are selected, and then Pulse jamming settlement theory was discussed. The relationship between settling velocity and its effect factor, n-value of experimental-formula for hindered settling velocity were analysed. The analysis show that the settling velocity increases with the size and density increasing, decreases with the concentration increasing; n-value decreases with the size and density increasing; the n-value versus size relationship follows an exponential decay curve, but hardly change with the size increasing.
     Based on the theory, the new design was raised, i.e., adding pulsatingcurrent to strengthen density effects, adding damping block to improve the flow field, adding one-sided in-put to extend separation time. The seperator and experimental system were built, and the structure of seperator was optimized by modeling and flow field simulation. The contrast-test and orthogonal test for factors were conducted by using coal samples from different mining area. The results indicated: Damping pulse jamming bed separator was superior to the traditional fluid-bed separator, orthogonal test found the marked factors of separating efficiency and established regression equation.
引文
[1]罗斐.煤炭资源的现状及结构分析[J].中国煤炭,2008,34(3):91-96
    [2]中国国家统计局.中国统计年鉴2005[M].北京:中国统计出版社,2006:11-78
    [3]焦红光.浅谈我国燃煤污染危害及其防治[J].选煤技术,2004(2):3-6
    [4]薛晋华.煤炭洗选加工在洁净煤技术发展中的现状和趋势[J].大众标准化,2008,(S1):94-95
    [5]王成师.我国选煤技术现状与发展趋势[J].选煤技术,2006(6):55-56
    [6]邓晓阳,周少雷.中国选煤厂的设计现状[J].煤炭加工与综合利用,2006(5):13-15
    [7]梅国民,王全强,刘焕胜.细粒煤分选方法评述[J].煤炭技术,2005
    [8]焦红光,谌伦建,铁占续.细粒煤重选设备的技术现状与分析[J].煤炭工程,2006(1):15-17
    [9]高丰.粗煤泥分选方法探讨[J].选煤技术,2006 (3):40-43
    [10]周晓华,赵朝勋,刘炯天.煤泥脱硫现状及发展方向[J].选煤技术,2002(1):53-55
    [11] Honaker, R.Q., Paul, B.C., Wang, D. and Ho, K., 1995,“Enhanced Gravity Separation: an Alternative to Floatation,”High Efficiency Coal Preparation (ed. S.K. Kawatra,) Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colorado, Chapter 5, pp. 69-78
    [12] Jaisen N.Kohmuench Improving efficiencies in water-based separators using mathematical analysis tools[D], Blacksburg, Virginia, USA.2000
    [13] Elder, J., Kow, W., Domenico, J. and Wyatt, D., 2001,“Gravity Concentration-A Better Way,”Proceedings, International Heavy Minerals Conference, 115-118
    [14] R.Q.Honaker, Wang.D., Ho,K. Application of the Falcon Concentrator for Fine Cleaning[J]. Mineral Engineering,1996,11
    [15]朱金波.用复合脉动水流特性降低跳汰机分选下限及分选机理研究[D].徐州:中国矿业大学,1998
    [16]刘炯天,周晓华,王勇田等.浮选设备评述[J].选煤技术,2003(6):25-33
    [17]李延峰.粗煤泥在液固流化床中的高效分离研究[D].江苏徐州:中国矿业大学,2004
    [18]曹长青,刘明言,王一平,秦秀云,胡宗定.(气)-液-固循环流化床的研究进展[J].化学反应工程与工艺,2004,20(6):161-166
    [19]赵德春.TBS分选机在盘南公司选煤厂的应用[J].煤炭加工与综合利用,2007(4):7-8
    [20]葛迎春,苏静,翟香荣.TBS分选机在济二煤矿选煤厂粗煤泥处理中的应用[J].煤,2007,16(6):24-25
    [21]朱海龙.梁北选煤厂工艺系统的改进[J].选煤技术,2008(2):32-33
    [22]王建军,焦红光,谌伦建.细粒煤液固流化分选技术的发展与应用[J].煤炭技术,2007,26(4):81-83.
    [23] K.P Galvin, S.J.Pratten and S.K.Nico1. Dense Medium Separation Using A Teetered Bed Separator[J]. Minerals Enginering.1999,12(9):1059-1081
    [24] MattIlew Donnel Eisemnann,Elutriation Technology in Heavy Mineral Separations[D]. Blacksburg,Virginia,November,2001
    [25] Kevin Patrick Galvin.A Reflux Classifier[P].AU Patent No.758148,2000-02-02 [26] Duijn G V,& Rietema K.Segregation of liquid-fluidized soilds[J].Chem.English Sci,1982,37(5):727-733
    [27] P Newling,W Weale,A Swanson,P Clarkson.Stratford煤炭公司.Boutique矿及选煤厂的革新措施[C].第十三届国际选煤会议论文集,1999
    [28] R B Drummond,A R Swanson S K Nicol,P G Newling. Stratford选煤厂75t/h干扰床分选机动力学[C].第十三届国际选煤会议论文集,1999
    [29] R B Drummond,S K Nicol and A Swanson.Teetered bed separators-the Australian experience[J]. X IV International Coal Preparation Congresss, South African Institute of Mining and Metallurgy, 2002
    [30] R.Drummond等.干扰床层分选机—澳大利亚的经验[ C ].第14届国际选煤会议论文集,2003:371-383
    [31] Matthew Donnel Eisenmann. Elutriation Technology in Heany Mineral Separations[D]. Blacksburg, Virginia,November, 2001
    [32] K P Galvin,E Doroodchi,A M Callen,N Lambert,S J Pratten. Pilotplant trial of the reflux classifier[J]. Mineral Engineering,2002(15)
    [33] A.M.Callen等. Coal Washability Analysis by Water Fluidization and Jigging[A].第十五届国际选煤大会论文集.2006(12)
    [34] K.P.Galvin, S.J.Pratten. Application of fluidization to obtain washability data[J]. Mineral Engineering,1999,12(9):1051-1058
    [35]吕一波,谭之海.水介质流化床分选机中煤颗粒沉降末速的研究[J].洁净煤技术,2007,13(6):10-13
    [36]吕一波,谭之海.利用图像识别技术提取粗粒煤图像的物理特征[J].洁净煤技术,2006,12(3):98-100
    [37]陈子彤,刘文礼,赵宏霞,路迈西.干扰床分选机分选粗煤泥的实验研究[J].煤炭工程,2006(5):69-70
    [38]陈子彤,刘文礼等.干扰床分选机原理及分选理论基础研究[J].煤炭工程,2006(4):64-66
    [39]赵宏霞,杜高仕,李敏.干扰床分选技术的研究[J].煤炭加工与综合利用,2005(2):16-18
    [40]刘文礼陈子彤等.干扰床分选机分选粗煤泥的规律研究[J].选煤技术,2007(4):11-13
    [41]王建军.粗煤泥液固流化床高效脱硫降灰机理研究[D].河南焦作,河南理工大学,2008
    [42]赵洪力.一种用于精确分级的受阻沉降器[J].中国粉体技术,2003(1)
    [43]韩云.世界四座最大选煤厂[J].选煤技术,2002(4):53-55
    [44]谢广元.选矿学[M].徐州:中国矿业大学出版社,2001
    [45]周亨达.工程流体力学[M].北京:冶金工业出版社,1988
    [46]王志魁.化工原理[M].北京:化学工业出版社,2004
    [47] K.P.GALVIN, S.J.PRATTEN, S.K.NICOL. Dense Medium Separation Using A Teetered Bed Separator[J]. Mineral Engineering,1999,12(9):1059-1081
    [48]化学工业部教育培训中心.固体流态化与应用[M].北京:化学工业出版社,1997
    [49]张鸿起,刘顺,王振生.重力选矿[M].北京:煤炭工业出版社,1992
    [50]郑邦民,夏军强.固体颗粒的群体沉降速度分析[J].泥沙研究,2004(6):41-45
    [51] Richardson ,J . F. and Zaki ,W.N. ,Sedimentation and fluidisation ,Part I ,Trans. Chem. Engrs.Vol. 32 ,No. 1 ,1954 ,35 - 53
    [52] K.P.Galvin,S.Pratten,and G.Nguyen Tran Lam.A generalized empirical description for particle slip velocities in liquid fluidized beds[J].Chemical Engineering Science,1999,54:1045-1052
    [53] K.P.Galvin,E.Doroodchi,A.M.Callen,N.Lambert,S.J.Pratten.Pilot plant trial of the reflux classifier[J]. Minerals Engineering,2002,15:19-25
    [54] Smith,T.N.,A Model of Settling Velocity[J].Chemical Engineering Science,1998,53(2):875-884
    [55] Locket,M.J.and AI-Habbooby,H.M.,Differential Settling by Size of Two Particle Species in s Liquid[J].Transaction of the Institution of Chemical Engineers,1973,51,281~292
    [56] Locket,M.J. and AI-Habbooby,H.M.,Relative Particle Velocities in Two-Species Settling[J]. Power Technology,1974,10,67-71
    [57]《选煤标准使用手册》编委会.选煤标准使用手册[M].北京:中国标准出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700